
Hierarchical Techniques for Visibility Computations

by

Jǐrı́ Bittner

A dissertation submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfillment of the requirements for the degree of Doctor.

October 2002

Thesis Supervisor:
Assoc. Prof. Pavel Slavı́k, CSc.
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo ńaměst́ı 13
121 35 Praha 2
Czech Republic

Abstract

Visibility computation is crucial for computer graphics from its very beginning. The first visibility al-
gorithms aimed to determine visible lines or surfaces in a synthesized image of a 3D scene. Nowadays
there is a plethora of visibility algorithms for various applications. The thesis proposes a taxonomy of
visibility problems based on the dimension of the problem-relevant line set, i.e. set of lines forming the
domain of the visibility problem. The taxonomy helps to identify relationships between visibility prob-
lems from various application areas by grouping together problems of similar complexity. The thesis
presents a general concept of a visibility algorithm suitable for solution of several classes of visibil-
ity problems. The concept is based on three main ideas: an approximate occlusion sweep, an occlusion
tree, and hierarchical visibility tests. The central idea of the concept is the occlusion tree representing an
aggregated occlusion map by means of a hierarchical subdivision in line space. The thesis presents sev-
eral applications of the concept. The major focus is placed on visibility culling algorithms for real-time
rendering acceleration. First, we describe an algorithm for real-time visibility culling. The algorithm is
used to accelerate rendering of large densely occluded scenes. It improves previous results by efficiently
performing occluder fusion in real-time. We propose several techniques exploiting temporal and spatial
coherence applicable to most existing hierarchical visibility culling methods. Second, we propose an
algorithm for computing visibility maps in polygonal scenes. The algorithm provides a comprehensive
description of the topology of the given view of the scene. We discuss an application of the algorithm to
discontinuity meshing. Third, the proposed concept is applied to computation of from-region visibility
in 2D scenes. We present and evaluate an exact analytic algorithm for computing a potentially visible
set for a polygonal region in the plane. Fourth, we propose two algorithms for computing from-region
visibility in 2 1

2D scenes. Both algorithms are targeted at visibility preprocessing for walkthroughs of
outdoor urban scenes. The methods are compared with another recent technique. Finally, we describe
an exact analytic algorithm for computing from-region visibility in 3D scenes suitable for various appli-
cations. The algorithm uses Plücker coordinates and maintains a hierarchical subdivision of 5D space.
We discuss its application to visibility preprocessing, occluder synthesis and discontinuity meshing.

Acknowledgments

First of all, I would like to express my gratitude to my supervisor Pavel Slavı́k. He has been a constant
source of encouragement and always assisted me with problems I have encountered during my Ph.D.
studies.

I want to thank Vlastimil Havran, Peter Wonka and Michael Wimmer for many insightful discussions
and for being great partners in our common work. I want to thank my colleagues from our lab, namely
Roman Berka, Martin Brachtl, Jaroslav Křivánek, Luḱǎs Mikš́ıček, Jaroslav Sloup and Jiřı́ Žára for their
support and for creating a pleasant environment to work in. I am much in debt to people from the CG
lab at the TU Vienna, namely Katja Bühler, Eduard Gr̈oller, Markus Hadwiger, Robert Tobler, Thomas
Theußl, Anna Vilanova i Bartrolı́, and Alexander Wilkie, for being great hosts during my research visits
in Vienna. I also want to express my gratitude to my former colleagues Jan Buriánek, Petr Chlumsḱy,
Aleš Holěcek, Jan P̌rikryl and Jan Vorĺıček for always willing to share their extensive knowledge.

I wish to thank Yiorgos Chrysanthou and Daniel Cohen-Or for many fruitful discussions that con-
tributed greatly to the quality of the thesis. My gratitude belongs to professors Werner Purgathofer and
Walter P̈atzold for their amazing support during my research visits at their institutes. I want to thank the
head of our department Josef Kolá̌r for taking care of my financial support during the first years of my
study. I am much indebted to Václav Hlav́ač, the head of the Machine perception group of the Center
for Applied Cybernetics, for providing my financial support during the last two years of my studies.
My work was supported by the Czech Ministry of Education under Project LN00B096 and a grant No.
1252/1998, a grant from the Internal Grant Agency of the Czech Technical University No. 309810103,
and the Aktion Kontakt OE/CZ grant No. 1999/17.

Last but certainly not least I want to thank all my friends and my family for their constant support
and encouragement, and for their patience during the period of writing up the thesis.

Contents

1 Introduction 1
1.1 Motivation. 1

1.1.1 Real-time rendering. 1
1.1.2 Realistic rendering. 2
1.1.3 Other applications. 4
1.1.4 Challenges in visibility computations. 4

1.2 Contributions of the thesis. 5
1.3 Structure of the thesis. 6

2 Overview of visibility problems and algorithms 7
2.1 Taxonomy of visibility problems. 7

2.1.1 Problem domain. 7
2.1.2 Type of the answer. 8

2.2 Dimension of the problem-relevant line set. 9
2.2.1 Parametrization of lines in 2D. 9
2.2.2 Parametrization of lines in 3D. 9
2.2.3 Visibility along a line. 10
2.2.4 Visibility from a point . 11
2.2.5 Visibility from a line segment. 12
2.2.6 Visibility from a region. 12
2.2.7 Global visibility . 13
2.2.8 Summary. 13

2.3 Classification of visibility algorithms. 14
2.3.1 Scene restrictions. 14
2.3.2 Accuracy . 15
2.3.3 Solution space. 16

2.4 Visibility algorithm design . 17
2.4.1 Scene structuring. 17
2.4.2 Solution space data structures. 19
2.4.3 Performance. 19

2.5 Visibility in urban environments. 22
2.5.1 Analysis of visibility in outdoor urban areas. 22
2.5.2 Analysis of indoor visibility . 24

2.6 Summary . 24

iii

3 The general concept of a visibility algorithm 27
3.1 Related work . 27

3.1.1 Beam tracing. 27
3.1.2 Cone tracing . 28
3.1.3 BSP tree projection. 28
3.1.4 Frustum casting. 28

3.2 Approximate occlusion sweep. 29
3.3 Occlusion tree. 30

3.3.1 Polyhedra set operations using BSP trees. 31
3.3.2 Structure of the occlusion tree. 31
3.3.3 Construction of the occlusion tree. 32
3.3.4 Visibility test using the occlusion tree. 34

3.4 Hierarchical visibility tests. 34
3.5 Complexity analysis. 35

3.5.1 kD-tree . 35
3.5.2 Number of swept nodes. 36
3.5.3 Size of the occlusion tree. 36
3.5.4 Analysis of a visibility test. 37

3.6 Summary . 37

4 Real-time visibility culling 39
4.1 Problem statement. 39
4.2 Related work . 39
4.3 Algorithm overview. 40
4.4 Spatial hierarchy . 41
4.5 Occluder selection. 41
4.6 Representation of the aggregated occlusion map. 42
4.7 Occlusion tree. 42
4.8 Visibility of a polygon . 42
4.9 Visibility of a polyhedron. 43
4.10 Conservative occlusion tree traversal. 44

4.10.1 Occlusion tree for the conservative visibility algorithm. 44
4.10.2 Conservative visibility of a region. 45

4.11 Exploiting temporal and spatial coherence. 46
4.11.1 Related work. 46
4.11.2 Classical approach. 46
4.11.3 Modifications overview. 47
4.11.4 Hierarchy updating. 48
4.11.5 Conservative hierarchy updating. 49
4.11.6 Visibility propagation. 49

4.12 Results. 51
4.12.1 Visibility culling with occlusion trees. 51
4.12.2 Temporal and spatial coherence. 53

4.13 Summary . 56

5 Construction of visibility maps 59
5.1 Problem statement. 59
5.2 Related work . 60
5.3 Algorithm overview. 60
5.4 Occlusion tree. 61

5.4.1 Structure of the occlusion tree. 61
5.4.2 Construction of the occlusion tree. 61

5.5 Hierarchical visibility tests. 62
5.6 Construction of the visibility map. 62

5.6.1 Neighbor location. 63
5.6.2 Inserting fragment edges. 63
5.6.3 Classification of edges and vertices. 64

5.7 Results. 65
5.8 Summary . 67

6 From-region visibility in 2D scenes 69
6.1 Problem Statement. 69
6.2 Related work . 69
6.3 Algorithm overview. 70
6.4 Line space. 71

6.4.1 Lines passing through a point. 71
6.4.2 Lines passing through a line segment. 72
6.4.3 Lines passing through two line segments. 73
6.4.4 Lines passing through a set of line segments. 73

6.5 Occlusion tree. 75
6.5.1 Occlusion tree construction. 76
6.5.2 Visibility from a region. 77
6.5.3 Visibility of a line segment. 77
6.5.4 Fast conservative visibility of a region. 77
6.5.5 Maximal visibility distance. 79

6.6 The complete hierarchical visibility algorithm. 79
6.7 Results. 80
6.8 Summary . 82

7 From-region visibility in 2 1
2D scenes 83

7.1 Problem statement. 84
7.2 Related work . 84
7.3 Algorithm overview. 84
7.4 21

2D visibility and line space. 85
7.4.1 Basic definitions and terminology. 85
7.4.2 Blocker polygon . 85
7.4.3 Subdivision of line space. 86
7.4.4 Occlusion tree . 86

7.5 Conservative funnel visibility test. 87
7.5.1 Extended umbra. 87
7.5.2 Occlusion tree updates. 88

7.6 Exact funnel visibility. 89

7.6.1 Stabbing line computation. 90
7.6.2 Computing visible fragments. 90
7.6.3 Acceleration of the funnel visibility test. 91

7.7 Hierarchical visibility algorithm . 91
7.8 Results. 92

7.8.1 c-LSS vs. DCM. 92
7.8.2 c-LSS vs. e-LSS. 93

7.9 Discussion. 94
7.9.1 Real-time rendering. 94
7.9.2 Large view cells . 94
7.9.3 Output sensitivity. 95
7.9.4 Exact vs. conservative. 95
7.9.5 Comparison with the method of Koltun et. al. 96

7.10 Summary . 97

8 From-region visibility in 3D scenes 99
8.1 Problem statement. 99
8.2 Related work .100

8.2.1 Aspect graph. .100
8.2.2 Potentially visible sets. .100
8.2.3 Rendering of shadows. .101
8.2.4 Discontinuity meshing. .101
8.2.5 Global visibility .101
8.2.6 Other applications. .102

8.3 Algorithm overview. .102
8.4 Pl̈ucker coordinates of lines. .102

8.4.1 Geometric interpretation of Plücker coordinates. 105
8.5 Visual events .106

8.5.1 Visual events and Plücker coordinates. 107
8.6 Lines intersecting a polygon. .108
8.7 Lines between two polygons. .108

8.7.1 Intersection with the Plücker quadric . 109
8.7.2 Size of the set of lines. .110

8.8 Occlusion tree. .111
8.9 Occlusion tree construction. .112

8.9.1 Insertion with splitting. .112
8.9.2 Insertion without splitting . 113
8.9.3 Polygon positional test. .113

8.10 Visibility test .114
8.10.1 Exact visibility test. .114
8.10.2 Conservative visibility test. 114

8.11 Optimizations. .114
8.11.1 Shaft culling .114
8.11.2 Occluder sorting. .116
8.11.3 Visibility estimation .116
8.11.4 Visibility merging .116
8.11.5 Hierarchical visibility. .117

8.12 Applications. .117
8.12.1 Discontinuity meshing. .117
8.12.2 Visibility culling .118
8.12.3 Occluder synthesis. .119

8.13 Implementation. .119
8.14 Results. .119

8.14.1 Random triangles. .120
8.14.2 Structured scenes. .120
8.14.3 A real-world scene. .122
8.14.4 Silhouette edges extraction. 123

8.15 Summary .124

9 Conclusions 129
9.1 Summary of results. .129

9.1.1 The concept of a visibility algorithm. 129
9.1.2 From-point visibility culling . 130
9.1.3 Visibility maps .131
9.1.4 From-region visibility in 2D. 131
9.1.5 From-region visibility in 212D . 131
9.1.6 From-region visibility in 3D. 132

9.2 Suggestions for further research. .133
9.2.1 The concept of a visibility algorithm. 133
9.2.2 From-point visibility culling . 133
9.2.3 Visibility maps .133
9.2.4 From-region visibility in 2D and 212D . 133
9.2.5 From-region visibility in 3D. 134

Appendix i

A Traditional visibility algorithms iii
A.1 Z-buffer . iii
A.2 List priority algorithms . iii

A.2.1 Depth sort. iv
A.2.2 BSP trees. iv

A.3 Area subdivision algorithms. vi
A.3.1 Warnock’s algorithm. vi
A.3.2 The Weiler-Atherton algorithm. vii

A.4 Ray casting .viii
A.5 Scan line algorithms .viii

B Visibility in real-time rendering ix
B.1 Backface culling . ix
B.2 View frustum culling . ix
B.3 From-point visibility culling . x

B.3.1 Hierarchical z-buffer. xi
B.3.2 Hierarchical polygon tiling. xii
B.3.3 Hierarchical occlusion maps. xiii
B.3.4 Shadow frusta. xiv

B.3.5 Visual events. xiv
B.3.6 Cells and portals. xv
B.3.7 Occlusion horizons. xvi
B.3.8 Occluder shadows for visibility from point. xvi

B.4 From-region visibility culling. .xvii
B.4.1 Cells and portals. .xvii
B.4.2 Single occluder ray shooting. .xviii
B.4.3 Volumetric occluder fusion. .xviii
B.4.4 Extended projections. .xviii
B.4.5 Occluder shadows. xix
B.4.6 Dual ray space. xix
B.4.7 Hardware occlusion test. xix

B.5 Visibility in terrains . xix
B.6 Other acceleration techniques. xx

B.6.1 Geometry structuring. xx
B.6.2 Levels of detail. xxi
B.6.3 Image-based rendering. .xxii
B.6.4 Point-based rendering. .xxii

C Visibility in realistic rendering xxiii
C.1 Hard shadows. .xxiii

C.1.1 Ray tracing. .xxiii
C.1.2 Shadow maps. .xxiii
C.1.3 Shadow volumes. .xxiv
C.1.4 Shadow volume BSP trees. .xxiv

C.2 Soft shadows. .xxv
C.2.1 Ray tracing and areal light sources. xxvi
C.2.2 Soft shadow maps. .xxvi
C.2.3 Shadow volumes for soft shadows. xxvi
C.2.4 Shadow volume BSP tree for soft shadows. xxvi

C.3 Global illumination .xxvi
C.4 Radiosity .xxvii

C.4.1 Ray shooting and form factors. xxviii
C.4.2 Hemisphere and hemicube. .xxviii
C.4.3 BSP trees. .xxviii
C.4.4 Discontinuity meshing. .xxviii

C.5 Ray shooting in global illumination. .xxix
C.5.1 Ray shooting acceleration techniques. xxix
C.5.2 Ray shooting using uniform grid. xxx
C.5.3 Ray shooting using kD-tree. xxx

C.6 Global visibility .xxxi
C.6.1 Visibility complex .xxxi
C.6.2 Visibility skeleton .xxxii

Bibliography xxxii

Chapter 1

Introduction

Visibility is a phenomenon studied in various research areas. Computation of visibility is important for
computer graphics, computational geometry, computer vision, robotics, telecommunications, and other
research areas. The thesis focuses on visibility computations in computer graphics with the emphasis
placed on real-time rendering.

The first visibility algorithms in computer graphics aimed to determine which lines or surfaces are
visible in a synthesized image of a 3D scene. These algorithms solve the problems known asvisible line
or visible surfacedetermination. A different formulation of these tasks states the goal as to eliminate
hidden lines or surfaces in the image. Therefore these tasks are often calledhidden lineorhidden surface
removal. The first visibility algorithms developed in late 60’s and the beginning of 70’s were designed
for the use with vector displays. Later with increasing availability of raster devices the traditional
techniques were replaced by the z-buffer algorithm [Catm75]. Nowadays, there are two widely spread
visibility algorithms: the z-buffer for visible surface determination and ray shooting for computing
visibility along a given ray. The z-buffer dominates the area ofreal-time renderingwhereas ray shooting
is used in the scope ofrealistic rendering. Besides these two well known algorithms there is a plethora
of techniques designed for various specific applications. The next section provides a motivation for
further research in the area of visibility computations.

1.1 Motivation

Visibility is inherently connected withrenderingthat aims to synthesize images of a 3D scene. Gen-
erally, we distinguish between real-time rendering and realistic rendering. In real-time rendering the
time devoted to synthesis of an image is severely limited by the desirable image refresh rate. In realistic
rendering the ultimate goal is to provide an accurate simulation of the light propagation at the expense
of a higher computational cost. Prospectively, real-time rendering and realistic rendering merge as the
computational resources enable to implement realistic rendering techniques in real time.

Below we discuss visibility problems occurring in the context of real-time rendering, realistic ren-
dering, and other application areas. The discussion is followed by a summary of challenges in the area
of visibility computations.

1.1.1 Real-time rendering

The desirable image refresh rate for real-time applications is at least 20 Hz [Moll02] and preferably it
should match the refresh rate of the display device to provide a visually pleasing results. Although the
power of computational resources permanently increases so does the user expectation of the quality of
the visualization. The user wants to interact with complex scenes rendered in the highest possible qual-
ity. Consequently, many today’s applications such as architectural walkthroughs, driving simulation, or

1

2 CHAPTER 1. INTRODUCTION

visual impact analysis, have to cope with large amount of data representing the scene.
Many acceleration techniques were developed to speedup rendering of such large scenes [Moll02].

Among these thevisibility culling methods aim to efficiently cull the invisible part of the scene so that
it does not have to be processed by the rendering pipeline [Cohe02]. Visibility culling provides a great
benefit in large densely occluded scenes where only a fraction of scene objects are visible to the observer.
This is a typical situation for architectural walkthroughs in both indoor and outdoor environments.

We can distinguish betweenofflinevisibility culling methods that precompute visibility, andonline
methods that are applied in real-time. Offline techniques typically subdivide the scene intoview cells
and for each view cell they compute apotentially visible set(PVS) of scene objects [Aire90, Tell91,
Cohe98a, Dura00, Scha00, Wonk00, Kolt01]. During an interactive session the precalculated informa-
tion is used to render only objects that are potentially visible from the view cell the observer is located
in. The final visibility is usually resolved using the z-buffer algorithm. See Figure1.1 for an example
of the offline visibility culling.

Figure 1.1: Offline visibility culling. The figure depicts 8km2 of Vienna and a view cell of 0.1km2

(shown in blue). The red objects form the PVS for the view cell.

Online visibility culling techniques do not preprocess visibility in advance, but they recompute the
PVS for each change of the viewpoint [Lueb95, Huds97, Zhan97b, Coor97, Wonk99, Klos01]. Some
online techniques compute the PVS for a small neighborhood of the viewpoint to amortize the cost of
the PVS computation over several frames [Cohe98c, Wonk01b]. See Figure1.2for an illustration of an
online visibility culling.

Most online visibility culling algorithms solve thefrom-pointvisibility problem, i.e. they compute
visibility with respect to the given point. On the contrary, most offline visibility culling methods com-
pute thefrom-regionvisibility accounting for visibility from any point in the given view cell.

1.1.2 Realistic rendering

One of the ultimate goals of computer graphics is to synthesize realistic images of three-dimensional
virtual scenes using a physically based simulation of the light propagation [Glas95]. Visibility is a
crucial factor in this simulation.

In the simplest case rendering uses only a local illumination model, i.e. a visible surface is shaded
according to its material properties and light sources with a global impact. This model does not account

1.1. MOTIVATION 3

Figure 1.2: Online visibility culling. The figure depicts a top view of an indoor scene. The blue regions
were found invisible using an online hierarchical visibility culling.

for shadows and secondary illumination. The only visibility algorithm involved in this model is the final
visible surface determination with respect to the viewpoint.

A more advanced simulation accounts for shadows due to primary light sources. A visible surface al-
gorithm can be used to determine shadows with respect to a point light source [Will78, Chin89, Woo90b]
(see Figure1.3).

(a) (b)

Figure 1.3: (a) A view of the scene from the point light source. (b) The figure depicts a mesh resulting
from subdividing the scene into polygons visible and invisible to the light source. Parts of the scene
invisible from the light source are in shadow.

Much more complicated is the illumination due to an areal light source. A shadow due to an
areal light source consists of umbra and penumbra [Cook84, Camp90, Chin92, Heck97, Chry97]. An
analytic description of illumination in penumbra is complicated and thus it is advantageous to de-
termine loci of discontinuities in the illumination function. This task is called discontinuity mesh-
ing [Heck92, Lisc92, Dret94b, Stew94]. Discontinuity meshing aims to subdivide the scene surfaces
into patches so that each patch sees a topologically equivalent part of the light source (see Figure1.4).
Discontinuity meshing is used in the scope of the radiosity global illumination algorithm to capture
illumination due to primary light sources. Less important light transfers are typically solved by an
approximation of mutual visibility [Wall89, Cohe85].

4 CHAPTER 1. INTRODUCTION

Figure 1.4: A subset of a discontinuity mesh due to a rectangular light source.

View-depend global illumination algorithms such as ray tracing [Whit79], distributed ray trac-
ing [Cook86] or path tracing [Kaji86] use huge amounts of rays to sample light paths. The task of
solving visibility along the given ray is calledray shooting. Efficient ray shooting is a key factor influ-
encing the total computational time [Arvo89, Havr00a]. Ray shooting can be accelerated by precom-
puting visibility from light sources [Hain86, Choi92] or other techniques restricting the set of objects
potentially hit by the given ray [Simi94, Havr00a]. Global visibility algorithms describing visibility
in the whole scene can be used to reduce the ray shooting problem to a point location in the global
visibility data structure [Pocc93, Dura96, Dura97, Cho99].

1.1.3 Other applications

There are many other applications where visibility is important [Dura99]. In computer graphics visi-
bility is significant for finding a representative view of an object for presentation purposes. In robotics
visibility is important for planning the optimal path for a mobile robot or sweeping the scene using
mobile robots. In telecommunications visibility analysis is used in design of cellular networks in moun-
tainous or urban areas. The work developed in the thesis can possibly be applied to some of these
problems, but such an application is not discussed.

1.1.4 Challenges in visibility computations

The most important requirements on an ideal visibility algorithm can be stated as follows:

1. It is suitable for scenes with a general structure (possibly dynamic).

2. It is accurate (e.g. accounts for occluder fusion, finds precise shadow boundaries, etc.).

3. It is efficient in terms of the expected running time and memory requirements, particularly:

(a) it exploits visibility coherence,

(b) it is output-sensitive.

4. It requires minimal preprocessing of the input data.

5. It is simple to implement.

1.2. CONTRIBUTIONS OF THE THESIS 5

The current visibility algorithms fail to provide at least one of the above stated goals. The priority
of the goals differs depending on the context of the application, e.g. the type of the typically processed
scene, the available hardware, the time available for the implementation of the algorithm, etc. Conse-
quently, most visibility algorithms address rather narrow application area (e.g. computing form-factors,
computing hard/soft shadows, etc.), often using various ad hoc design decisions. A challenging topic is
thus providing a solution that is potentially useful for a large class of applications while satisfying most
of the requirements stated above.

The thesis aims to address most of the goals in the context of several application areas. We present
a general concept of a visibility algorithm that serves as a basis of all algorithms proposed in the the-
sis. The most complex application of the concept is an algorithm solving the from-region visibility in
general 3D scenes. This method provides a comprehensive description of from-region visibility and it
is applicable in the context of visibility culling as well as rendering shadows, discontinuity meshing, or
visibility preprocessing for ray tracing acceleration.

1.2 Contributions of the thesis

The thesis aims to provide the following contributions:

1. A new classificationof visibility problems based on the dimension of theproblem-relevant line
setand thetype of the answerto the given problem (published in [Bitt02b]).

2. A general conceptof a visibility algorithm suitable for several classes of visibility problems.
The concept aims at exploiting coherence of visibility and achieving output-sensitivity of the
algorithm.

3. Several visibility algorithms were designed as an application of the proposed concept. These
algorithms address the following problems:

(a) Real-time visibility culling.

We present an algorithm for real-time visibility culling designed for walkthroughs of large
scenes (published in [Bitt98]). The algorithm extends previous results achieved by con-
tinuous visibility culling methods [Huds97, Coor97] by efficiently accounting for occluder
fusion in real-time. Further, we discuss a general technique making use of temporal coher-
ence that can be applied to accelerate most existing visibility culling methods (published
in [Bitt01b, Bitt01a]).

(b) Computing visibility maps.

We describe a new output-sensitive algorithm for computing visibility maps and discuss its
application to discontinuity meshing (published in [Bitt02a]). The algorithm illustrates the
applicability of the proposed concept for solving a from-point visibility problem requiring
a comprehensive description of visibility from the given point.

(c) Computing from-region visibility in 2D and 212D scenes.

We present new algorithms for computing from-region visibility in 2D and 21
2D scenes

(published in [Bitt01c, Bitt01e, Bitt01d]). The proposed algorithms include an exact an-
alytic solution of the 212D from-region visibility problem that is suitable for large scenes.
The algorithms extend previous results achieved in the context of the from-region visibility
in 21

2D scenes [Wonk00, Kolt00, Kolt01].

(d) Computing from-region visibility in 3D scenes.

We propose a new analytic solution to the from-region visibility in 3D scenes suitable for
various applications. We discuss the application of the method to computing potentially
visible sets, occluder synthesis, and discontinuity meshing.

6 CHAPTER 1. INTRODUCTION

1.3 Structure of the thesis

Chapter2 presents an overview of the visibility problems and algorithms. It contains a taxonomy of
visibility problems based on the problem domain and the type of the desired answer. Further, it classifies
visibility algorithms according to several important criteria and discusses the important concepts in the
design of a visibility algorithm.

Chapter3 presents the concept of a visibility algorithm suitable for solution of various classes of
visibility problems. In the following chapters we present algorithms based on the concept introduced
herein. These chapters also summarize and discuss related work in the particular application area.

Chapter4 presents an application of the proposed concept for real-time visibility culling. The chapter
contains the description of the proposed algorithm and evaluation of its implementation on several test
scenes. The second part of this chapter presents a general techniques exploiting temporal and spatial
coherence in the scope of hierarchical visibility algorithms. Chapter5 presents a new algorithm for
computing a visibility map of a given view of the scene. The algorithm is evaluated on several scenes
of moderate complexity. Chapter6 presents an algorithm for computing from-region visibility in 2D
scenes. The description of the method is followed by its evaluation on several test scenes. Chapter7
presents an extension of the algorithm from Chapter6 that deals with 212D scenes. We describe and
evaluate a conservative and an exact algorithms for from-region visibility in 21

2D. Chapter8 presents an
algorithm dealing with from-region visibility in 3D scenes. The algorithm provides an analytic solution
to the problem suitable for complex 3D scenes of general structure. We discuss an application of the
method to visibility preprocessing, occluder synthesis, and discontinuity meshing. Chapter9 draws
conclusions and presents suggestions for further research.

The appendix consists of three chapters presenting an overview of the important visibility algorithms.
These chapters provide an extended context for the thesis with the aim to make the thesis self-contained.
AppendixA discusses the traditional visible surface algorithms. AppendixB discusses visibility algo-
rithms in real-time rendering. AppendixC discusses visibility algorithms exploited in the context of
realistic rendering.

Chapter 2

Overview of visibility problems and
algorithms

This chapter provides a taxonomy of visibility problems encountered in computer graphics based on the
problem domainand thetype of the answer. The taxonomy helps to understand the nature of a partic-
ular visibility problem and provides a tool for grouping problems of similar complexity independently
of their target application. We discuss typical visibility problems encountered in computer graphics and
identify their relation to the proposed taxonomy. A visibility problem can be solved by means of var-
ious visibility algorithms. We classify visibility algorithms according to several important criteria and
discuss important concepts in the design of a visibility algorithm. Finally, we discuss specific issues of
visibility in urban scenes that are exploited in Chapters4, 6, and7 of the thesis. The taxonomy and the
discussion of the algorithm design sums up ideas and concepts that are independent of any specific algo-
rithm. This can help algorithm designers to transfer the existing algorithms to solve visibility problems
in other application areas.

For a more detailed discussion of the state of the art visibility algorithms we refer an interested reader
to AppendicesA, B, andC.

2.1 Taxonomy of visibility problems

We propose a taxonomy of visibility problems that is based on theproblem domainand thetype of
the answer. The specification of the problem domain and the scene description provide an input to
an algorithm solving the given visibility problem. The type of the output of the algorithm is given by
the type of the answer for the given problem. In this taxonomy we do not classify visibility problems
according to the type of the scene description. This criterion will be used later for classification of
visibility algorithms (Section2.3.1).

2.1.1 Problem domain

Computer graphics deals with visibility problems in the context of 2D, 21
2D, or 3D scenes. The actual

problem domain is given by restricting the set of rays for which visibility should be determined.
Below we list common problem domains used and the corresponding domain restrictions:

1. visibility along a line

(a) line

(b) ray (origin + direction)

7

8 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

2. visibility from a point(from-point visibility)

(a) point

(b) point + restricted set of rays

i. point + raster image (discrete form)

ii. point + beam (continuous form)

3. visibility from a line segment(from-segment visibility)

(a) line segment

(b) line segment + restricted set of rays

4. visibility from a polygon(from-polygon visibility)

(a) polygon

(b) polygon + restricted set of rays

5. visibility from a region(from-region visibility)

(a) region

(b) region + restricted set of rays

6. global visibility

(a) no further input (all rays in the scene)

(b) restricted set of rays

The domain restrictions can be given independently of the dimension of the scene, but the impact
of the restrictions differs depending on the scene dimension. For example, visibility from a polygon is
equivalent to visibility from a (polygonal) region in 2D, but not in 3D.

2.1.2 Type of the answer

Visibility problems can further be distinguished according to the type of the desired answer to the given
problem. The taxonomy treats the desired answer as an integral part of the problem formulation. This
enables a more precise specification of the given class of problems and allows better understanding of
its complexity. The type of the answer restricts the domain of the output of an algorithm solving the
problem. We identify three classes of answers to visibility problems. Each class consists of several
types of answers:

1. visibility classification

(a) visible/invisible

(b) visible/invisible/partially visible

2. subset of the input

(a) a single scene object

(b) set of scene objects (e.g. triangles)

(c) set of group objects (e.g. nodes of a bounding volume hierarchy)

(d) set of regions (e.g. nodes of a spatial subdivision)

(e) set of rays

2.2. DIMENSION OF THE PROBLEM-RELEVANT LINE SET 9

3. a constructed data structure

(a) set of points

(b) set of rays

(c) set of curves or line segments (e.g. visibility discontinuities on surfaces)

(d) set of surfaces (e.g. visible/invisible patches)

(e) a volume (e.g. antipenumbra/umbra/penumbra)

(f) set of volumes (e.g. cells of the aspect graph)

The first two classes of answers induce a finite domain of the possible result. The third class consists
of answers for which the solution is constructed from generally infinite number of choices in solution
space. Consequently, problems with answers from the first two classes (visibility classification, subset
of the input) are often simpler to solve than those with an answer from the third class (a constructed
data structure). Furthermore, algorithms solving such a decision-making problems are often more robust
with respect to numerical stability.

2.2 Dimension of the problem-relevant line set

The six domains of visibility problems stated in Section2.1.1can be characterized by theproblem-
relevant line setdenotedLR. We give a classification of visibility problems according to the dimension
of the problem-relevant line set. We discuss why this classification is important for understanding the
nature of the given visibility problem and for identifying its relation to other problems.

For the following discussion we assume that a line inprimal spacecan be mapped to a point in
line space. For purposes of the classification we define the line space as a vector space where a point
corresponds to a line in the primal space1.

2.2.1 Parametrization of lines in 2D

There are two independent parameters that specify a 2D line and thus the corresponding set of lines is
two-dimensional. There is a natural duality between lines and points in 2D. For example a line expressed
as:l : y = ax+c is dual to a pointp = (−c, a). This particular duality cannot handle vertical lines. See
Figure2.1for an example of other dual mappings in the plane. To avoid the singularity in the mapping,
a linel : ax+by+c = 0 can be represented as a pointpl = (a, b, c) in 2D projective spaceP2 [Stol91].
Multiplying pl by a non-zero scalar we obtain a vector that represents the same linel. More details
about this singularity-free mapping will be discussed in Chapter6.

To sum up: In 2D there are two degrees of freedom in description of a line and the corresponding
line space is two-dimensional. The problem-relevant line setLR then forms ak-dimensional subset of
P2, where0 ≤ k ≤ 2. An illustration of the concept of the problem-relevant line set is depicted in
Figure2.2.

2.2.2 Parametrization of lines in 3D

Lines in 3D form a four-parametric space [Pell97]. A line intersecting a given scene can be described
by two points on a sphere enclosing the scene. Since the surface of the sphere is a two parametric space,
we need four parameters to describe the line.

The two plane parametrizationof 3D lines describes a line by points of intersection with the given
two planes [Gu97]. This parametrization exhibits a singularity since it cannot describe lines parallel to
these planes. See Figure2.3for illustrations of the spherical and the two plane parameterizations.

1A classical mathematical definition says: Line space is a direct product of two Hilbert spaces [Weis99]. However, this
definition differs from the common understanding of line space in computer graphics [Dura99]

10 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

p(a,b) p*:ax+by−1=0

p(a,b) p*:2ax−y−b=0p(a,b) p*:ax+y+b=0

x, a

y, b

x, a

y, b

x, a

y, b

polar mapping

parabola mappingslope mapping

Figure 2.1: Duality between points and lines in 2D.

Another common parametrization of 3D lines are thePlücker coordinates. Plücker coordinates of an
oriented 3D line are a six tuple that can be understood as a point in 5D oriented projective space [Stol91].
There are six coordinates in Plücker representation of a line although we know that theLR is four-
dimensional. This can be explained as follows:

• Firstly, Pl̈ucker coordinates arehomogeneous coordinatesof a 5D point. By multiplication of the
coordinates by any positive scalar we get a mapping of the same line.

• Secondly, only 4D subset of the 5D oriented projective space corresponds to real lines. This
subset is a 4D ruled quadric called thePlücker quadricor theGrassman manifold[Stol91, Pu98].

Although the Pl̈ucker coordinates need more coefficients they have no singularity and preserve some
linearities: lines intersecting a set of lines in 3D correspond to an intersection of 5D hyperplanes. More
details on Pl̈ucker coordinates will be discussed in Chapters7 and8 where they are used to solve the
from-region visibility problem.

To sum up: In 3D there are four degrees of freedom in the description of a line and thus the corre-
sponding line space is four-dimensional. Fixing certain line parameters (e.g. direction) the problem-
relevant line set, denotedLR, forms ak-dimensional subset ofP4, where0 ≤ k ≤ 4.

2.2.3 Visibility along a line

The simplest visibility problems deal with visibility along a single line. The problem-relevant line set
is zero-dimensional, i.e. it is fully specified by the given line. A typical example of a visibility along a
line problem isray shooting.

2.2. DIMENSION OF THE PROBLEM-RELEVANT LINE SET 11

visibility
along line

visibility
from point

visibility
from segment

=0d d =1 d =2

Figure 2.2: The problem-relevant set of lines in 2D. TheLR for visibility along a line is formed by a
single point that is a mapping of the given line. TheLR for visibility from a pointp is formed by points
lying on a line. This line is a dual mapping of the pointp. LR for visibility from a line segment is
formed by a 2D region bounded by dual mappings of endpoints of the given segment.

A similar problem to ray shooting is thepoint-to-pointvisibility. The point-to-point visibility de-
termines whether the line segment between two points is occluded, i.e. it has an intersection with an
opaque object in the scene. Point-to-point visibility provides a visibility classification (answer 1a),
whereas ray shooting determines a visible object (answer 2a) and/or a point of intersection (answer 3a).
Note that thepoint-to-pointvisibility can be solved easily by means of ray shooting. Another construc-
tive visibility along a line problem is determining themaximal free line segmentson a given line. See
Figure2.4for an illustration of typical visibility along a line problems.

2.2.4 Visibility from a point

Lines intersecting a point in 3D can be described by two parameters. For example the lines can be ex-
pressed by an intersection with a unit sphere centered at the given point. The most common parametriza-
tion describes a line by a point of intersection with a given viewport. Note that this parametrization
accounts only for a subset of lines that intersect the viewport (see Figure2.5).

In 3D the problem-relevant line setLR is a 2D subset of the 4D line space. In 2D theLR is a 1D subset
of the 2D line space. The typical visibility from a point problem is the visible surface determination.
Due to its importance the visible surface determination is covered by the majority of existing visibility
algorithms. Other visibility from a point problem is the construction of thevisibility mapor thepoint-
to-region visibility that classifies a region as visible, invisible, or partially visible with respect to the
given point.

12 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

scene scene

Figure 2.3: Parametrization of lines in 3D. (left) A line can be described by two points on a sphere
enclosing the scene. (right) The two plane parametrization describes a line by point of intersection with
two given planes.

A A

B

invisible

A

B

Figure 2.4: Visibility along a line. (left) Ray shooting. (center) Point-to-point visibility. (right) Maximal
free line segments between two points.

2.2.5 Visibility from a line segment

Lines intersecting a line segment in 3D can be described by three parameters. One parameter fixes the
intersection of the line with the segment the other two express the direction of the line. The problem-
relevant line setLR is three-dimensional and it can be understood as a 2D cross section ofLR swept
according to the translation on the given line segment (see Figure2.6).

In 2D lines intersecting a line segment form a two-dimensional problem-relevant line set. Thus for
the 2D case theLR is a two-dimensional subset of 2D line space.

2.2.6 Visibility from a region

Visibility from a region (or from-region visibility) involves the most general visibility problems. In
3D theLR is a 4D subset of the 4D line space. In 2D theLR is a 2D subset of the 2D line space.
Consequently, in the proposed classification visibility from a region in 2D is equivalent to visibility
from a line segment in 2D.

A typical visibility from a region problem is the problem ofregion-to-regionvisibility that aims to
determine if the two given regions in the scene are visible, invisible, or partially visible (see Figure2.7).
Another visibility from region problem is the computation of apotentially visible set(PVS) with respect
to a given view cell. The PVS consists of a set of objects that are potentially visible from any point inside
the view cell. Further visibility from a region problems include computing form factors between two
polygons, soft shadow algorithms or discontinuity meshing.

2.2. DIMENSION OF THE PROBLEM-RELEVANT LINE SET 13

viewport

x

y

viewpoint

Figure 2.5: Visibility from a point. Lines intersecting a point can be described by a point of intersection
with the given viewport.

2.2.7 Global visibility

According to the classification the global visibility problems can be seen as an extension of the from-
region visibility problems. The dimension of the problem-relevant line set is the same (k = 2 for 2D
andk = 4 for 3D scenes). Nevertheless, the global visibility problems typically deal with much larger
set of rays, i.e. all rays that penetrate the scene. Additionally, there is no given set of reference points
from which visibility is studied and hence there is no given priority ordering of objects along each
particular line fromLR. Therefore an additional parameter must be used to describe visibility (visible
object) along each ray.

2.2.8 Summary

The classification of visibility problems according to the dimension of the problem-relevant line set
is summarized in Table2.1. This classification provides means for understanding how difficult it is
to compute, describe, and maintain visibility for a particular class of problems. For example a data
structure representing the visible or occluded parts of the scene for the visibility from a point problem
needs to partition a 2DLR into visible and occluded sets of lines. This observation conforms with the
traditional visible surface algorithms – they partition a 2D viewport into empty/nonempty regions and
associate each nonempty regions (pixels) with a visible object. In this case the viewport represents the
LR as each point of the viewport corresponds to a line through that point. To analytically describe
visibility from a region a subdivision of 4DLR should be performed. This is much more difficult than
the 2D subdivision. Moreover the description of visibility from a region involves non-linear subdivisions
of both primal space and line space even for polygonal scenes [Tell92a, Dura99].

According to the classification we can make the following observations:

• Visibility from a region in 2D and visibility from a point in 3D involve a two-dimensionalLR.
This suggests that a mapping between these two problems is possible [Bitt01c].

• Solutions to many visibility problems in 2D do not extend easily to 3D since they involveLR of
different dimensions. This observation conforms with [Dura99].

14 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

O*0

0.5O*

O*0

0.5O*

O*1
O*1

O

1

0.5

0

0 0.5 1

line spaceviewportsegment

y

xx

y

u

u

Figure 2.6: Visibility from a line segment. (left) Line segment, a spherical objectO, and its projections
O∗

0, O∗
0.5, O∗

1 with respect to the three points on the line segment. (right) A possible parametrization of
lines that stacks up 2D planes. Each plane corresponds to mappings of lines intersecting a given point
on the line segment.

primal space line space

B

A

B*

A*

Figure 2.7: Visibility from a region — an example of the region-to-region visibility. Two regions
and two occludersA, B in a 2D scene. In line space the region-to-region visibility can be solved by
subtracting the sets of linesA∗ andB∗ intersecting objectsA andB from the lines intersecting both
regions.

2.3 Classification of visibility algorithms

The taxonomy of visibility problems groups similar visibility problems in the same class. A visibility
problem can be solved by means of various visibility algorithms. A visibility algorithm poses further
restrictions on the input and output data. These restrictions can be seen as a more precise definition of
the visibility problem that is solved by the algorithm.

Above we classified visibility problems according to the problem domain and the desired answers.
In this section we provide a classification of visibility algorithms according to other important criteria
characterizing a particular visibility algorithm.

2.3.1 Scene restrictions

Visibility algorithms can be classified according to the restrictions they pose on the scene description.
The type of the scene description influences the difficulty of solving the given problem: it is simpler to
implement an algorithm computing a visibility map for scenes consisting of triangles than for scenes

2.3. CLASSIFICATION OF VISIBILITY ALGORITHMS 15

2D
domain d(LR) problems

visibility along a line 0 ray shooting, point-to-point visibility
visibility from a point 1 view around a point, point-to-region visibility
visibility from a line segment
visibility from region
global visibility

2 region-to-region visibility, PVS

3D
domain d(LR) problems

visibility along a line 0 ray shooting, point-to-point visibility
from point in a surface 1 see visibility from point in 2D

visibility from a point 2
visible (hidden) surfaces, point-to-region visibility,
visibility map, hard shadows

visibility from a line segment 3 segment-to-region visibility (rare)
visibility from a region
global visibility

4
region-region visibility, PVS, aspect graph,
soft shadows, discontinuity meshing

Table 2.1: Classification of visibility problems in 2D and 3D according to the dimension of the problem-
relevant line set.

with NURBS surfaces. We list common restrictions on the scene primitives suitable for visibility com-
putations:

• triangles, convex polygons, concave polygons,

• volumetric data,

• points,

• general parametric, implicit, or procedural surfaces.

Some attributes of scenes objects further increase the complexity of the visibility computation:

• transparent objects,

• dynamic objects.

The majority of analytic visibility algorithms deals with static polygonal scenes without transparency.
The polygons are often subdivided into triangles for easier manipulation and representation.

2.3.2 Accuracy

Visibility algorithms can be classified according to the accuracy of the result as:

• exact,

• conservative,

• aggressive,

• approximate.

16 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

An exact algorithm provides an exact analytic result for the given problem (in practice however this
result is typically influenced by the finite precision of the floating point arithmetics). A conservative
algorithm overestimates visibility, i.e. it never misses any visible object, surface or point. An aggressive
algorithm always underestimates visibility, i.e. it never reports an invisible object, surface or point as
visible. An approximate algorithm provides only an approximation of the result, i.e. it can overestimate
visibility for one input and underestimate visibility for another input.

The classification according to the accuracy is best illustrated on computing PVS: an exact algorithm
computes an exact PVS. A conservative algorithm computes a superset of the exact PVS. An aggressive
algorithm determines a subset of the exact PVS. An approximate algorithm computes an approximation
to the exact PVS that is neither its subset or its superset for all possible inputs.

2.3.3 Solution space

The solution space is the domain in which the algorithm determines the desired result. Note that the
solution space does not need to match the domain of the result.

The algorithms can be classified as:

• discrete,

• continuous,

• hybrid.

A discrete algorithm solves the problem using a discrete solution space; the solution is typically an
approximation of the result. A continuous algorithm works in a continuous domain and often computes
an analytic solution to the given problem. A hybrid algorithm uses both the discrete and the continuous
solution space.

The classification according to the solution space is easily demonstrated on visible surface algorithms
(these algorithms will be discussed in SectionA). The z-buffer [Catm75] is a common example of a
discrete algorithm. The Weiler-Atherton algorithm [Weil77] is an example of a continuous one. A
hybrid solution space is used by scan-line algorithms that solve the problem in discrete steps (scan-
lines) and for each step they provide a continuous solution (spans).

Further classification reflects the semantics of the solution space. According to this criteria we can
classify the algorithms as:

• primal space (object space),

• line space,

– image space,

– general,

• hybrid.

A primal space algorithm solves the problem by studying the visibility between objects without a
transformation to a different solution space. A line space algorithm studies visibility using a transfor-
mation of the problem to line space. Image space algorithms can be seen as an important subclass of line
space algorithms for solving visibility from a point problems in 3D. These algorithms cover all visible
surface algorithms and many visibility culling algorithms. They solve visibility in a given image plane
that represents the problem-relevant line setLR — each ray originating at the viewpoint corresponds to
a point in the image plane.

The described classification differs from the sometimes mentioned understanding of image space
and object space algorithms that incorrectly considers all image space algorithms discrete and all object
space algorithms continuous.

2.4. VISIBILITY ALGORITHM DESIGN 17

2.4 Visibility algorithm design

Visibility algorithm design can be decoupled into a series of important design decisions. The first step
is to clearly formulate a problem that should be solved by the algorithm. The taxonomy stated above
can help to understand the difficulty of solving the given problem and its relationship to other visibility
problems in computer graphics. The following sections summarize important steps in the design of a
visibility algorithm and discuss some commonly used techniques.

2.4.1 Scene structuring

We discuss two issues dealing with structuring of the scene: identifying occluders and occludees, and
spatial data structures for scene description.

Occluders and occludees

Many visibility algorithms restructure the scene description to distinguish betweenoccludersand
occludees. Occluders are objects that cause changes in visibility (occlusion). Occludees are objects
that do not cause occlusion, but are sensitive to visibility changes. In other words the algorithm studies
visibility of occludees with respect to occluders.

The concept of occluders and occludees is used to increase the performance of the algorithm in
both the running time and the accuracy of the algorithm by reducing the number of primitives used
for visibility computations (the performance measures of visibility algorithms will be discussed in Sec-
tion 2.4.3). Typically, the number of occluders and occludees is significantly smaller than the total
number of objects in the scene. Additionally, both the occluders and the occludees can be accompanied
with a topological (connectivity) information that might be necessary for an efficient functionality of
the algorithm.

The concept of occluders is applicable to most visibility algorithms. The concept of occludees is
useful for algorithms providing answers (1) and (2) according to the taxonomy of Section2.1.2. Some
visibility algorithms do not distinguish between occluders and occludees at all. For example all tradi-
tional visible surface algorithms use all scene objects as both occluders and occludees.

Both the occluders and the occludees can be represented byvirtual objectsconstructed from the scene
primitives: the occluders as simplified inscribed objects, occludees as simplified circumscribed objects
such as bounding boxes. Algorithms can be classified according to the type of occluders they deal with.
The classification follows the scene restrictions discussed in Section2.3.1and adds classes specific to
occluder restrictions:

• vertical prisms,

• axis-aligned polygons,

• axis-aligned rectangles.

The vertical prisms that are specifically important for computing visibility in 21
2D scenes. Some

visibility algorithms can deal only with axis-aligned polygons or even more restrictive axis-aligned
rectangles.

Other important criteria for evaluating algorithms according to occluder restrictions include:

• connectivity information,

• intersecting occluders.

18 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

Figure 2.8: Occluders in an urban scene. In urban scenes the occluders can be considered vertical prisms
erected above the ground.

The explicit knowledge of the connectivity is crucial for efficient performance of some visibility
algorithms (performance measures will be discussed in the Section2.4.3). Intersecting occluders cannot
be handled properly by some visibility algorithms. In such a case the possible occluder intersections
should be resolved in preprocessing.

A similar classification can be applied to occludees. However, the visibility algorithms typically pose
less restrictions on occludees since they are not used to describe visibility but only to check visibility
with respect to the description provided by the occluders.

Scene description

The scene is typically represented by a collection of objects. For purposes of visibility computations
it can be advantageous to transform the object centered representation to a spatial representation by
means of a spatial data structure. For example the scene can be represented by an octree where full
voxels correspond to opaque parts of the scene. Such a data structure is then used as an input to the
visibility algorithm. The spatial data structures for the scene description are used for the following
reasons:

• Regularity. A spatial data structure typically provides a regular description of the scene that
avoids complicated configurations or overly detailed input. Furthermore, the representation can
be rather independent of the total scene complexity.

• Efficiency. The algorithm can be more efficient in both the running time and the accuracy of the
result.

Additionally, spatial data structures can be applied to structure the solution space and/or to represent
the desired solution. Another application of spatial data structures is the acceleration of the algorithm
by providing spatial indexing. These applications of spatial data structures will be discussed in Sec-
tions2.4.2and2.4.3. Note that a visibility algorithm can use a single data structure for all three purposes
(scene structuring, solution space structuring, and spatial indexing) while another visibility algorithm
can use three conceptually different data structures.

2.4. VISIBILITY ALGORITHM DESIGN 19

2.4.2 Solution space data structures

A solution space data structure is used to maintain an intermediate result during the operation of the
algorithm and it is used to generate the result of the algorithm. We distinguish between the following
solution space data structures:

• general data structures

single value (ray shooting), winged edge, active edge table, etc.

• primal space (spatial) data structures

uniform grid, BSP tree (shadow volumes), bounding volume hierarchy, kD-tree, octree, etc.

• image space data structures

2D uniform grid (shadow map), 2D BSP tree, quadtree, kD-tree, etc.

• line space data structures

regular grid, kD-tree, BSP tree, etc.

The image space data structures can be considered a special case of the line space data structures
since a point in the image represents a ray through that point (see also Section2.3.3).

If the dimension of the solution space matches the dimension of the problem-relevant line set, the
visibility problem can often be solved with high accuracy by a single sweep through the scene. If the
dimensions do not match, the algorithm typically needs more passes to compute a result with satisfying
accuracy [Dura00, Wonk00] or neglects some visibility effects altogether [Scha00].

2.4.3 Performance

The performance of a visibility algorithm can be evaluated by measuring the quality of the result, the
running time and the memory consumption. In this section we discuss several concepts related to these
performance criteria.

Quality of the result

One of the important performance measures of a visibility algorithm is the quality of the result. The
quality measure depends on the type of the answer to the problem. Generally, the quality of the result
can be expressed as a distance from an exact result in the solution space. Such a quality measure can be
seen as a more precise expression of the accuracy of the algorithm discussed in Section2.3.2.

For example a quality measure of algorithms computing a PVS can be expressed by therelative
overestimationand therelative underestimationof the PVS with respect to the exact PVS. We can
define a quality measure of an algorithmA on inputI as a tupleQA(I):

QA(I) = (QA
o (I), QA

u (I)), I ∈ D (2.1)

QA
o (I) =

|SA(I) \ SE(I)|
|SE(I)|

(2.2)

QA
u (I) =

|SE(I) \ SA(I)|
|SE(I)|

(2.3)

whereI is an input from the input domainD, SA(I) is the PVS determined by the algorithmA for
input I andSE(I) is the exact PVS for the given input.QA

o (I) expresses therelative overestimationof
the PVS,QA

u (I) is therelative underestimation.

20 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

The expected quality of the algorithm over all possible inputs can be given as:

QA = E[‖QA(I)‖] (2.4)

=
∑
∀I∈D

f(I).
√

QA
o (I)2 + QA

o (I)2 (2.5)

where f(I) is the probability density function expressing the probability of occurrence of inputI. The
quality measureQA(I) can be used to classify a PVS algorithm into one of the four accuracy classes
according to Section2.3.2:

1. exact
∀I ∈ D : QA

o (I) = 0 ∧QA
u (I) = 0

2. conservative
∀I ∈ D : QA

o (I) ≥ 0 ∧QA
u (I) = 0

3. aggressive
∀I ∈ D : QA

o (I) = 0 ∧QA
u (I) ≥ 0

4. approximate
∃Ij , Ik ∈ D : QA

o (Ij) > 0 ∧QA
u (Ik) > 0

Scalability

Scalability expresses the ability of the visibility algorithm to cope with larger inputs. A more precise
definition of scalability of an algorithm depends on the problem for which the algorithm is designed.
The scalability of an algorithm can be studied with respect to the size of the scene (e.g. number of scene
objects). Another measure might consider the dependence of the algorithm on the number of only the
visible objects. Scalability can also be studied according to the given domain restrictions, e.g. volume
of the view cell.

A well designed visibility algorithm should be scalable with respect to the number of structural
changes or discontinuities of visibility. Furthermore, its performance should be given by the complex-
ity of the visible part of the scene. These two important measures of scalability of an algorithm are
discussed in the next two sections.

Use of coherence

Scenes in computer graphics typically consist of objects whose properties vary smoothly from one
part to another. A view of such a scene contains regions of smooth changes (changes in color, depth,
texture,etc.) and discontinuities that let us distinguish between objects. The degree to which the scene
or its projection exhibit local similarities is calledcoherence[Fole90].

Coherence can be exploited by reusing calculations made for one part of the scene for nearby parts.
Algorithms exploiting coherence are typically more efficient than algorithms computing the result from
the scratch.

Sutherland et al. [Suth74] identified several different types of coherence in the context of visible
surface algorithms. We simplify the classification proposed by Sutherland et al. to reflect general
visibility problems and distinguish between the following three types ofvisibility coherence:

• Spatial coherence. Visibility of points in space tends to be coherent in the sense that the visible
part of the scene consists of compact sets (regions) of visible and invisible points. We can reuse
calculations made for a given region for the neighboring regions or its subregions.

2.4. VISIBILITY ALGORITHM DESIGN 21

• Line-space coherence. Sets of similar rays tend to have the same visibility classification, i.e. the
rays intersect the same object. We can reuse calculations for the given set of rays for its subsets
or the sets of nearby rays.

• Temporal coherence. Visibility at two successive moments is likely to be similar despite small
changes in the scene or a region/point of interest. Calculations made for one frame can be reused
for the next frame in a sequence.

The degree to which the algorithm exploits various types of coherence is one of the major design
paradigms in research of new visibility algorithms. The importance of exploiting coherence is empha-
sized by the large amount of data that need to be processed by the current rendering algorithms.

Output sensitivity

An algorithm is said to beoutput-sensitiveif its running time is sensitive to the size of output. In the
computer graphics community the term output-sensitive algorithm is used in a broader meaning than in
computational geometry [Berg97]. The attention is paid to a practical usage of the algorithm, i.e. to an
efficient implementation in terms of the practical average case performance. The algorithms are usually
evaluated experimentally using test data and measuring the running time and the size of output of the
algorithm. The formal average case analysis is usually not carried out for the following two reasons:

1. The algorithm is too obscured. Visibility algorithms exploit data structures that are built according
to various heuristics and it is difficult to derive proper bounds even on the expected size of these
supporting data structures.

2. It is difficult to properly model the input data. In general it is difficult to create a reasonable
model that captures properties of real world scenes as well as the probability of occurrence of a
particular configuration.

A visibility algorithm can often be divided into theoffline phase and theonline phase. The offline
phase is also called preprocessing. The preprocessing is often amortized over many executions of the
algorithm and therefore it is advantageous to express it separately from the online running time.

For example an ideal output-sensitive visible surface algorithm runs inO(n log n + k2), wheren is
the number of scene polygons (size of input) andk is the number of visible polygons (in the worst case
k visible polygons induceO(k2) visible polygon fragments).

Acceleration data structures

Acceleration data structures are often used to achieve the performance goals of a visibility algorithm.
These data structures allow efficient point location, proximity queries, or scene traversal required by
many visibility algorithms.

With a few exceptions the acceleration data structures provide aspatial indexfor the scene by means
of a spatial data structure. The spatial data structures group scene objects according to the spatial
proximity. On the contrary line space data structures group rays according to their proximity in line
space.

The common acceleration data structures can be divided into the following categories:

• Spatial data structures

– Spatial subdivisions

uniform grid, hierarchical grid, kD-tree, BSP tree, octree, quadtree, etc.

– Bounding volume hierarchies

hierarchy of bounding spheres, hierarchy of bounding boxes, etc.

22 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

– Hybrid

hierarchy of uniform grids, hierarchy of kD-trees, etc.

• Line space data structures

– General

regular grid, kD-tree, BSP tree, etc.

Use of graphics hardware

Visibility algorithms can be accelerated by exploiting dedicated graphics hardware. The hardware
implementation of the z-buffer algorithm that is common even on a low-end graphics hardware can be
used to accelerate solutions to other visibility problems. Recall that the z-buffer algorithm solves the
visibility from a point problem by providing a discrete approximation of the visible surfaces.

A visibility algorithm can be accelerated by the graphics hardware if it can be decomposed so that the
decomposition includes the problem solved by the z-buffer or a series of such problems. Prospectively,
the recent features of the graphics hardware, such as the pixel and vertex shaders allow easier applica-
tion of the graphics hardware for solving specific visibility tasks. The software interface between the
graphics hardware and the CPU is usually provided by OpenGL [Moll02].

2.5 Visibility in urban environments

Urban environments constitute an important class of real world scenes computer graphics deals with.
The urban environments are the major focus in the design of the algorithms presented in the thesis.

We can identify two fundamental subclasses of urban scenes. Firstly, we consideroutdoorscenes,
i.e. urban scenes as observed from streets, parks, rivers, or a bird’s-eye view. Secondly, we consider
indoorscenes, i.e. urban scenes representing building interiors. In the following two sections we discuss
the essential characteristics of visibility in both the outdoor and the indoor scenes. The discussion is
followed by summarizing the suitable visibility techniques.

2.5.1 Analysis of visibility in outdoor urban areas

Outdoor urban scenes are viewed using two different scenarios. In aflyoverscenario the scene is ob-
served from the bird’s eye view. A large part of the scene is visible. Visibility is mainly restricted due
to the structure of the terrain, atmospheric constraints (fog, clouds) and the finite resolution of human
retina. Rendering of the flyover scenarios is usually accelerated using LOD, image-based rendering and
terrain visibility algorithms, but there is no significant potential for visibility culling.

In a walkthroughscenario the scene is observed from a pedestrians point of view and the visibility
is often very restricted. In the remainder of this section we discuss the walkthrough scenario in more
detail.

Due to technological and physical restrictions urban scenes viewed from outdoor closely resemble a
2D height function, i.e. a function expressing the height of the scene elements above the ground. The
height function cannot capture certain objects such as bridges, passages, subways, or detailed objects
such as trees. Nevertheless buildings, usually the most important part of the scene, can be captured
accurately by the height function in most cases. For the sake of visibility computations the objects that
cannot be represented by the height function can be ignored. The resulting scene is then called a21

2D
scene.

In a dense urban area with high buildings visibility is very restricted when the scene is viewed from
a street (see Figure2.9-a). Only buildings from nearby streets are visible. Often there are no buildings

2.5. VISIBILITY IN URBAN ENVIRONMENTS 23

visible above roofs of buildings close to the viewpoint. In such a case visibility is essentially two-
dimensional, i.e. it could be solved accurately using a 2D footprint of the scene and a 2D visibility
algorithm. In areas with smaller houses of different shapes visibility is not so severely restricted since
some objects can be visible by looking over other objects. The view complexity increases (measured
in number of visible objects) and the height structure becomes increasingly important. Complex views
with far visibility can be seen also near rivers, squares, and parks (see Figure2.9-b).

Figure 2.9: Visibility in outdoor urban areas. (left) In the center of a city visibility is typically restricted
to a few nearby streets. (right) Near river banks typically a large part of the city is visible. Note that
many distant objects are visible due to the terrain gradation.

In scenes with large differences in terrain height the view complexity is often very high. Many objects
can be visible that are situated for example on a hill or on a slope behind a river. Especially in areas
with smaller housing visibility is much defined by the terrain itself.

We can summarize the observations as follows (based on Wonka [Wonk01a]) :

• Outdoor urban environments have basically 21
2D structure and consequently visibility is restricted

accordingly.

• The view is very restricted in certain areas, such as in the city center. However the complexity of
the view can vary significantly. It is always not the case that only few objects are visible.

• If there are large height differences in the terrain, many objects are visible for most viewpoints.

• In the same view a close object can be visible next to a very distant one.

In the simplest case the outdoor scene consists only of the terrain populated by a few buildings.
Then the visibility can be calculated on the terrain itself with satisfying accuracy [Flor95, Cohe95,
Stew97]. Outdoor urban environments have a similar structure as terrains: buildings can be treated as
a terrain withmany discontinuitiesin the height function (assuming that the buildings do not contain
holes or significant variations in their façades). To accurately capture visibility in such an environment
specialized algorithms have been developed that compute visibility from a given viewpoint [Down01]
or view cell [Wonk00, Kolt01, Bitt01e].

The methods presented later in the thesis make use of the specific structure of the outdoor scenes to
efficiently compute a PVS for the given view cell. The key observation is that the PVS for a view cell in
a 21

2D can be determined by computing visibility from its top boundary edges. This problem becomes
a restricted variant of the visibility from a line segment in 3D withd(LR) = 3.

24 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

2.5.2 Analysis of indoor visibility

Building interiors constitute another important class of real world scenes. A typical building consists of
rooms, halls, corridors, and stairways. It is possible to see from one room to another through an open
door or window. Similarly it is possible to see from one corridor to another one through a door or other
connecting structure. In general the scene can be subdivided into cells corresponding to the rooms, halls,
corridors, etc., and transparent portals that connect the cells [Aire90, Tell91]. Some portals correspond
to the real doors and windows, others provide only a virtual connection between cells. For example an
L-shaped corridor can be represented by two cells and one virtual portal connecting them.

Visibility in a building interior is often significantly restricted (see Figure2.10). We can see the
room we are located at and possibly few other rooms visible through open doors. Due to the natural
partition of the scene into cells and portals visibility can be solved by determining which cells can be
seen through a give set of portals and their sequences. A sequence of portals that we can see through is
calledfeasible.

Figure 2.10: Indoor visibility. (left) Visibility in indoor scenes is typically restricted to a few rooms or
corridors. (right) In scenes with more complex interior structure visibility gets more complicated.

Many algorithms for computing indoor visibility [Aire90, Tell92b, Lueb95] exploit the cell/portal
structure of the scene. The potential problem of this approach is its strong sensitivity to the arrangement
of the environment. In a scene with a complicated structure with many portals there are many feasible
portal sequences. Imagine a hall with columns arranged on a grid. The number of feasible portal
sequences rapidly increases with the distance from the given view cell [Tell92b] if the columns are
sufficiently small (see Figure2.11). Paradoxically most of the scene is visible and there is almost no
benefit of using any visibility culling algorithm.

The approach presented later in the thesis partially avoids this problem since it does not rely on
finding feasible portal sequences even in the indoor scenes. Instead of determining whatcanbe visible
through a transparent complement of the scene (portals) the method determines whatcannotbe visible
due to the scene objects themselves (occluders). This approach also avoids the explicit enumeration of
portals and the construction of the cell/portal graph.

2.6 Summary

Visibility problems and algorithms penetrate a large part of computer graphics research. The proposed
taxonomy aims to classify visibility problems independently of their target application. The classifica-
tion should help to understand the nature of the given problem and it should assist in finding relation-
ships between visibility problems and algorithms in different application areas. The thesis addresses the
following classes of visibility problems:

2.6. SUMMARY 25

Figure 2.11: In sparsely occluded scenes the cell/portal algorithm can exhibit a combinatorial explosion
in number of feasible portal sequences. Paradoxically visibility culling provides almost no benefit in
such scenes.

• Visibility from a point in 3D and visibility from region in 2D,d(LR) = 2.

• Visibility from a region in 212D, d(LR) = 3.

• Visibility from a region in 3D,d(LR) = 4.

This chapter discussed several important criteria for the classification of visibility algorithms. This
classification can be seen as a finer structuring of the taxonomy of visibility problems. We discussed
important steps in the design of a visibility algorithm that should also assist in understanding the qual-
ity of a visibility algorithm. According to the classification the thesis addresses algorithms with the
following properties:

• Domain:

– viewpoint (Chapters4, 5),

– line segment or 2D polygon (Chapter6),

– vertical trapezoids/prisms (Chapter7),

– polygon or polyhedron (Chapter8)

• Scene restrictions (occluders):

– convex polygons (Chapters4, 5 and 8),

– line segments (Chapter6),

– vertical trapezoids (Chapter7)

• Scene restrictions (group objects):

– bounding boxes (Chapters4, 5, Chapter7 and8),

– bounding rectangles (Chapter6).

• Output:

– PVS, answers 2-(b), 2-(c) (Chapters4, 6, 7 and 8)

– Visible surfaces, answer 3-(d) (Chapters5, 8)

– Visibility discontinuities, answer 3-(c) (Chapters5, 8)

26 CHAPTER 2. OVERVIEW OF VISIBILITY PROBLEMS AND ALGORITHMS

• Accuracy:

– conservative (Chapters4, 7)

– exact (Chapters4, 5, 6, 7 and8)

• Solution space:

– continuous, line space (Chapters4, 5, 6 and8)

– continuous, line space / primal space (Chapter7)

• Solution space data structure: BSP tree (all methods)

• Use of coherence of visibility:

– spatial coherence (all methods)

– line space coherence (all methods)

– temporal coherence (Chapter4)

• Output sensitivity: expected in practice (all methods)

• Acceleration data structure: kD-tree (all methods)

• Use of graphics hardware: no

The algorithms described in the rest of the thesis are mainly focused on urban scenes. This chapter
also discussed specific issues of visibility in indoor and outdoor urban scenes and outlined appropriate
visibility techniques.

Chapter 3

The general concept of a visibility
algorithm

This chapter presents a general concept suitable for solution of several visibility problems. Applications
of the concept are then presented in Chapters4, 5, 6, and8, where it is used for the real-time occlusion
culling, computing visibility maps and computing from-region visibility in 2D, 21

2D, and 3D scenes.
These chapters then thoroughly discuss the details of the method and optimizations for the particular
application.

The concept is based on three main ideas: theapproximate occlusion sweep, the occlusion tree,
andhierarchical visibility tests. Theapproximate occlusion sweepis used to construct anaggregated
occlusion map(AOM) due to already processed occluders. The AOM is maintained by theocclusion
tree that represents a union of occluded rays by means of a hierarchical subdivision of the problem-
relevant line set. The occlusion tree serves as an abstraction layer allowing to apply the same concept
for various visibility problems: the tree can be used to represent visibility with respect to a point,
line segment or a region. Additionally, the hierarchical structure of the occlusion tree allows efficient
visibility tests making use of visibility coherence. Thehierarchical visibility testsuse the occlusion tree
to classify visibility of nodes of the spatial hierarchy. These tests are interleaved with the occlusion
sweep to achieve an output-sensitive behavior of the algorithm.

3.1 Related work

The proposed concept extends the ideas of several from-point visibility methods for solving other vis-
ibility problems. In particular it builds on the beam tracing [Heck84], the cone tracing [Aman84], the
frustum casting [Tell98] and the projection of Binary Space Partitioning (BSP) trees [Nayl92b]. These
methods share a common idea of sweeping the scene in the direction defined by a certain set of rays
(beam, cone, frustum or the whole viewport). The scene is swept in a front to back order, which leads to
an output-sensitive behavior of the algorithm: once an unambiguous solution is found (e.g. the whole
beam intersects an object) the algorithm is terminated. Thus the invisible part of the scene need not be
processed by the algorithm. Another common principle is the use of visibility coherence. Whole sets
of rays are cast at a time. In the case that the rays intersect the same object the algorithm terminates.
This contrasts to the classical ray shooting for example, which needs to sample visibility by casting
independent rays until sufficient precision is achieved.

3.1.1 Beam tracing

Thebeam tracingwas designed by Heckbert and Hanrahan [Heck84] to overcome some problems con-
nected with ray tracing. Rather than shooting a single ray at a time it casts a pyramid (beam) containing

27

28 CHAPTER 3. THE GENERAL CONCEPT OF A VISIBILITY ALGORITHM

infinitely many rays. The resulting algorithm makes better use of coherence of neighboring rays and
eliminates some aliasing connected with the classical ray tracing by providing analytic description of
visibility.

Beam tracing starts by casting a pyramid corresponding to the whole viewing frustum. A modified
Weiler-Atherton algorithm (see SectionA.3.2) is used to find intersections of the current pyramid with
the scene polygons. The current pyramid is subdivided into frusta (beams) each intersecting a single
polygon. The algorithm continues by recursively casting reflected and refracted beams. The drawback
of the algorithm is that the beams might become rather complex and the implementation of a robust and
fast beam casting algorithm is difficult.

3.1.2 Cone tracing

Thecone tracingproposed by Amanatides [Aman84] traces a cone of rays at a time instead of a polyhe-
dral beam or a single ray. It was designed to simulate glossy reflections and soft shadows. In contrast to
the beam tracing the algorithm does not determine precise boundaries of visibility changes. The cones
are intersected with the scene objects and at each intersected object a new cone (or cones) are cast to
simulate reflection and refraction. The cone angle can be adjusted based on the surface roughness or
fitted to match sizes of areal light sources.

3.1.3 BSP tree projection

Naylor [Nayl92b] developed an elegant and efficient visible surface algorithm for rendering polygonal
scenes represented by a BSP tree. The algorithm combines principles of Warnock’s algorithm and
Weiler-Atherton’s algorithm.

The scene is swept in a front to back order using an ordered traversal of the BSP tree. The view of
the scene is represented by a 2D BSP tree resulting from projections of the visible scene polygons. The
2D BSP tree is used to clip the invisible polygons using an efficient hierarchical traversal of the tree.

The front to back traversal of the scene BSP tree is interleaved with visibility tests of cells corre-
sponding to interior nodes of the tree. These tests are carried out using a polygonal representation of
the cell and the 2D BSP tree representing the current view. The hierarchical visibility tests lead to an
output-sensitive behavior of the algorithm. The drawback of the method is that it requires that the whole
scene is represented using a BSP tree. This poses a significant problem for large and especially dynamic
scenes.

3.1.4 Frustum casting

Teller and Alex [Tell98] characterize visible surface algorithms by aworking setandoverdraw. They
define the working set as the extent to which, and the order in which, the algorithm accesses virtual
memory corresponding to nodes of the spatial index (e.g. kD-tree, object bounding boxes, etc.) or the
scene data (e.g. triangles). The working set is closely related to overdraw, i.e. the effort spent by the
render to process objects that do not contribute to the final image.

They propose a concept of frustum casting that synthesizes three well-known algorithms: screen
space subdivision, beam tracing and accelerated ray shooting using a spatial subdivision. Frustum
casting should combine efficient aspects of the three algorithms while overcoming their weaknesses.

Teller and Alex [Tell98] proposed several optimizations that improve the performance of the algo-
rithm, e.g. if all rays hit the same convex object and it is the only object intersecting the current frustum
we know that all rays in the frustum intersect the object.

The concept described further in this chapter generalizes the idea of casting a set of rays by casting a
general set of rays that need not originate at a single point. It can be seen as an extension of the Naylor’s
BSP projection algorithm in two aspects: Firstly, instead of a 2D BSP representing a view with respect

3.2. APPROXIMATE OCCLUSION SWEEP 29

to a point it uses an occlusion tree representing a set of occluded rays with respect to a point, line
segment or a region. Secondly, the concept does not rely on an exact priority order of scene polygons
provided by a BSP tree representing the whole scene. Instead, it uses an approximate priority order
induced by a spatial hierarchy and resolves the depth priority conflicts by restructuring the occlusion
tree.

3.2 Approximate occlusion sweep

Traditional list-priority methods for visible surface determination aim to determine strict priority order-
ing of the scene polygons. A popular approach is the algorithm using an autopartition BSP tree [Fuch80]
that organizes the scene polygons. By simple traversal of the tree the algorithm determines a strict front-
to-back or back-to-front order of the polygons with respect to the given viewpoint. There are three main
issues with the autopartition BSP algorithm:

• The BSP tree increases the amount of scene polygons due to splitting.

• The tree is not well suited to dynamic scenes since the partitioning planes are aligned with the
scene polygons.

• The strict priority order is determined with respect to a single point (viewpoint) not a set of points.

We use a novel concept of approximate priority ordering:approximate occlusion sweep. The ap-
proximate occlusion sweep processes scene polygons in an approximate front-to-back order: a currently
processed polygon can be occluded byk unprocessed polygons.k is typically very small and very often
k = 0. The main advantage of the method is that almost any common spatial index such as a kD-tree,
an octree or a bounding volume hierarchy can be used to establish the approximate front-to-back order.
Additionally the approximate occlusion sweep can be applied with respect to a point, line segment or a
region.

The approximate occlusion sweep is used to construct the AOM, i.e. a data structure capturing the
aggregated occlusion of the processed polygons. To ensure that the computed result is not influenced by
the approximate character of the sweep, the AOMmust supportthe insertion of polygons in the reverse
priority order (k > 0). Additional checks are performed during the polygon insertion to accurately
determine the position of the currently processed polygon with respect to the already processed ones.
Late processing of a polygon with a higher priority that is in front of the already processed polygons,
causes a certain performance penalty. The assumption is that such a case is not very frequent in practice
and thus the performance penalty is amortized.

Suppose we use a kD-tree to organize the scene polygons. The tree is built by recursive subdivision
until certain termination criteria are met. Leaves of the tree contain references to scene polygons.
In practice each leaf contains a small number of references (number of objects per leaf is one of the
termination criteria of the tree construction algorithm1).

Two methods can be used to perform the approximate occlusion sweep using a kD-tree: one corre-
sponding to the depth-first traversal of the tree, the other to the breadth-first traversal.

The depth-first traversal method visits leaves of the tree in a front-to-back order with respect to a
given point. The algorithm uses the partitioning planes associated with interior nodes of the tree to
establish the front-to-back order as proposed by Fuchs et al. [Fuch80].

The second method is more general. It uses a priority stack for the breadth-first traversal. The priority
of the node is inversely proportional to the minimal distance of the hierarchy node from the viewpoint.
This approach can also be used for an octree, a bounding volume hierarchy, or a hierarchy of uniform

1However, in a pathological case when the scene objects are not separable by an orthogonal plane, there can be as much as
O(n) objects per leaf.

30 CHAPTER 3. THE GENERAL CONCEPT OF A VISIBILITY ALGORITHM

grids. The breadth-first traversal is based solely on the priority of the given hierarchy node. This allows
to apply the method to dynamic scenes where the structure of the hierarchy changes.

In both traversal methods the polygons associated with a leaf node are processed in random order.
Alternatively, a simple runtime depth-ordering of the polygons within a leaf can be used to increase the
accuracy of the generated priority order. An illustration of the progress of this method is depicted in
Figure3.1.

random polygon order unprocessed regionsswept regions

viewpoint

Figure 3.1: Approximate occlusion sweep. The scene is processed in an approximate front-to-back
order. The order is defined by the traversal of a spatial hierarchy. On the figure a breadth-first-like
traversal is depicted. In a currently visited region polygons are processed in random order.

3.3 Occlusion tree

The occlusion tree is a BSP tree maintaining a line space subdivision. The tree is used to represent the
AOM of already processed polygons and depending on the particular visibility problem it captures oc-
cluded rays emanating from a point, line segment or a region in the scene that are blocked by processed
polygons. For visibility from point in 3D scenes the occlusion tree [Bitt98] is a BSP tree representing a
view of the scene. For this case it is conceptually equivalent to the Shadow Volume BSP tree introduced
by Chin and Feiner [Chin89] discussed in SectionC.1.4. The tree is a BSP representation of the image
consisting of already processed polygons. Each point inside a polygon in the image corresponds to
a ray blocked by that polygon. Such a BSP representation of the image with depth was also used by
Naylor [Nayl92b] (the method described in Section3.1.3).

The occlusion tree is a generalization of the BSP representation of the view of the scene. The sets of
rays blocked by already processed occluders are described as line space polyhedra. The occlusion tree
is used to maintain the union of these polyhedra. The intersections of the polyhedra are resolved using
an information about the depth of the corresponding occluders.

A detailed description of the structure of the occlusion tree for a specific visibility problem will be
discussed in Chapters4, 5, 6, 7, and8. This section reviews only the principle of using BSP trees for
polyhedra set operations proposed by Thibault and Naylor [Thib87] and Naylor et al. [Nayl90b]. It
describes the general structure of the occlusion tree and outlines the associated visibility algorithms.

3.3. OCCLUSION TREE 31

3.3.1 Polyhedra set operations using BSP trees

BSP trees are often used to organize polygonal scenes. The BSP based visibility algorithm of Fuchs et
al. [Fuch80] has been improved by Gordon and Chen [Gord91] to achieve output-sensitivity for a certain
type of environment and further developed by Naylor [Nayl92b]. Subramanian and Naylor [Subr97]
introduced an algorithm for converting discrete images to 2D BSP trees. Dynamic changes to BSP trees
were studied in [Torr90, Chry92]. Other work on BSP trees can be found in [More95, Garr96, Agar97,
Huer97, Mars97, Wile97, Berg97, Mura97, Nech96, Tobo99].

In this section we focus on an application of BSP trees for representing a collection polyhedra and
performing set operations on the polyhedra [Thib87, Nayl90a, Nayl90b, Nayl92a, Nayl93].

A polyhedronP is represented by recursive subdivision of the whole space by hyperplanes into
convex cells. A hyperplanehv is associated with each interior nodev of the tree. Each nodev of the
tree corresponds to a convex cellRv. If v is an interior node the hyperplanehv subdividesRv into
smaller cellsR+

v andR−
v . Let h+

v be the positive halfspace andh−v the negative halfspace bounded by
hv. The cells associated with the left and the right children ofv areRv ∩h+

v andRv ∩h−v , respectively.
The root of the tree corresponds to the whole space and the leaves to elementary cells. Each elemen-

tary cell is classified asin or out depending whether it is inside or outside of the polyhedronP .
Set operations on two polyhedra can be performed bymergingtheir BSP trees. Merging of two BSP

trees can be described as follows:

1. Denote the smaller treeTA, the bigger oneTB. The algorithm will mergeTA into TB.

2. Identify a set ofrelevant leavesNA of TA. The notion of a relevant leaf depends on the particular
operation.

3. For each leafLA
i of NA perform the following steps:

(a) Recursively find all leavesNB
i of TB intersecting the polyhedronPA

i associated withLA
i

(b) Depending on the particular operation updateNB
i by inserting planes boundingPA

i . Update
classification of the resulting new nodes.

For the sake of representing aggregated occlusion we are interested in the set union operation: at each
step of the approximate occlusion sweep we extend the tree by a polyhedra representing rays occluded
by the currently processed polygon.

In the case of a set union operation the relevant leaves determined in step 2 of the merging algorithm
are allin-leaves ofTA. The step 3-(b) then proceeds as follows:

3.(b) For each leafLB
j ∈ NB:

(a) If LB
j is in-leaf, do nothing.

(b) If LB
j is out-leaf, replace it by a subtree representingPA

i . Use only such planes ofPA
i that

intersect the interior of the cell corresponding toLB
j .

The proposed concept uses a simpler form of the set union operation that merges a single polyhedron
into the BSP tree. This case corresponds to merging of two BSP treesTA andTB whereTA is an
elementary tree with a singlein-leaf. See Figure3.2for an illustration of the set union operation.

3.3.2 Structure of the occlusion tree

The occlusion tree is a BSP tree that partitions the problem-relevant line setLR. Each node represents
a set of raysQN ⊂ LR emanating from the given point, line segment or a polyhedral region depending

32 CHAPTER 3. THE GENERAL CONCEPT OF A VISIBILITY ALGORITHM

=

h

+

b

+ =

e

d
a

f
i

g

b

a

e

d

f

c

i

h

g

i
P1

P2

P

P

P

P P

3 1

2

3a

3b

P2

P3
P2

P3a

P3b

c

i

h

g

b

c

a

e

d

f

P P1 1

Figure 3.2: A 2D example of the set union operation. PolygonP3 is merged into the BSP tree repre-
senting a union ofP1 andP2. P3 is split into two fragments that correspond to the two newin-leaves
of the BSP tree.

on the particular visibility problem. The root of the tree represents the wholeLR. Each interior node
N is associated with a planehN partitioning the set of rays associated with the node. Left child of
N represents raysQN ∩ h−N , right childQN ∩ h+

N , whereh−N andh+
N are halfspaces induced byhN .

Leaves of the tree are classifiedin or out. If N is anout-leaf,QN represents unoccluded rays. IfN is
anin-leaf, it is associated with a closest scene polygonP that is intersected by the corresponding set of
raysQN .

Probably the most intuitive is the occlusion tree for visibility from point in 3D. To further simplify
the understanding of the structure of the tree we can think about the occlusion tree in a projection to
a particular 2D viewport. Then the root of the tree corresponds to the whole viewport. Each interior
node is associated with a line subdividing the current polygonal region in two parts. Leaves of the tree
represent either empty region of the viewport or a fragment of a visible polygon.

Occlusion tree constructed for a single polyhedronP contains interior nodes corresponding to the
planes defined by facets ofP . We call such a treeelementary occlusion tree, denoted e-OT(P) (see
Figure3.3). e-OT(P) contains singlein-node corresponding to the interior ofP .

3.3.3 Construction of the occlusion tree

The occlusion tree is constructed by incremental insertion of polyhedra. Each polyhedron corresponds
to a set of rays blocked by a scene polygon. The insertion order is determined by the approximate
occlusion sweep. For visibility from point in 3D the line space polyhedron is represented by the scene
polygon itself: each point inside the polygon represents a single ray emanating from the viewpoint and
intersecting the polygon. This chapter however discusses the general approach and thus the algorithms
are presented in terms of line space polyhedra.

For an occluderO the algorithm inserting a corresponding polyhedronPO in the tree maintains two
variables: the current nodeNc and the current polyhedral fragmentPc. Initially Nc is set to the root of
the tree andPc = PO. The insertion of a polyhedron in the tree proceeds as follows: IfNc is an interior
node we determine the position ofPc and the planehNc associated withNc. If Pc lies in the negative

3.3. OCCLUSION TREE 33

b
d P

a

c

P

d

c

b

a
− +

+−

+−

+− out

in

Figure 3.3: 2D example of an elementary occlusion tree. The tree contains four interior nodes corre-
sponding to the edges of the polygon.

halfspace induced byhNc the algorithm continues in the left subtree. Similarly ifPc lies in the positive
halfspace induced byhNc the algorithm continues in the right subtree. IfPc intersects both halfspaces
it is split by hNc into two partsP−

c andP+
c and the algorithm proceeds in both subtrees ofNc with

relevant fragments ofPc.
If Nc is a leaf node then we make a decision depending on its classification. IfNc is anout-leaf then

rays corresponding toPc are unoccluded andNc is replaced by e-OT(Pc). If Nc is anin-leaf we check
the mutual position of the occluderONc and the occluder associated withNc. If O is behindONc it is
invisible and no modification to the tree necessary. OtherwiseNc is replaced by e-OT(Pc) and the ’old’
polyhedronPNc is merged in the new subtree. Note that this case occurs when the strict front-to-back
order of scene polygons is violated. See Figure3.4 for an example of the occlusion tree for visibility
from point in 3D.

− +

− +

− +

− + − +

− +

− +

− +

− +

− +

d

i

h
P

P

2a

3a

a

f b

d

f

a

e

f h

i

j
P

P P

P
1

2a 2b

3a

g

b

c

e
j

P2b

P1

c

Figure 3.4: An example of the occlusion tree for visibility from point in 3D. Rays intersecting polygonal
occludersO1, O2, andO3 are represented by 2D polygonsP1, P2, andP3, respectively. PolygonP2

is split into two visible fragments.P3 is partially covered byP2 and so the tree reflects only its visible
partP3a.

34 CHAPTER 3. THE GENERAL CONCEPT OF A VISIBILITY ALGORITHM

3.3.4 Visibility test using the occlusion tree

The occlusion tree can be used to test if a given set of rays intersects the already processed polygons. In
general the test results in one of the three visibility states: invisible, partially visible, fully visible.

Assume we test visibility of an occluderO that induces a line space polyhedronPO. The visibility test
is performed similarly as the insertion of a polyhedron into the tree. The difference is that no changes
to the tree are performed even if the polyhedronPc corresponds to a set of unoccluded rays. Reaching
anout-leaf we classify the corresponding fragment as visible. Reaching anin-leaf the visibility state
depends on the mutual position of occludersO andONc . If O is in front of ONc , it is visible. If it is
behindONc , it is invisible. The visibility classification ofP is obtained by combining visibility states
of all leaves reached by the traversal of the tree according to the Table3.1.

Fragment A Fragment B A ∪ B

F F F
I I I
I F P
F I P
P ∗ P
∗ P P

I – invisible
P – partially visible
F – fully visible
∗ – any of the I,P,F states

Table 3.1: Combining visibility states of two fragments.

Whenever the combination results in partial visibility the algorithm can be terminated. If we do not
distinguish between the fully visible and partially visible states the algorithm can be terminated as soon
as any visible fragment is found. See Figure3.5for an illustration of the visibility test.

VISIBILITY STATES
PULL−UPCONSTRAINED

DFS

N1
... N 5

OT ROOT

Figure 3.5: Visibility test using an occlusion tree. The algorithm performs a constrained depth first
search (DFS) on the tree. The visibility states determined in leaves are pulled up the tree and combined
according to the Table3.1.

3.4 Hierarchical visibility tests

In order to increase efficiency of the algorithm the approximate occlusion sweep can be interleaved
with visibility tests applied on the nodes of the spatial hierarchy. If the test determines that the node is
invisible, the corresponding subtree and all polygons it contains can be culled.

3.5. COMPLEXITY ANALYSIS 35

The visibility of the bounding box of the current kD-tree node is determined using the visibility test
described above. The test uses a line space polyhedron representing rays of the problem-relevant line
setLR that intersect the bounding box. If the test classifies the node as invisible, the whole subtree of
the corresponding kD-tree node can be culled. See Figure3.6for a 2D example of hierarchical visibility
tests for visibility from point.

view frustum

viewpoint

visible invisible

partially visible culled by VFC

Figure 3.6: Hierarchical visibility tests. The figure depicts resulting visibility classification of kD-tree
nodes. These nodes are leaves of the subtree visited by the approximate occlusion sweep.

The hierarchical visibility tests provide a great benefit in densely occluded scenes where many scene
objects are invisible. This leads to an output-sensitive behavior of the algorithm in practice. Figure3.7
depicts a pseudo-code of a hierarchical from-region visibility algorithm.

3.5 Complexity analysis

This section presents an analysis of the time and space complexities of the proposed methods. It is hard
to provide meaningful bounds on the expected complexity of the algorithm, since the construction of the
supporting structures relies on various heuristics. Therefore, we make several assumptions to simplify
the analysis.

3.5.1 kD-tree

The properties of the scene kD-tree significantly influence the behavior of the proposed techniques
especially for densely occluded scenes. kD-trees were designed to organize sets of points inRd [Bent75,
Same90]. The size of a kD-tree forn points issp = 2n− 1 assuming that each leaf is associated with a
single point. A kD-tree ofO(log n) height can be constructed inO(n log n) time.

36 CHAPTER 3. THE GENERAL CONCEPT OF A VISIBILITY ALGORITHM

HierarchicalVisibility(RegionRS , kDTree KD){
1: OT.Init(RS) // initiate OT
2: pqueue.Put(KD.root) // initiate priority queue
3: while (pqueue is not empty){
4: N← pqueue.Get() // get next node from the queue
5: if (RN intersectsRS)
6: N.vis← VISIBLE
7: else
8: N.vis← OT.TestVisibility(RN)
9: if (N.vis != INVISIBLE) {
10: if (N is leaf)
11: OT.InsertOccluders(N.occluders)
12: else
13: pqueue.Put(childrenof N)
14: }
15: } // while
16: }

Figure 3.7: Pseudo-code of the hierarchical from-region visibility algorithm.

Analysis of a kD-tree for a set of polygons is more complicated. First of all a kD-tree with a single
polygon per leaf need not exist, if the polygons are not separable by an orthogonal plane. Thus in the
worst case forn polygons there can be as much asO(n) polygons per leaf for a kD-tree of sizeO(m)
resulting in totalO(mn) space complexity.

In practice we observe that for most real world scenes we can construct a kD-tree withO(n) size,
O(1) polygons per leaf andO(log n) average depth. The tree is typically constructed using theminimal
splits heuristics[Bitt98] or the surface area heuristics[MacD90, Havr00a], which takesO(n log n)
time.

3.5.2 Number of swept nodes

For further analysis it is important to express the number of nodes of the kD-tree visited by the occlusion
sweep. If there arek visible polygons in the scene, there areO(k) leaves of the kD-tree classified
visible (assuming there isΘ(1) polygons per leaf). TheO(k) leaves induce a subtree of a size between
Ω(k + log n) andO(k log n) (assuming the height of the kD-tree isO(log n)). The lower bound holds
in the case that the subtree is a compact subtree of heightO(log k), the upper bound holds for visible
nodes spread in disjoint branches of the kD-tree. These bounds hold for the total number of nodes
visited by the sweep assuming that for each interior node of the spatial hierarchy classified as visible, at
least one of its child nodes is visible (this cannot be guaranteed if the visibility test is more accurate for
smaller cells).

We can conclude that there areO(k log n) nodes tested for visibility. The total number of processed
polygons isO(k) some of which can be classified invisible due to the approximate polygon ordering.

3.5.3 Size of the occlusion tree

The occlusion tree maintains a subdivision of the problem-relevant line setLR. The dimension ofLR

induces bounds on the size of the tree. Assume the tree capturesO(k) blocker polyhedra, wherek
corresponds to the number of visible occluders and each blocker polyhedron consist ofO(1) faces. The
trivial upper bound of the tree size isO(kd) whered is the dimension of the problem-relevant line set.
This bound corresponds to the size of the arrangement of hyperplanes inRd [Dobk97]. The actual size

3.6. SUMMARY 37

of the tree highly depends on the mutual positions of the blocker polyhedra, their volume and the order
of their insertion into the tree.

For the case ofd = 2 we can derive a more accurate upper bound: the expected size of the tree is
O(k log k) for k random non-intersecting polygons. This bound follows from the analysis of size of a 2D
BSP tree for a set of random line segments constructed using a simple randomized algorithm [Berg97].
For higher dimensions (d > 2) however a similar randomized algorithm yields aO(kd) upper bound.

In Chapters5, 6, and8 we will present measurements of the size of the occlusion tree for various
types of input data. We can observe that theO(kd) upper bound is rather pessimistic and the size of the
occlusion tree is typically much smaller in practice.

3.5.4 Analysis of a visibility test

A visibility test using an occlusion tree of sizes with O(log s) height takesO(log s) time at the best
case andO(s) time at the worst case. The best case corresponds to the situation that the test terminates
immediately after reaching a leaf node. The test can be terminated as soon as anout-leaf is reached
since we know that the tested region is at least partially visible.

The worst case holds for the case that we check visibility of a very large invisible region that covers
all rays captured by the tree. Note that if a large region is found invisible all its subregions are culled,
which amortizes the total time taken by visibility tests.

3.6 Summary

This chapter presented a general concept suitable for solving from-point, from-segment and from-region
visibility. The concept is based on the idea of sweeping the scene and constructing an aggregated
occlusion map. To abstract from the particular visibility problem we propose to use an occlusion tree,
i.e. a BSP tree maintaining the occlusion map using a hierarchical partitioning of the problem-relevant
line set. The tree represents a set of rays blocked by the already processed polygons. The hierarchical
structure of the occlusion tree is used for efficient updates and visibility tests. The visibility tests are
applied on the nodes of the spatial hierarchy during the occlusion sweep. These tests allow to quickly
cull invisible parts of the scene, which leads to the output-sensitive behavior of the algorithm. The
proposed approximate occlusion sweep provides a compromise between computationally costly strict
ordering of the scene polygons and a fast ordering that does not require additional data structures and
calculations.

38 CHAPTER 3. THE GENERAL CONCEPT OF A VISIBILITY ALGORITHM

Chapter 4

Real-time visibility culling

This chapter presents an algorithm for real-time visibility culling for the acceleration of walkthroughs of
large scenes. The proposed technique belongs to the class of visibility from point problems. According
to the classification from Chapter2 it is an online, continuous, and output-sensitive from-point visibility
algorithm that makes use of visibility coherence (object space, line space, and temporal).

4.1 Problem statement

The goal of the real-time visibility culling can be defined as follows: given a scene and a viewpoint
quickly determine a PVS, i.e. a set of objects potentially visible from the viewpoint. These objects
are then sent to the graphics pipeline; the rest of the scene is culled. The final visibility is typically
resolved using z-buffer. The opposite criteria posed on the real-time visibility culling are the speed of
the algorithm versus the accuracy of the resulting visibility classification. The algorithm should take
only a fraction of the total frame time but the visibility classification should be precise enough so that
most invisible objects are culled.

4.2 Related work

In computational geometry visible surface determination was studied theoretically by de Berg [Berg93b,
Berg93a], Mulmuley [Mulm89] and Sharir [Shar92]. Grant [Gran92] presented a survey of practical vis-
ibility algorithms for computer graphics concentrating on visible surface and hard shadow algorithms.

Visible surface determination is commonly solved using the z-buffer algorithm [Catm75] or BSP
trees [Fuch80]. Both these algorithms are not output-sensitive since they can spend significant time
by processing objects that are actually invisible. The efficiency of these methods can be improved by
applying some culling techniques such as back face culling [Zhan97a, Kuma96b, Kuma96a] or view
frustum culling [Clar76, Assa00] (see ChapterB for more details). Another possibility is a paralleliza-
tion of the visible surface algorithm [Geor95, Fran90]. In the rest of this section we review work on
visibility culling methods.

A lot of research has been devoted to the concept ofpotentially visible sets(PVS) in architectural
environments that can be decomposed into cells connected by transparent portals [Aire90, Tell91]. The
cell/portal methods belong to the from-region visibility problems that will be discussed in Chapters6, 7
and 8. An exception is the algorithm of Luebke and Georges [Lueb95] that applies the cell/portal based
culling for each viewpoint in real time. Thehierarchical z-bufferof Greene [Gree93] uses a discrete
z-pyramidto represent the occlusion map with respect to the viewpoint. It exploits spatial coherence of
visibility by processing the spatial hierarchy through the z-pyramid (see SectionB.3.1for more details).
The hierarchical z-buffer is a promising approach for hardware implementation, but the simulation of

39

40 CHAPTER 4. REAL-TIME VISIBILITY CULLING

the z-pyramid in software causes a significant overhead. Greene [Gree94a] combines hierarchical visi-
bility culling with antialiasing techniques to avoid visual artifacts for scenes with many small polygons.
Another method of Greene [Gree96], suitable for high resolution rendering, uses a hierarchy of discrete
coverage masks to represent the occlusion map (see SectionB.3.2). An algorithm that uses discrete
image space representation of the occlusion map was introduced by Zhang et.al [Zhan97b] (see Sec-
tion B.3.3). This technique exploits graphics hardware to create a hierarchical occlusion map using
texture filtering operation. While taking advantage of hardware rendering, this method suffers if the
rendering support is insufficient or the frame buffer read-back is slow. Bartz et al. [Bart98] proposed a
simple extension of the graphics hardware to support occlusion queries.

The method presented in this chapter is closely related to object space visibility culling algorithms
presented by Hudson et.al [Huds97] and Coorg [Coor96a, Coor96b, Coor97]. Hudson et al. [Huds97]
create ashadow frustumfor each selected occluder. These frusta are used to classify visibility regions
corresponding to nodes of the spatial hierarchy. The method does account for occluder fusion: a region
is tested against each frustum independently and the occlusion caused by multiple unconnected occlud-
ers is not discovered (see SectionB.3.4for more details). Coorg and Teller [Coor96a, Coor96b, Coor97]
construct supporting and separating planes for an occluder and a box corresponding to a node of the spa-
tial hierarchy. The algorithm tests the position of the viewpoint with respect to the umbra and penumbra
induced by the supporting and separating planes. By caching these planes the algorithm makes use of
temporal coherence. The method does not account for occluder fusion since occlusion due to multiple
occluders is not discovered (see SectionB.3.5for more details).

4.3 Algorithm overview

The algorithm presented in this chapter is designed to assist z-buffer to achieve an output-sensitive
behavior. The proposed method is conservative, i.e. for a given viewpoint it determines a superset
of objects visible from the viewpoint. The algorithm uses the concept introduced in Chapter3: the
approximate occlusion sweep, the occlusion tree, and hierarchical visibility tests. In preprocessing
we build a kD-tree to organize the scene polygons. The polygons larger than a given threshold are
classified as potential occluders. For the current viewpoint the kD-tree is used to sweep the scene in
an approximate front-to-back order. The potential occluders encountered by the sweep are inserted in
the occlusion tree. The occlusion tree represents all rays blocked by the inserted occluders and so it
efficiently merges their occlusion volumes. When a new node of the kD-tree is processed, it is first
tested for visibility using the current occlusion tree. If the node is invisible, the whole corresponding
subtree is culled. The insertion of occluders into the occlusion tree stops once we have inserted a
predefined number of occluders. Then the tree is only used for visibility classification of the remaining
part of the scene using the given occluder subset.

The kD-tree is used to obtain the approximate front-to-back order and to exploit spatial coherence
of visibility. Starting at the root of the kD-tree the algorithm determines visibility using the current
occlusion tree. If a node is found visible, all its descendants are visible. Similarly, if a node is found
invisible, all its descendants are invisible. Descendants of nodes classified as partially visible must be
further tested to refine their visibility. When the visibility of all leaves is known, objects from fully
visible and partially visible leaves are gathered. These objects form the desired PVS and they are
rendered using the z-buffer. See Figure3.6 for an illustration of the from-point hierarchical visibility
culling.

The rest of the chapter is organized as follows: Section4.4 focuses on the spatial hierarchy. The
occluder selection is outlined in Section4.5. In Section4.6 we discuss the motivation for building a
unique data structure that represents the occlusion map. Section4.7presents two algorithms for visibil-
ity tests using the occlusion tree. Section4.10describes a fast conservative visibility test. Section4.11
presents several techniques that exploit spatial and temporal coherence in the scope of the hierarchi-

4.4. SPATIAL HIERARCHY 41

cal visibility algorithms. Section4.12summarizes the results of the implementation of the proposed
algorithms. Finally, Section4.13concludes.

4.4 Spatial hierarchy

The scene polygons are organized using a kD-tree [Kapl85]. kD-trees are highly flexible and are simple
to construct and traverse. The most important step during the construction of the kD-tree is the choice
of the partitioning plane. A partitioning plane is selected that subdivides the current region into two
smaller ones and two descendants of the current node are created. Objects are distributed into the
descendants according to their position with respect to the partitioning plane. Initially, the root node of
the kD-tree corresponds to the bounding box of the whole scene. The whole kD-tree is built by recursive
application of the subdivision algorithm. The recursion is terminated when the number of objects in the
current node falls under a user defined threshold or a specified maximum depth of the hierarchy is
reached. Alternatively, more advanced automatic termination criteria can be applied [Havr02].

For visibility culling purposes we want to minimize the number of object references in leaves while
keeping a well balanced tree. To achieve this goal we have used the following heuristics: For the current
node we identify an axisx with the largest extent of the corresponding cell. Only planes perpendicular to
the axisx are considered. The algorithm identifies boundaries of object bounding boxes located within a
certain distance from the spatial median of the cell. Each identified boundary induces aboundary plane.
We evaluate the number of objects that are split by each boundary plane. The boundary plane with the
lowest number of splits is selected to partition the current cell. Another option is to use the surface
area heuristics developed by MacDonald and Booth [MacD90] for raytracing acceleration. Bartz et
al. [Bart99] have shown that this heuristics is well suited for visibility culling as well.

4.5 Occluder selection

The goal of the occluder selection is to determine a specified number of polygonal occluders, given a
viewpoint and a viewing direction. To estimate the quality of an occluder the algorithm uses thearea-
angleheuristics [Coor96a] that approximates the solid-angle spanned by the occluder. The area-angle
is expressed as:

M =
−A(~N · ~V)
‖ ~D‖2

[sr] (4.1)

whereA is the area of the occluder,~N denotes the occluder normal,~V the viewing direction and~D
corresponds to the vector from the viewpoint to the center of the occluder (‖ ~N‖ = ‖~V ‖ = 1). The
dynamic occluder selection is performed after each change of the viewpoint or the viewing direction.
The algorithm evaluates area-angle of occluders associated with visible nodes of the spatial hierarchy.
Therefore the occluders selected in the current frame are used for construction of the occlusion tree in
the next frame.

The algorithm proceeds as follows: We identify all visible and partially visible leaves of the hierarchy,
that correspond to regions located within a certain distanceλ from the viewpoint. For each potential
occluder referred in these leaves the area-angle is computed. These values are used to selectk occluders
with the largest area-angle that form the desired occluder set for the next frame.

The distanceλ has an impact on the time spent by the occluder selection. In our implementation it is a
user specified constant defined as a multiple of the observer’s step size. The number of desired occluders
(k) influences the size of the occlusion tree and in turn the time of visibility determination and its
accuracy. In our experiments we have usedk between6 and256. Usually the more occluders, the more

42 CHAPTER 4. REAL-TIME VISIBILITY CULLING

objects are culled at the cost of increased time for the visibility culling (results of the measurements for
various settings will be presented in Section4.12).

4.6 Representation of the aggregated occlusion map

The crucial part of the visibility culling algorithm is the representation of the aggregated occlusion map
(AOM). Unlike previous continuous methods for visibility culling, we build an auxiliary continuous
data structure representing the AOM — the occlusion tree. This approach has two main advantages
compared with methods that treat occlusion volumes separately [Coor97, Huds97]:

• Visibility culling is more accuratesince the occlusion tree accounts foroccluder fusion.

• Visibility culling is fastersince it exploitsvisibility coherence.

The occlusion tree efficiently merges occlusion volumes of the selected occluders. This allows to
discover occlusion caused by multiple connected occluders and even occluders at different depths that
overlap in the image plane. Merging occlusion volumes requires an additional time to build the appro-
priate data structure. On the contrary such a data structure allows efficient insertions and queries. We
have observed that for typical densely occluded scenes with large occluders the additional time is easily
recovered by savings due to visibility culling.

The occlusion tree for the from-point visibility culling is equivalent to theshadow volume BSP
(SVBSP) tree of Chin and Feiner [Chin89]. The SVBSP tree was designed for fast rendering of shadows
with respect to a point light source in a polygonal scene (see SectionC.1.4for more details).

4.7 Occlusion tree

An occlusion tree for visibility from point is a BSP tree built with respect to a set of occluders and
a viewpoint. The occlusion tree is constructed by processing occluders in approximate front-to-back
order and enlarging the tree by the corresponding shadow frusta. The insertion of an occluder proceeds
as the SVBSP construction algorithm described in SectionC.1.4.

Eachin-leaf is linked to a fragment occluding the frustum that corresponds to this leaf. These links
are used in the visibility algorithm to determine if a polyhedron tested for visibility lies behind the
occluder.

If we use an approximate front-to-back order to insert the selected occluders into the occlusion tree,
the tree construction algorithm must allow to insert an occluder lying in front of some already inserted
occluder(s). If the closer occluder was not inserted, the occlusion tree would contain a conservative
depth information. Alternatively, since the set of selected occluders is small, the occluders can be used
to construct an autopartition BSP tree at each frame. This tree allows to establish a strict front-to-back
order of occluders.

Visibility of a closed polyhedral region can be determined by combining visibility classifications of
its polygonal faces. The next section describes how to classify visibility of a convex polygon. Further
we present a visibility algorithm for a convex polyhedron. Both these algorithms classify the visibility
exactlywith respect to the selected occluders. Since these occluders form only a subset of scene objects
the resulting visibility classification is only conservative.

4.8 Visibility of a polygon

Visibility of a polygon is determined using a constrained depth first search of the occlusion tree. In
each internal node of the tree we test the position of the polygon with respect to the plane referred in

4.9. VISIBILITY OF A POLYHEDRON 43

the node. If the polygon lies completely in the negative/positive halfspace defined by the plane, the
algorithm recursively continues in the left/right child of the current node. Otherwise the polygon is split
in two fragments and the algorithm is applied on both children using appropriate fragments.

When a leaf is reached, the visibility of the current fragment of the polygon is classified as follows:
Reaching anout-leaf the fragment is fully visible. Reaching anin-leaf visibility is determined by
checking the depth of the processed polygon and the occluder fragment associated with the leaf (this test
will be described later in this section). The visibility classification is propagated up the occlusion tree.
Visibility of an internal node is computed by combining visibility states of node’s children according to
Table3.1. Visibility state of the root corresponds to the visibility of the tested polygon.

The tree traversal can be terminated whenever a fragment is found partially visible. This follows
from the fact that if a fragment of the polygon is partially visible, the polygon itself must be partially
visible (see Table3.1). This constraint can significantly accelerate the visibility algorithm, particularly
for large polygons, which are likely to be partially visible.

Since the polygon tested for visibility need not lie behind all occluders, reaching anin-leaf we need
to check the depth of the polygon fragment with respect to the occluder associated with the leaf. If
the fragment is completely in front of the supporting plane of the occluder, it is fully visible. If it is
completely on the back side of the plane, it is invisible. Otherwise, it lies on both sides of the plane and
it is partially visible. The pseudo-code of the polygon visibility algorithm is presented in Figure4.1.

Algorithm Visibility(Node, Polygon)
1: begin
2: if Node is leafthen
3: if Node is out-leafthen
4: Visibility ← VISIBLE
5: else
6: Visibility ← visibility state based on
7: FragmentIntersection(Node.Fragment, Polygon);
8: else
9: caseSplit(Polygon, Node.Splitter, Back, Front)of
10: FRONT :(* pass the polygon to the front subtree *)
11: Visibility ← Visibility(Node.FrontChild, Polygon);
12: BACK : (* pass the polygon to the back subtree *)
13: Visibility ← Visibility(Node.BackChild, Polygon);
14: SPLIT : (* pass fragments to apropriate subtrees *)
15: Visibility ← Visibility(Node.FrontChild, Front)
16: if Visibility <> PARTIALLY then
17: begin
18: aux← Visibility(Node.BackChild, Back)
19: Visibility ← CombineVisibility(aux, Visibility);
20: end
21: end
22: end

Figure 4.1: An algorithm determining visibility of a polygon with respect to an occlusion tree.

4.9 Visibility of a polyhedron

The above presented polygon visibility algorithm can be applied to determine visibility of a convex poly-
hedron by testing visibility of its boundary faces. Visibility states of the faces are combined according
to Table3.1. Whenever the combination results the partially visible state, the algorithm terminates.
Otherwise, it proceeds with the next face until all faces have been processed.

44 CHAPTER 4. REAL-TIME VISIBILITY CULLING

In the case of a spatial hierarchy based on a kD-tree, the cells corresponding to the hierarchy nodes
are parallelepipeds. To determine visibility of such a cell at most three front-facing rectangular polygons
must be tested for visibility. These polygons can be determined by a table lookup.

4.10 Conservative occlusion tree traversal

The described visibility algorithm is used extensively in the scope of the complete hierarchical visibility
algorithm. The elementary operation taking place in both the tree construction and the visibility algo-
rithms is the polygon splitting. The splitting introduces a computational overhead due to the fragment
allocation when the polygon gets split. Moreover, the splitting operation prevents to apply the algorithm
from Section4.8for polyhedra due to the complexity of polyhedron splitting.

Motivated by the idea of the visibility algorithm without the necessity of splitting, we have designed
a fast conservative variant of the algorithm. It is based on the observation that the occlusion tree can be
traversed without splitting while still obtaining an accurate visibility classification.

4.10.1 Occlusion tree for the conservative visibility algorithm

To provide accurate results of the conservative visibility algorithm the occlusion tree construction is
modified to exclude theredundant planesfrom the tree. Firstly, the redundant planes increase the
size of the tree unnecessarily, secondly, these planes would lead to overly conservative behavior of the
algorithm.

The polygon splitting operation used during the construction of the tree is enriched by marking edges
of the polygon embedded in any plane on the path from the root. If the polygon is split, the edges of
both new fragments lying in the plane that splits the polygon are marked as well. When anout-leaf is
reached only non-marked polygon edges are used to create planes enlarging the occlusion tree. Planes
that would have been created by marked edges are already present in the tree (otherwise the edges would
not be marked). If anout-leaf is reached and all edges of the filtered fragment are marked theout-leaf
is replaced by anin-leaf associated with the given fragment. The difference between occlusion trees
constructed without and with edge-marking is illustrated in Figure4.2.

in out

out

out

outin

in out

out

out

out

out

in

f
out

a

d

e

b

c

f

g

a

b

c e

d
out

edge
marked

f

b

c

a

e

d

g

Figure 4.2: The difference between occlusion trees constructed without (left) and with the edge-marking
(right). Both trees are constructed with respect to the same occluders. The occluders are shown as seen
from the viewpoint. Nodeg is not present in the tree on the right, since the corresponding occluder edge
was marked.

4.10. CONSERVATIVE OCCLUSION TREE TRAVERSAL 45

In the next section we present a conservative visibility algorithm that determines the visibility of
regions of various shapes “directly”, i.e. without the decomposition into boundary faces and testing
visibility of each face. The splitting operation is replaced by the test of the position of the polyhedron
with respect to a plane.

4.10.2 Conservative visibility of a region

The conservative visibility method uses apositional testfor a given region with respect to a plane.
The positional test determines if the region lies in negative (back), positive (front), or both half spaces
induced by the plane. The occlusion tree is traversed similarly to the algorithm described in Section4.8.
At each internal node of the tree we determine the position of the region with respect to the associated
plane and apply the algorithm recursively on appropriate subtrees. The region is not split even if it lies
on both sides of the plane.

Reaching anin-leaf the region is tested for position with respect to the occluder fragmentF associ-
ated with the leaf. If the region lies on both sides of the supporting plane ofF , it is classified partially
visible. Since the region was not split it is possible that the part of the region crossing the supporting
plane actually does not intersect the frustum corresponding to the fragmentF . In this case the region is
conservatively classified as partially visible although in fact it can be invisible.

The conservative behavior of the algorithm can be eliminated by testing the region for an intersection
with the fragmentF instead of using only its supporting plane. IfF and the region do not intersect,
the reachedin-leaf is classified invisible. Note that the region can still be found partially visible when
the visibility of all leaves reached by the visibility algorithm is combined. In the case of box shaped
regions a fast algorithm can be used for the box/polygon intersection [Gree94b]. In practice however
the improvement in the accuracy of the algorithm often does not pay off the time spent by the additional
intersection test (see Section4.12for more details).

The conservative nature of the described algorithm implies that the visibility classification of leaves
can vary compared with the previously mentioned exact algorithms. A situation when an invisible
region is misclassified as partially visible is depicted in Figure4.3. The algorithm is likely to give an
imprecise (conservative) result if the angleα between the planesa ande gets larger. The measurements
presented in Section4.12indicate that in practice the accuracy of the algorithm is very close to the exact
one.

b

misclassification region

c

d

fa
a

c

f

b

e

d

in

in

out

out

outout

out
e

α

misclassification
path

Figure 4.3: An example of a disadvantageous configuration of occluders. The planes corresponding
to nodes of the occlusion tree are shown by thin lines. If the polyhedron intersects both the shadow
planea and the darker (orange) area bounded by planee, it is classified as partially visible although it
is invisible.

46 CHAPTER 4. REAL-TIME VISIBILITY CULLING

4.11 Exploiting temporal and spatial coherence

A typical hierarchical visibility algorithm uses avisibility test, that classifies a node of the spatial hier-
archy as completely visible, partially visible or invisible depending on the visibility of the spatial region
corresponding to that node. The visibility test is applied recursively starting at the root node. As soon
as a node is found completely visible or invisible, the current branch of the traversal can be terminated,
since visibility of all nodes in the current subtree is imposed by the visibility of the current node. In this
section we do not focus on the amount of image space or temporal coherence, that may be exploited
by the visibility test itself. Instead we suggest a more general framework that is independent of the
particular visibility algorithm.

Traditional hierarchical visibility culling algorithms traverse the spatial hierarchy starting at the root
node. Firstly, we propose a method, that saves up to half of the visibility tests by skipping certain interior
nodes of the hierarchy (assuming the spatial hierarchy corresponds to a binary tree). The skipping is
guided by visibility classifications obtained during the previous invocation of the visibility algorithm.
Secondly, we describe an algorithm that increases the amount of spatial coherence exploited. It reuses
visibility classifications of hierarchy nodes already processed in the current pass of the algorithm. The
nodes are processed in the front-to-back order and the algorithm tries to determine visibility of the
region corresponding to the current node by combining visibility states of neighboring regions. If it
fails, the usual visibility test is applied. Finally, we propose a conservative method, that aims to avoid
repeated visibility tests of nodes that probably remain visible.

4.11.1 Related work

Some visibility algorithms exploit temporal coherence in a specialized way. Greene et al. [Gree93] uses
the set of visible objects from one frame to initialize thez-pyramid in the next frame and so reduces
“overdraw” of the hierarchical z-buffer. Coorg and Teller [Coor96b] developed an algorithm that uses
relevant planeswhich form a subset of visual events. They restrict the hierarchy traversal to nodes
corresponding to planes that were crossed between successive viewpoint positions. Another method of
Coorg and Teller [Coor97] exploits temporal coherence by caching occlusion relationships.

Chrysanthou and Slater have proposed a probabilistic scheme for view frustum culling [Slat97]. They
partition objects into groups, which are sampled according to their distance from the view frustum. It
is difficult to generalize this method for visibility algorithms, since the visible volumes can be very
complex, and usually they are not explicitly reconstructed. Moreover, this method is not conservative
unless changes in the viewing direction and the position of the viewpoint are restricted. Recently, Wonka
et al. [Wonk01b] proposed a method that exploits temporal coherence of visibility by computing a PVS
valid for a small neighborhood of the given viewpoint.

The methods presented here can be used to make use of temporal coherence in the scope of existing
visibility algorithms, that utilize a spatial hierarchy. Examples of these are algorithms based on hier-
archical occlusion maps [Zhan97b], coverage masks [Gree96], shadow frusta [Huds97], and occlusion
trees [Bitt98].

4.11.2 Classical approach

An elementary step of the hierarchical visibility culling is thenode visibility test, i.e., visibility classifi-
cation of a single node of the hierarchy using certain occlusion map. Given a viewpoint and a viewing
direction the visibility algorithm classifies visibility of the node ascompletely visible, partially visible,
or invisible. Further in this chapter we assume that the algorithms from Sections4.9and4.10.2are used
to resolve the node visibility test.

The classical hierarchical visibility culling proceeds as follows: Starting from the root node of the
hierarchy, the view frustum culling is applied on the current node [Rohl94, Assa00, Moll02]. If the node

4.11. EXPLOITING TEMPORAL AND SPATIAL COHERENCE 47

is outside the view frustum, it is classified invisible. Otherwise, the node visibility test is performed.
If the node is found visible all its descendants are visible. Similarly, if the node is invisible all its
children are invisible. Descendants of nodes classified as partially visible are tested further to refine
their visibility (see Figure3.6). When visibility of all leaves is known, objects from fully visible and
partially visible leaves can be gathered and rendered using a low level exact visibility solver such as
z-buffer. A simple improvement can be used to avoid visibility tests of hierarchy nodes that contain
only few objects and so the estimated cost of rendering the objects is lower than the cost of the visibility
determination. In such a case the node can be simply classified as visible.

4.11.3 Modifications overview

In order to give an overview of the proposed modifications we first show how they are exploited in the
scope of the hierarchical visibility algorithm (see Figure4.4). Thehierarchy updatingtest is applied
first. This test eventually decides to skip all the remaining steps and to continue determining visibility of
descendants of the current node. Theview frustumculling can report the node as invisible if it is outside
the view frustum. Otherwise, thevisibility propagationis applied that can succeed classifying the node
as visible or invisible. Theconservative hierarchy updatingclassifies some nodes as visible with certain
probability. If all previous steps failed in determining node’s visibility, the node visibility test is applied.
Note that the steps are applied in order of increasing computational cost, which reflects the general idea
of culling: use a more complicated tests only when the simple test fails to find a solution.

SKIP
PROBABILISTIC

INVISIBLE

PARTIALLY

VISIBLE

ESTIMATED
COMPUTATIONAL

COST

TEST
VISIBILITY

REFINE VISIBILITY

DETERMINE VISIBILITY

HIERARCHY
UPDATING

VISIBILITY
PROPAGATION

CONSERVATIVE
NODE SKIPPING

VIEW−FRUSTUM
CULLING

Figure 4.4: Series of steps determining visibility of a node of the hierarchy. The novel methods are
highlighted.

48 CHAPTER 4. REAL-TIME VISIBILITY CULLING

4.11.4 Hierarchy updating

The hierarchical visibility algorithm can be seen as a traversal of the hierarchy, that is terminated either
at leaves or nodes classified either as visible or invisible. Let us call such nodes thetermination nodes
and nodes that have been classified partially visible theopened nodes. Denote sets of termination and
opened nodes in thei-th frameTi andOi, respectively. In the classical approachTi ∪ Oi = Vi, where
Vi is the set of all nodes visited in thei-th rendering frame.

Imagine the viewpoint is fixed. Visibility of all nodes of the hierarchy does not change and the sets
Ti, Oi, andVi are fixed as well. Nevertheless, the classical algorithm repeatedly tests visibility of all
nodesVi. The hierarchy updating is a modification that aims to eliminate the repeated visibility tests of
the set of opened nodes from the previous frame. It skips all nodes ofOi−1 and applies node visibility
tests only on nodes ofTi−1. In order to propagate eventual changes in visibility up into the hierarchy
the visibility states determined at the termination nodes are pulled up according to the following rule:
The visibility state of the node is updated as visible or invisible, if all its children have been classified as
visible or invisible, respectively. Otherwise, it remains partially visible and thus opened. The pseudo-
code of the hierarchical visibility algorithm with hierarchy updating is outlined in Figure4.5. Note
that the set of termination nodes is not maintained explicitly. Instead, each node contains its previous
visibility classification. Theframe variableis associated with each node that is used to identify nodes
below the current termination nodes.

Algorithm HierarchicalVisibility(NODE)
1: begin
2: if NODE is leaf or NODE.visibility6= PARTIALLY
3: (* termination nodes *)
4: or NODE.frame< frame-1then
5: begin
6: NODE.visibility← TestVisibility(NODE);
7: NODE.frame← frame;
8: end
9: caseNODE.visibility of
10: VISIBLE : Render subtree of NODE;
11: PARTIALLY :
12: if NODE is leafthen Render NODE;
13: else
14: for all children C of NODEdo
15: HierarchicalVisibility(C);
16: (* pull-up *)
17: if visibilty of all children equalsV then
18: begin
19: NODE.visibility← V;
20: NODE.frame← frame;
21: end
22: INVISIBLE : (* terminate the DFS *)
23: end
24: end

Figure 4.5: Pseudo-code of the hierarchical visibility culling with hierarchy updating.

The hierarchy updating provides the same visibility classification as the classical approach. The
behavior of the modified hierarchical visibility algorithm is illustrated in Figure4.6. Note that if the
pull up did not take place the algorithm could end up with the termination nodes being all leaves of the
hierarchy. Hence, it would loose advantages of the hierarchical algorithm. For kD-trees|Oi| = |Ti| − 1
since the set of visited nodes is a binary subtree of the kD-tree. Thus the hierarchy updating can save
up to a half of the visibility tests that would be applied on the interior nodes of the hierarchy.

4.11. EXPLOITING TEMPORAL AND SPATIAL COHERENCE 49

FRAME 0 FRAME 1 ROOTROOT

TERMINATION NODES
T0 1

PULL UP

TESTED NODES

T

Figure 4.6: Illustration of the hierarchy updating. Initially the algorithm proceeds starting at the root
of the hierarchy (left). In the second frame the opened nodesO0 are skipped and the visibility tests are
applied on the termination nodesT0 (and eventually below). Visibility changes are propagated up to the
hierarchy and the new set of termination nodesT1 is established.

4.11.5 Conservative hierarchy updating

The hierarchy updating method ensures that on each path to a leaf node of the hierarchy at least one node
is tested for visibility. We can further reduce the expected number of node visibility tests at the cost of
the conservative behavior of the modified algorithm. The conservative hierarchy updating produces a
superset of visible nodes determined by the hierarchy updating alone.

Due to the complexity of the occlusion volume it is difficult to predict changes in visibility unless
a specialized visibility algorithm is involved [Coor96b]. To keep the conservative behavior of the al-
gorithm we cannot classify a node as invisible without testing its visibility. Nevertheless, assuming
visibility does not change significantly over successive frames, visibility states of visible and partially
visible nodes do not have to be updated in each frame.

We propose a simple method for conservative visibility updates that uses a probabilistic sampling
scheme. Visibility of a termination node that was classified visible or partially visible in the last frame
is updated with probability1 − pskip. With probability pskip the node visibility test is skipped and
the node is classified as visible. This method reduces the number of visibility tests applied on visible
nodes of the hierarchy, but it does not immediately capture all changes in visibility. In such cases
more nodes are classified as visible and consequently more objects are rendered compared with the
nonconservative hierarchy updating. The results presented in Section4.12 show that for the tested
scenes and corresponding walkthrough paths we could determine such apskip that the total frame time
was minimized.

4.11.6 Visibility propagation

The hierarchical visibility culling already makes use of spatial coherence by utilizing a spatial hierarchy
(kD-tree). However, we can further increase the amount of coherence exploited by reusing visibility
information computed for neighboring regions.

Suppose that the nodes of the spatial hierarchy are processed in the front-to-back order with respect to
the viewpoint. Using kD-tree this ordering is determined easily [Fuch80]. First, the visibility propaga-
tion tries to determine visibility of the currently processed node by combining visibility classifications
of its relevant neighbors. If the combination fails, it reverts to the node visibility test.

Let us denote the cell corresponding to nodeN as BN . The visibility of N can be determined
combining visibility of its front-facing facesFBN

of BN (|FBN
| ≤ 3). Visibility of a faceF ∈ FBN

can

50 CHAPTER 4. REAL-TIME VISIBILITY CULLING

be determined by combining visibility of appropriateneighbor nodes. If all faces ofFBN
are invisible

the nodeN is invisible. Similarly, if all faces ofFBN
are visible and there is no occluder intersecting

BN , N can be classified as completely visible. Otherwise, the visibility propagation fails and the usual
node visibility test must be applied. An example of a node that can be classified as invisible is depicted
in Figure4.7.

OCCLUDER

VIEWPOINT

N

INVISIBLE

VISITED

Figure 4.7: Node N can be classified invisible since all its appropriate neighbors are invisible.

A neighbor node ofN on a faceF is a nodeU of the kD-tree withBU laying in the opposite
halfspace (induced byF) thanBN and having non-empty intersection withF . Instead of keeping a list
of neighbor nodes for each face we have used neighbor links (ropes) for kD-trees [Havr98a] that have
low memory requirements and allow hierarchical visibility propagation.

Within each faceF we associate a link to a neighbor nodeU that corresponds to a smallest cell
containing the face completely (F ∩BU = F). When determining visibility of a faceF there are three
possible cases:

1. the link points to a node that is visible/invisible,

2. the link points to a node that is partially visible,

3. the link points to a node that has not been visited in the current frame.

The first case is trivial; the visibility of the face can be set immediately. In the second case we perform
a constrained depth first search and combine visibility of reached nodes. The search is constrained to
nodes having non-empty intersection with the faceF and terminates at the termination nodesTi. This
process is illustrated in Figure4.8. The visibility combination is performed using the same rule as
in the pull up pass of the hierarchy updating (Table3.1). We can terminate the search whenever the
combination results in partial visibility.

The third case is solved by a lazy propagation of visibility classification as follows: If the link is
pointing to a node that has not been visited in the current frame, there must be some termination node
on the path to the root. This path is followed until the termination node is reached (see Figure4.9). Note
that if the visibility states were propagated into subtrees of the termination nodes, the third case would
never occur.

The visibility propagation does not always succeed to determine visibility of the processed node.
In such a case it introduces an additional overhead into the visibility determination. However, we can
use information obtained in the previous frame to guide the algorithm in the current frame. Firstly,
we can avoid visibility propagation on nodes that we expect to remain partially visible and thus the

4.12. RESULTS 51

CONSTRAINED
DFS

ROOT

ROPE
U

N

32

U

NODES

1

N

TERMINATION

2

1

3

Figure 4.8: The hierarchical visibility propagation using neighbor links (ropes).

ROOT

TERMINATION
NODES

N UROPE

Figure 4.9: Lazy propagation of the visibility classification.

visibility propagation would probably fail. To achieve this, visibility propagation is applied only on
nodes that have not been classified as partially visible in the previous frame. Secondly, if for a given
node the visibility propagation succeeded in the previous frame, it is applied in the current frame as
well. Otherwise, it is applied with a user specified probabilitypvp < 1.

4.12 Results

In this section we evaluate the behavior of the visibility culling algorithm using occlusion trees. We
compare the proposed algorithms with the hierarchical view frustum culling [Clar76, Rohl94, Assa00].
Further in this section we evaluate the asset of the methods making use of temporal and spatial coher-
ence.

4.12.1 Visibility culling with occlusion trees

We evaluated the efficiency of the proposed algorithms on walkthroughs of three indoor scenes. The
first scene (soda-5) is a model of the interior of the fifth floor of the Soda-Hall1 (see Figure4.17). The
second scene (big-7) is a computer generated maze (see Figures4.15-(a), 4.16). The third scene is a
represents the whole building of the Soda-Hall (see Figure4.15-(b)).

1http://graphics.lcs.mit.edu/˜becca/research/SodaHall

52 CHAPTER 4. REAL-TIME VISIBILITY CULLING

As a reference algorithm we used the hierarchical view frustum culling algorithm. To increase scene
complexity100 virtual plants were spread randomly in the scene. Each plant consisted of644 polygons.
Theminimum costof a node to be tested for visibility was set to50 (the cost of a node expresses the
number of polygons associated with the node).

rendered frame
scene method occluders polygons overhead time speedup

[—] [—] [ms] [ms] [—]

F — 18192 — 276.5 1.00
FME 16 7390 5.9 139.0 1.99

soda–5 FME 24 6537 7.9 116.0 2.38
FME 32 5941 9.8 109.8 2.52

total # of polygons = 66085 FSE 16 6512 12.7 120.5 2.29
of occluders = 1685 FSE 24 5569 16.0 110.5 2.50

of kD–tree nodes = 2527 FSE 32 4725 19.1 100.1 2.76
FMC 16 7988 5.4 135.9 2.03
FMC 24 7362 7.3 129.3 2.14
F — 12587 — 182.0 1.00
FME 16 3641 8.8 71.5 2.55

big–7 FME 24 2286 10.2 54.6 3.33
FME 32 1818 11.6 48.5 3.75

total # of polygons = 66876 FSE 24 2214 19.9 63.4 2.87
of occluders = 2476 FMC 16 3640 8.4 74.3 2.44

of kD–tree nodes = 3439 FMC 24 2263 9.7 51.4 3.54
soda

total # of polygons = 73529 F — 15297 — 315.2 1.00
of occluders = 9129 FME 24 4744 10.1 119.7 2.63

of kD–tree nodes = 10475 FSE 24 4388 23.7 128.0 2.46

F – view frustum culling
S – OT + exact visibility algorithm
M – OT + conservative visibility algorithm
E – exact occluder-fragment/parallelepiped intersection test
C – conservative occluder-fragment/parallelepiped intersection test

Table 4.1: Results of the hierarchical visibility culling. The table shows the average number of poly-
gons rendered, the average frame time and the speedup over the view frustum culling for different scenes
and methods of the visibility culling. Measured on SGI O2 with 128MB RAM.

The results are summarized in Table4.1. Each line in the table corresponds to values averaged per
one frame of the walkthrough. Theframe timefield is the average frame time. Theoverheadfield
depicts the additional overhead of the visibility culling algorithms. The overhead includes the dynamic
occluder selection, building the occlusion tree, and the hierarchical visibility culling. Thespeedupis a
ratio of the frame time with visibility culling and the frame time using only view frustum culling. The
average number of polygons rendered in one frame is shown in therendered polygonsfield. The last
two fields in the table are user specified constants: theoccludersfield expresses the number of occluders
used to build the occlusion tree and themethodfield identifies the type of the algorithm used.

The achieved speedup varies between1.75 and3.75. The average speedup was not linearly propor-
tional to the number of occluders used for the visibility culling: it increased until a sufficient number of
occluders were used that caused significant occlusion.

An important property of the algorithm is that the overhead of visibility culling increased sub-linearly
in dependence on the number of selected occluders. This behavior can be explained by the following two
observations: Firstly, if the occlusion tree contains occluders that occlude a large portion of the view,
it is of high probability that another inserted occluder is found invisible. Consequently, the effective

4.12. RESULTS 53

occluders in the occlusion tree correspond only to visible occluders since the invisible occluders are
eliminated. Secondly, the occlusion tree provides logarithmic search ability for the node visibility test.
The traversal of tree is restricted only to nodes that are relevant for the tested region.

Table4.1 indicates that the best results were achieved by the FME method, i.e. the conservative
visibility algorithm with the fragment/cell intersection test applied in leaves of occlusion tree. In some
cases the FSE method provided greater speedup than FME (see rows 4 and 7 of Table4.1). This
happens when the time saved for faster visibility tests using the FME method is less significant than the
additional time spent on rendering invisible objects conservatively classified as visible. Plots of frame
times and numbers of rendered polygons measured during a walkthrough of thebig-7 scene are shown
in Figures4.10-a and4.10-b.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400

Rendering Time A [ms]
Rendering Time B [ms]

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350 400

Rendered Polygons A
Rendered Polygons B

(a) (b)

Figure 4.10: Evaluation of a sequence of 400 frames during walkthrough of big-7 scene. (a) Rendering
times. Curve A corresponds to view frustum culling; curve B includes hierarchical visibility culling
using 32 occluders (FME). (b) The amount of rendered polygons. Curve A corresponds to view frustum
culling; curve B includes hierarchical visibility culling using 32 occluders (FME).

4.12.2 Temporal and spatial coherence

We evaluated the proposed algorithms on two test scenes. The first scene (scene I) is a model of the fifth
floor of the Soda-Hall, the second scene (scene II) is a building interior with a precomputed lighting
(see Figure4.18). The measurements were conducted using SGI O2 with 128MB memory.

The following methods were evaluated:

A — the classical approach,

B — hierarchy updating applied,

C — hierarchy updating + visibility propagation with probabilitypvp = 0.5,

D — asC + conservative hierarchy updating with probabilitypskip = 0.5.

The constructed kD-tree consisted of1187 nodes for scene I, and of1605 nodes for scene II. For
each position of the viewpoint16 occluders were identified and used to build the occlusion tree during
walkthrough of scene I. For the scene II, we used32 occluders, since the scene contained smaller
patches resulting from the radiosity precomputed lighting. In both scenes a predetermined walkthrough
path was followed for each measurement (see Figures4.17and4.18for scene snapshots). If not stated
differently, all presented values are averaged per one frame of the walkthrough.

54 CHAPTER 4. REAL-TIME VISIBILITY CULLING

40

50

60

70

80

90

100

110

120

130

140

150

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

te
st

ed
 n

od
es

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

te
st

ed
 n

od
es

(a) (b)

Figure 4.11: Dependence of the number of node visibility tests on the relative speed of the walk for
scene I (a) and scene II (b).

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

vi
si

bi
lit

y
tim

e
[m

s]

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

vi
si

bi
lit

y
tim

e
[m

s]

(a) (b)

Figure 4.12: Average time spent by the hierarchical visibility algorithm for scene I (a) and scene II (b).

The first six plots illustrate the dependence of the algorithms on the relative speed of the walk (Fig-
ures4.11, 4.12, and 4.13). A unit relative speed roughly corresponds to the usual walking speed. We
have measured the number of node visibility tests, the time spent by the hierarchical visibility determi-
nation, and the total frame time.

All evaluated methods exhibit a very slow growth of the number of necessary node visibility tests.
For a walk of relative speed 1.0 the following savings in average number of node visibility tests were
achieved (compared toA):

• scene I— methodB – 47%, methodC – 50%, and methodD – 67%.

• scene II— methodB – 49%, methodC – 51%, and methodD – 72%.

The hierarchy updating (methodB) saves almost half of the node visibility tests as expected. We
have observed that the visibility propagation (methodC) succeeds in determining visibility of only few
nodes that usually correspond to rather large regions. TheD method significantly decreases the number
of node visibility tests. This is paid by a higher number of nodes classified as visible or partially visible
(details follow further in the text).

Figures4.12-a,b show that the time spent by the hierarchical visibility culling was roughly propor-
tional to the number of node visibility tests. Nevertheless, we can observe that the time spent by the

4.12. RESULTS 55

30

32

34

36

38

40

42

44

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

fr
am

e
tim

e
[m

s]

166

166.5

167

167.5

168

168.5

169

169.5

170

170.5

171

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

fr
am

e
tim

e
[m

s]

(a) (b)

Figure 4.13: Average frame time in dependence on the relative speed of the walk for scene I (a) and
scene II (b).

31

32

33

34

35

36

37

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pskip

A

fr
am

e
tim

e
[m

s]

166

167

168

169

170

171

172

173

174

175

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pskip

A

fr
am

e
tim

e
[m

s]

(a) (b)

Figure 4.14: Dependence of the average frame time on the probabilitypskip using the conservative
hierarchy updating for scene I (a) and scene II (b).

visibility propagation (methodC) is not recovered by the savings in number of node visibility tests. In
particular, this follows from the fact that the node visibility test using the occlusion tree is almost as fast
as the visibility propagation.

In Figures4.13-a,b we can observe the conservative behavior of methodD. When the viewpoint
moves slowly, the method achieves better frame times than the other ones. As the relative speed of
the walk increases the visibility states of many nodes change quickly. Hence reusing some previously
visible nodes leads to a larger set of nodes to render and the frame time is increased.

Finally, we measured the behavior of the conservative hierarchy updating algorithm in dependence
on the probabilitypskip (Figures4.14-a,b). We can observe local minima in the average frame time at
pskip = 0.5 for scene I andpskip = 0.6 for scene II. For probabilities greater than this minimum savings
in visibility classification do not recover the time necessary for rendering otherwise invisible objects.

It is worth mentioning that the aim of the measurements presented in this section was not to evaluate
the visibility algorithm itself, but rather to document the impact of the proposed methods. If the visi-
bility algorithm was more demanding, the proposed methods would decrease the total frame time more
significantly.

56 CHAPTER 4. REAL-TIME VISIBILITY CULLING

(a) (b)

Figure 4.15: (a) A bird’s eye view of thebig-7scene. (b) Thesodascene.

4.13 Summary

In this section we described an algorithm for real-time visibility culling based on the concept proposed
in Chapter3. The algorithm uses an occlusion tree constructed using selected occluders nearby the
viewpoint. The occlusion tree is then used to classify visibility of the spatial hierarchy. We have
described three algorithms for visibility tests. The first two algorithms determine an exact visibility
of a polygon and a polyhedron with respect to the selected occluders. The third algorithm is a fast
conservative visibility test suitable for regions of more general shapes. The results indicate that the
conservative algorithm performs superior compared to the exact one for typical walkthroughs. The
proposed method was evaluated on walkthroughs of complex architectural scenes. It was shown that
the occlusion trees can be used to quickly identify invisible parts of the scene that need to be rendered.
For the tested scenes the savings in rendering time provided speedup between 1.8 and 3.8.

Further, we have presented a series of modifications of the classical hierarchical visibility culling for
rendering acceleration. The hierarchy updating proved to perform well in practice as it saves almost
half of the visibility tests that would have to be applied using the classical approach. The savings
would be less remarkable for hierarchies with higher branching factors, but empirical results indicate
that kD-trees with arbitrary positioned partitioning planes are more efficient for visibility computation
than octrees or bounding volume hierarchies [Havr00a]. We have shown that the conservative hierarchy
updating can improve the overall frame time for certain settings. The visibility propagation saves only
few visibility tests. This documents that the spatial coherence is already exploited well in the classical
approach.

4.13. SUMMARY 57

(a) (b)

Figure 4.16: (a) A view in the big-7 scene. (b) The same view rendered in wireframe mode. Note the
high depth-complexity of the scene.

(a) (b)

Figure 4.17: (a) The path used for a walk through the model of the scene I. For relative speed of the
walk equal to 1.0 the walk consists of 980 steps. (b) An example of the hierarchical visibility culling.
The green regions are outside of the view frustum. The few yellow regions in the viewing direction are
completely visible. Invisible regions are shown in dark blue. The light blue regions were found invisible
by the visibility propagation algorithm. Partially visible regions are shown transparent.

(a) (b)

Figure 4.18: (a) A camera view on the test path through scene II. (b) Top view showing the part of the
scene classified invisible (gray).

58 CHAPTER 4. REAL-TIME VISIBILITY CULLING

Chapter 5

Construction of visibility maps

This chapter presents an algorithm that constructs a visibility map for a given view of a 3D polygonal
scene. The view is represented by an occlusion tree and the visibility map is obtained by postprocessing
of the occlusion tree. The scene is organized in a kD-tree that is used to perform an approximate
occlusion sweep. The occlusion sweep is interleaved with hierarchical visibility tests. We evaluate the
implementation of the algorithm using several test scenes and outline its application to discontinuity
meshing.

5.1 Problem statement

The computation of visibility maps is related to the problem of visible surface determination. Visible
surface algorithms aim to determine a collection of visible surfaces for a given view of the scene. A
visibility map contains more information — it captures also the topology of the view. The visibility
map is a planar graph representing the view of a polygonal scene where vertices, edges, and faces are
associated with vertices, edges, and polygons of the scene [Stew98a, Gras99]. Each element of the
visibility map holds an information about its adjacent elements. See Figure5.1 for an example of a
visibility map.

(a) (b) (c)

Figure 5.1: (a) A view of a scene with 556 polygons. (b) The view with the corresponding visibility
map. Color coding of the visibility map vertices corresponds to the number of adjacent edges. Edges
are colored depending on their semantic classification. (c) A sweep through the visibility map allows to
identify edges corresponding to “corners” (black) or edges forming “shadow” boundaries (red).

Visibility maps can be used to construct an approximate discontinuity mesh [Stew98a, Heck92] in the
context of the radiosity global illumination algorithm. Another application is an efficient antialiasing for
high resolution rendering [Gras99]. Visibility maps can also guide occluder preprocessing for real-time
visibility culling [Coor97, Huds97, Bitt98]. Furthermore, a visibility map provides cues that can help a
user to understand the view of the scene [Gras99].

59

60 CHAPTER 5. CONSTRUCTION OF VISIBILITY MAPS

The proposed method handles a view of 360o that spans the whole spatial angle since it does not
rely on a single projection plane. The algorithm is exact in the sense that it does not use a discrete
representation of the view. The view is represented hierarchically, which allows its efficient construction
and postprocessing. The algorithm uses an approximate occlusion sweep interleaved with hierarchical
visibility tests. This concept results in an output-sensitive behavior of the algorithm in practice without
the necessity of a specialized data structure for obtaining the exact priority order of scene polygons.

5.2 Related work

Computation of visibility maps is related to the visible surface determination [Gran92]. Some traditional
visible surface algorithms such as the algorithm of Watkins, Weiler-Atherton, Warnock [Fole90] provide
a continuous output that can be used for the construction of visibility maps. Unfortunately these methods
do not scale very well to large scenes with dense occlusion.

Visible surface algorithms are nowadays dominated by the z-buffer algorithm that is often imple-
mented in hardware. Nevertheless it is rather difficult to reconstruct a visibility map from the discretized
image obtained by the z-buffer algorithm [Stew98a]. Another drawback of the z-buffer is the lack of
output sensitivity of the algorithm. Therefore many recent techniques aim to increase efficiency of the
z-buffered rendering by visibility culling [Coor97, Huds97, Bitt98].

Recently, computation of visibility maps was studied by Stewart and Karkanis [Stew98a]. They pro-
pose an algorithm for the construction of approximate visibility maps using dedicated graphics hard-
ware. They first render the scene in theitem buffer. Then they construct a rectilinear graph that is
relaxedto match the edges and vertices of visible scene polygons. The drawback of the algorithm is
that it can fail to correctly relax all features of the visibility map. Grasset et al. [Gras99] presented a
paper dealing with some theoretical operations on visibility maps and their applications in computer
graphics.

5.3 Algorithm overview

The proposed algorithm consists of two main steps: Firstly, an occlusion tree is constructed for a given
view of the scene. The occlusion tree is built with respect to the viewpoint and a set of polygons
and it can be seen as a BSP tree representing the view. Secondly, the visibility map is constructed by
postprocessing of the occlusion tree. The hierarchical structure of the occlusion tree is used for efficient
lookups of adjacent elements during the construction.

The occlusion tree is constructed using an approximate occlusion sweep with respect to the given
viewpoint. Scene polygons are swept in an approximate front-to-back order that is established using a
kD-tree. The order is approximate in the sense that a currently processed polygon can be occluded by a
constant number of unprocessed polygons. The occlusion tree is constructed incrementally by inserting
the currently processed polygon. At each step the occlusion tree represents the view of the scene consist-
ing of already processed polygons. The traversal of the kD-tree is interleaved with hierarchical visibility
tests applied on its nodes. The visibility test uses the current occlusion tree to determine visibility of a
region corresponding to the given node of the kD-tree. If the region is invisible the corresponding node
and its whole subtree are culled.

When the occlusion tree represents the complete view it is used to construct the visibility map. Each
non-empty leaf of the occlusion tree corresponds to a fragment of a visible polygon. Visibility map is
constructed by inserting the visible fragments and updating adjacency links to the fragments already
processed. For each fragment the occlusion tree is used to efficiently locate its neighbor fragments.
All subsequent operations are restricted to the located neighbors. When the construction of the visi-
bility map is finished a simple sweep through the map can classify its edges and vertices into several

5.4. OCCLUSION TREE 61

categories. Based on this classification the visibility map can be pruned depending on the particular
application.

The rest of this chapter is organized as follows: Section5.4 discusses the structure of the occlusion
tree for this particular application. Section5.5briefly discusses the use of the occlusion tree for hierar-
chical visibility tests. In Section5.6we discuss the construction of visibility map by postprocessing of
the occlusion tree. Section5.7 contains an evaluation of the implementation of the proposed method.
Finally, Section5.8summarizes the chapter.

5.4 Occlusion tree

We briefly review the structure of the occlusion tree for the from-point visibility in 3D and the algorithm
of its construction.

5.4.1 Structure of the occlusion tree

The occlusion tree is a BSP tree where each node represents a set of raysQN emanating from the
viewpoint. The root of the tree represents the whole view. Each interior nodeN is associated with a
planehN passing through the viewpoint. The right child ofN represents raysQN ∩ h+

N , the left child
QN ∩ h−N , whereh+

N andh−N are halfspaces induced byhN .
Leaves of the tree are classifiedin or out. If N is anout-leaf,QN represents unoccluded rays. IfN

is anin-leaf, it is associated with a closest scene polygonO that is intersected by the corresponding set
of raysQN . FurtherN stores a fragmentPN that is an intersection of the polygonO andQN .

It is easier to think about the occlusion tree in a restricted projection to a particular 2D viewport.
The root of the tree corresponds to the whole viewport. Each interior node is associated with a line
subdividing the current polygonal region in two parts. Leaves of the tree represent either empty region
of the viewport or a fragment of a visible polygon. An elementary occlusion tree e-OT(P) constructed
for a single polygonP contains interior nodes corresponding to the planes defined by edges ofP and
the viewpoint (see Figure3.3).

5.4.2 Construction of the occlusion tree

The occlusion tree is constructed incrementally by inserting scene polygons in the order given by the
approximate occlusion sweep. The algorithm inserting a polygonO in the tree maintains two variables
— the current nodeNc and the current polygon fragmentPc. Initially Nc is set to the root of the tree
andPc equals toO.

The insertion of a polygon in the tree proceeds as follows: IfNc is an interior node we determine the
position ofPc and the planehNc associated withNc. If Pc lies in the positive halfspace induced byhNc ,
the algorithm continues in the right subtree. Similarly, ifPc lies in the negative halfspace induced by
hNc , the algorithm continues in the left subtree. IfPc intersects both halfspaces, it is split byhNc into
two partsP+

c andP−
c and the algorithm proceeds in both subtrees ofNc with appropriate fragments of

Pc.
If Nc is a leaf node, then we make a decision depending on its classification. IfNc is anout-leaf, then

Pc is visible andNc is replaced by e-OT(Pc). If Nc is anin-leaf, the mutual position ofPc and fragment
PNc associated withNc is determined. IfPc is behindPNc it is invisible and no modification to the tree
is necessary. Otherwise,Nc is replaced by e-OT(Pc) and the old fragmentPNc is inserted in the new
subtree e-OT(Pc) using the just described polygon insertion algorithm. The nodes corresponding to the
edges of the old fragment are kept in the tree. Consequently the tree is slightly larger than in the case
of a strict front-to-back order of input polygons. An example of an occlusion tree for three polygons is
depicted in Figure3.4.

62 CHAPTER 5. CONSTRUCTION OF VISIBILITY MAPS

5.5 Hierarchical visibility tests

To increase efficiency of the algorithm the traversal of the scene kD-tree is interleaved with visibility
tests applied on its nodes. If the test determines that the node is invisible, the corresponding subtree and
all polygons it contains are culled.

We use a conservative visibility test described in Section4.10. The test uses a constrained depth first
search on the occlusion tree using a bounding box corresponding to the given kD-tree node. Starting
at the root of the occlusion tree the position of the box and the plane associated with the root. If the
box intersects only positive halfspace defined by the plane, the algorithm recursively continues in the
right subtree. Similarly, if the box intersects only negative halfspace, the algorithm proceeds in the left
subtree. If the box spans both halfspaces, both subtrees are processed recursively. Reaching anout-leaf
the algorithm identifies the node as visible and terminates. Reaching anin-leaf the position of the box
and the fragment associated with the leaf is determined. If the box lies at least partially in front of the
fragment, it is visible and the algorithm terminates. If the search does not find any visible part of the
box, the corresponding node can be culled.

5.6 Construction of the visibility map

The visibility map is constructed by postprocessing of the occlusion tree. The advantage of this ap-
proach is that only visible polygons are considered for the construction of the map. Eachin-leaf of the
tree corresponds to a visible fragment and each such fragment is incrementally inserted in the visibility
map.

The visibility map consists of the following elements:

• vm-vertex— a vm-vertex corresponds to a vertex of a scene polygon or an apparent vertex that
results from an intersection of edges in the view.

• vm-polygon— a vm-polygon corresponds to a fragment associated with a leaf of the occlusion
tree.

• vm-edge— a vm-edge corresponds to an edge or a part of an edge of a scene polygon. Asil-
houettevm-edge is associated with a single vm-polygon, other vm-edges are associated with two
polygons, each on one side of the edge.

The elements of the visibility map contain the following connectivity information:

• vm-vertex
list of adjacent vm-edges,
list of adjacent vm-polygons.

• vm-edge
the two vm-vertices it connects,
the two vm-polygons that share this vm-edge (one is possibly empty).

• vm-polygon
list of vm-edges that bound the polygon,
list of adjacent vm-vertices.

There is some redundancy in the above described representation, but the redundant information pro-
vides more efficient lookups.

The visibility map is linked with the occlusion tree so that eachin-leaf of the tree contains a link
to the corresponding vm-polygon. In the following sections we describe how the visibility map is
constructed by incrementally inserting visible fragments.

5.6. CONSTRUCTION OF THE VISIBILITY MAP 63

5.6.1 Neighbor location

The construction of the visibility map proceeds by incrementally inserting polygonal fragments asso-
ciated with the leaves of the occlusion tree. Assume we process a fragmentPNc associated with a leaf
Nc. The first step of the insertion of a fragmentPNc creates a new vm-polygonVNc . VNc is associ-
ated both withPNc and the correspondingin-leafNc. Then the algorithm locates all already processed
neighborvm-polygons that share a boundary withPNc . The algorithm performs a constrained search
on the occlusion tree pruning subtrees that have no intersection withPNc (see Figure5.2).

OT ROOT

N

N
N N

N
2

3 4

5

1

N1
... N 5

CONSTRAINED DFS

PN X

NX

Figure 5.2: Neighbor location is performed using constrained depth first search on the occlusion tree.
The figure depicts a fragment, its five neighbors and symbolic illustration of the search through the
occlusion tree.

For each vertex ofPNc we check if it was already inserted in the map by comparing it with vm-
vertices associated with the neighbor vm-polygons. If the corresponding vm-vertex is not found, we
insert a new vm-vertex in the map. The either found or newly created vm-vertex is then is associated
with VNc .

5.6.2 Inserting fragment edges

The crucial step of the visibility map construction is the insertion of edges of the currently processed
fragmentPNc . For each edgeEi the following steps are performed:

1. Locate all vm-edges of the neighbor vm-polygons that intersect theEi. Denote the set of such
edgesE .

2. Create links from these edges ofE that completely overlapEi to the new vm-polygonVNc .

3. Create new vm-edges for the part ofEi that is not covered by any edge fromE . These edges are
associated withVNc and contain an empty link to the other vm-polygon.

4. Subdivide and update edges ofE that partially overlapEi.

An illustration of the insertion of a new edge into the visibility map is depicted in Figure5.3.

64 CHAPTER 5. CONSTRUCTION OF VISIBILITY MAPS

PROCESSED
FRAGMENTS

UNPROCESSED
FRAGMENT

P

LINK TO VM−POLYGON

EMPTY LINK

Figure 5.3: Insertion of a new edge in the visibility map. The figure depicts links corresponding to the
updated or newly created vm-edges.

5.6.3 Classification of edges and vertices

The elements of the visibility map can be classified into several categories depending on the configura-
tion of elements from their neighborhood. We used the following 5 categories (see Figure5.4):

• silhouette edge— an edge that is associated with a single vm-polygon. It forms a part of the
silhouette of the view.

• shadow edge— an edge that forms a “shadow” boundary. The two associated polygons do not
share the corresponding edge in 3D, i.e. there is a depth discontinuity on the edge. The closer
vm-polygon associated with the edge is theoccluderthe farther is theoccludee.

• corner edge—- an edge in a corner or on the rim of an object. The edge is shared by two
connected vm-polygons that form an angle greater than the predefinedcrease angle.

• flat edge—- the edge is shared by two connected vm-polygons that form an angle smaller than
the predefined crease angle.

• bsp edge—- a flat edge shared by vm-polygons that result from splitting of the same scene
polygon in the process of construction of the occlusion tree.

corner

bsp

flat

shadow

silhouette

corner
shadow

silhouette

(a) (b)

Figure 5.4: (a) The classification of the edges of the visibility map. (b) The visibility map after removal
of flat and bsp edges.

5.7. RESULTS 65

The classification enables to better understand the structure of the view. Depending on the application
only edges of certain classes are considered. For example in the context of discontinuity meshing the
visibility maps can be constructed with respect to each vertex of a given light source. Then the shadow
edges define a subset of vertex-edge (VE) discontinuities due to the light source.

5.7 Results

We have implemented the proposed algorithm in C++ and evaluated the construction of visibility maps
using three types of scenes:

• rad — a building interior with some detailed objects and finer meshes resulting from radiosity
computation. See Figures5.1, 5.4.

• soda— a building interior with large walls, see Figure5.5-a.

• random— random triangles, see Figure5.5-b.

The measurements were conducted on a PC with 500MHz CPU, 256MB RAM, running Linux. For
each scene we selected several viewpoints and measured the following parameters: the total time for
construction of the visibility map, the time for construction of the occlusion tree only, the number of
visibility map vertices, edges and polygons, and the percentage of leaves of the scene kD-tree culled by
the hierarchical visibility tests. The measurements are summarized in Table5.1.

kD-tree total OT culled
scene polygons nodes view time time vm-vertices vm-edges vm-polygons kD-leaves

[−] [−] No. [s] [s] [−] [−] [−] [%]
I 0.24 0.15 642 1229 567 99.6

rad 26526 8809 II 0.14 0.07 555 1029 474 99.5
III 1.15 0.69 3312 6307 2906 94.0

I 0.02 0.01 39 62 24 98.8
soda 1685 4735 II 0.04 0.03 109 188 78 98.0

III 0.09 0.07 201 368 163 95.1
I 0.10 0.08 275 472 197 99.9

random 10000 47139 II 1.24 0.99 2269 3758 1472 95.0
III 4.38 2.98 12016 20718 8533 84.1

Table 5.1: Summary of the results. The table contains the scene name, the number of scene polygons,
the number of kD-tree nodes, the total time for construction of the visibility map, the time for construc-
tion of the occlusion tree, the number of visibility map polygons, vertices and edges, and the percentage
of leaves of the scene kD-tree culled by the hierarchical visibility tests.

The first scene contains many polygons that result from meshing due to computation of global illu-
mination using the radiosity method. For a view with very restricted visibility (view No. I and II) the
computation of the visibility map is very fast and the majority of the scene (99%) is culled by the hi-
erarchical visibility tests. With less restricted visibility the computational time increases approximately
linearly with the number of resulting vm-polygons.

The second scene is a building interior consisting of large polygons. The resulting visibility map is
much simpler than for therad scene and computational times are proportionally faster. A view of the
sodascene is depicted in Figure5.5-a.

The third scene contains 10000 randomly generated triangles. Due to the lack of a regular structure
the resulting visibility map is complex. The complexity of the view is also increased due to mutual

66 CHAPTER 5. CONSTRUCTION OF VISIBILITY MAPS

triangle intersections. The first view (random-I) corresponds to a viewpoint located inside of the cluster
of triangles. The triangles appear larger and block visibility of many other triangles and consequently
the computation is significantly faster in comparison with the other views. The second view (random-II)
is depicted in Figure5.5-b.

(a) (b)

Figure 5.5: (a) The visibility map corresponding to the view soda-III in Table5.1. (b) The visibility
map corresponding to the view random-II in Table5.1.

Further we studied the growth of the occlusion tree during its construction. We measured the size
of the tree after processing each scene polygon using the approximate occlusion sweep. To better un-
derstand the results hierarchical visibility tests were not applied for this test. On the measured curve
(Figure5.6-b) we can identify two big steps of a sudden increase of the tree size. The first step corre-
sponds to the insertion polygons near the viewpoint, the second to farther polygons visible through the
door (see Figure5.6-a). We can observe that once the occlusion tree contains all visible polygons its
size does not increase.

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A

processed polygons

nodes

(a) (b)

Figure 5.6: (a) A view of therad scene with shadow vm-edges depicted. (b) The size of the occlusion
depending on the number of inserted polygons. Note the two steps corresponding to a sudden increase
of the tree size. The first corresponds to polygons close to the viewpoint, the second to the farther
polygons visible through the door. No hierarchical visibility tests were applied.

5.8. SUMMARY 67

Figure5.7-(a) shows a visibility map from the bird’s-eye view. We can see that the proposed al-
gorithm efficiently culls invisible part of the scene during the construction of the occlusion tree. The
visibility map is then built using visible polygons only.

Figure 5.7-(b) shows a subset of a discontinuity mesh computed using four visibility maps. The
four maps were constructed for views centered at the vertices of the rectangular light source. Shadow
vm-edges were then projected on the associated occludees. The remaining discontinuity edges could be
identified by searching through vertices of the four visibility maps and matching the information about
associated shadow edges [Stew98a].

culled

visible
viewpoint

(a) (b)

Figure 5.7: (a) The computation of the visibility map from the bird’s perspective. The algorithm
efficiently culls invisible regions (shown in gray) and considers only the visible part of the scene for
visibility map construction. Computation time: 0.3s. (b) A subset of a discontinuity mesh constructed
using four visibility maps. The picture shows shadow edges of four visibility maps projected on oc-
cludees. The visibility maps correspond to views from the four vertices of the rectangular light source.
Computation time: 1.2s.

5.8 Summary

We have presented a new algorithm that efficiently constructs a visibility map for a given view of the
scene. The method does not rely on a single projection plane and easily handles views that span the
whole spatial angle. The visibility map is constructed by a two stage algorithm: construction of a
hierarchical representation of the view and its postprocessing.

The view is represented by the occlusion tree. The tree is constructed using an approximate occlu-
sion sweep that allows efficient incremental construction without complicated data structures for exact
priority orders. The occlusion sweep is interleaved with hierarchical visibility tests, which results in
output-sensitive behavior of the algorithm in practice. The visibility map is constructed by simple post-
processing of the occlusion tree. We presented a classification of the elements of the visibility map that
helps to better understand the structure of the view. The implementation of the technique was evaluated
on several non trivial scenes.

68 CHAPTER 5. CONSTRUCTION OF VISIBILITY MAPS

Chapter 6

From-region visibility in 2D scenes

In this chapter we present a new method for an exact and output-sensitive determination of visibility
from a polygonal region in the plane. The technique is based on a hierarchical partitioning of line
space maintained by the occlusion tree. It provides a comprehensive description of visibility for a set of
occluders and it is suitable for computing potentially visible sets in large scenes with various visibility
characteristics. The proposed algorithm is expected to exhibit output-sensitive behavior in practice,
i.e. its running time is proportional to the number of visible objects. The method is suitable for large
and degenerate inputs and it can be applied to spatial regions of arbitrary size, without under-sampling
artifacts [Wonk00]. The algorithm implicitly solves all types of occluder fusion [Dura00, Scha00]. The
technique described herein serves as a basis for a 21

2D from-region visibility algorithm that will be
described in the next chapter.

6.1 Problem Statement

We restrict the discussion to 2D scenes consisting of line segments and the regions of interest (view
cells) to convex polygons. Given a polygonal view cell the goal is to determine:

(a) The set of potentially visible line segments.

(b) The visible fragments of the visible line segments.

(c) Which fragments are visible from which parts of the view cell.

The above states goals are presented in order of increasing accuracy of the computed result. The
proposed technique can be used to resolve all three goals and yields a comprehensive description of
visibility from a given region in the plane. An illustration of the from-region visibility is depicted in
Figure6.1.

6.2 Related work

In this section we briefly discuss related 2D visibility algorithms, the algorithms for more general 21
2D

and 3D scenes will be discussed in Chapters7 and8.
2D visibility was studied intensively in computational geometry [Asan00]. The visibility graph [Welz85]

is a well known structure for capturing visibility in 2D scenes. Vegter introduced the visibility dia-
gram [Vegt90] that contains more information than the visibility graph. The visibility complex is a
similar structure introduced by Pochiolla and Vegter [Pocc93]. The visibility complex for polygonal
scenes was studied by Riviere [Rivi97a] and it has been applied to solve various visibility problems in
the plane [Rivi95, Rivi97b, Orti96]. Hinkenjann and M̈uller [Hink96] proposedhierarchical blocker

69

70 CHAPTER 6. FROM-REGION VISIBILITY IN 2D SCENES

Figure 6.1: Illustration of the from-region visibility in 2D. The scene represents 25km2 of Glasgow
city. The 2D projection of the scene contains 94460 line segments. Parts of occluders visible from the
given region are shown in red. Yellow line segments depict extremal lines that correspond to changes
in visibility. Visibility computation took 700ms.

trees— a discrete structure similar to the visibility complex. Ghali and Stewart [Ghal96] use duality for
maintaining visibility with respect to a moving point in the plane. This approach was further elaborated
by Nechv́ıle and Tobola [Nech99].

Unlike most methods developed in computational geometry, the method discussed in this chapter
focuses onpractical usabilityof solving the from-region visibility problem for large 2D scenes.

6.3 Algorithm overview

Consider a scene consisting of a set of line segments that we calloccluders. Given a convex polygonal
view cellRS , the task is to determine visibility fromRS . We incrementally build theocclusion treethat
associates with each ray emerging fromRS an occluder that it first intersects or a label describing that
the ray is unoccluded. The occluders are organized in a kD-tree. Each leaf of the tree stores a list of
occluders that intersect the corresponding spatial region.

The kD-tree is processed using an approximate occlusion sweep with respect toRS . At each leaf of
the tree the corresponding occluders are processed in random order. For every occluder, a line space
blocker polygonis constructed that represents rays intersecting the view cell and the occluder. The
blocker polygon is then inserted in the occlusion tree. The insertion yields parts of the occluder that are
currently visible. If the occluder is invisible, the tree remains unmodified. The traversal of the kD-tree
is interleaved with testing visibility of regions corresponding to its nodes using the current occlusion
tree. If a node is classified invisible, its whole subtree and the corresponding occluders are culled.

The proposed technique is mostly related to the visibility diagram and the visibility complex. In
terminology of Vegter [Vegt90] the occlusion tree for from-region visibility in the plane is a hierarchical
representation of thevisibility function. The visibility complex is a 2D cellular complex [Good97]
immersed in 3D. The occlusion tree can be seen as a hierarchical representation of a 2D cross-section
of the visibility complex involving objects visible from the given view cell.

6.4. LINE SPACE 71

The rest of the chapter is organized as follows: In Section6.4we discuss the correspondence between
primal spaceand line space. Section6.5 describes the occlusion for the from-region visibility in the
plane and presents algorithms for its construction and traversal. Section6.6outlines the complete hier-
archical visibility algorithm. In Section6.7 we evaluate the implementation of the proposed methods.
Finally, Section6.8concludes the chapter.

6.4 Line space

The proposed visibility algorithm uses a mapping of oriented 2D lines to points in 2D oriented projective
space —line space. Such a mapping allows to handle sets of lines much easier than in the primal
space [Pocc93].

We use a 2D projection of Plücker coordinates [Stol91] to parametrize lines in the plane. This
mapping corresponds to an “oriented form” of the duality between points and lines in 2D. Letl be an
oriented line inR2 and letu = (ux, uy) andv = (vx, vy) be two distinct points lying onl. Line l
oriented fromu to v can be described by the following matrix:

Ml =

(
ux uy 1
vx vy 1

)
Plücker coordinatesl∗ of l are minors ofMl:

l∗ = (l∗x, l∗y, l
∗
z) = (uy − vy, vx − ux, uxvy − uyvx).

l∗ can be interpreted as homogeneous coordinates of a point in 2Doriented projective spaceP2. Two
oriented lines are equal if and only if their Plücker coordinates differ only by a positive scale factor.l∗

also corresponds to coefficients of the implicit equation of a line:l′ expressed asl′ : ax + by + c = 0
induces two oriented linesl∗1, l∗2, with Plücker coordinatesl∗1 = (a, b, c) and l∗2 = −(a, b, c). The
Plücker coordinates of 2D lines defined in this chapter are a simplified form of the Plücker coordinates
for 3D lines that will be discussed in Chapter8: Plücker coordinates of a 2D line correspond to the
Plücker coordinates of a 3D line embedded in thez = 0 plane after removal of redundant coordinates
(equal to 0) and permutation of the remaining ones (including some sign changes).

Homogeneous coordinates are often normalized, e.g.l∗N = (a/b, 1, c/b). The normalization intro-
duces a singularity — in our example vertical lines map to points at infinity. To avoid singularities we
treatP2 as 3D linear space and call itline spacedenotedL. Consequently,l∗ represents a halfline inL.
All points on halflinel∗ represent the same oriented linel.

To sum up: an oriented line in 2D is mapped to a halfline beginning at the origin in 3D. An example
of the concept is depicted in Figures6.2-(a) and 6.2-(b). Further in this chapter we will mostly use
“projected” 2D illustrations of line space (such as in Figure6.2-(c)). We will still talk about planes
and halflines, but they will be depicted as lines and points, respectively, for the sake of clarity of the
presentation.

6.4.1 Lines passing through a point

A pencil of oriented linespassing through a pointp = (px, py) ∈ R2 maps to an oriented planep∗ in
line space that is expressed as:

p∗ = {(x, y, z)|(x, y, z) ∈ L, pxx + pyy + z = 0}.

This plane subdividesL in two open halfspacesp∗+ andp∗−. Points inp∗− correspond to oriented
lines passing clockwise aroundp (see Figure6.2). Points inp∗+ correspond to oriented lines passing

72 CHAPTER 6. FROM-REGION VISIBILITY IN 2D SCENES

−

−

n

m

l

k

p

m*

n*

p*

l*
l*

k*

m*
p*

p*
p*

n*

k*

p*+
p*

+

x

y

(a) (b) (c)

Figure 6.2: (a) Four oriented lines in primal space.(b) Mappings of the four lines and point p. Lines
intersecting p map to planep∗. Lines passing clockwise (counterclockwise) aroundp, map top∗− (p∗+).
(c) The situation after projection to a plane perpendicular top∗.

counterclockwise aroundp (these relations depend on the orientation of the primal space). We denote
−p∗ an oriented plane opposite top∗ that can be expressed as:

−p∗ = {(x, y, z)|(x, y, z) ∈ L,−pxx− pyy − z = 0}.

6.4.2 Lines passing through a line segment

Oriented lines passing through a line segment can be decomposed into two sets depending on their ori-
entation. Consider a supporting linelS of a line segmentS, that partitions the plane in open halfspaces
S+ andS−. Denotea andb the two endpoints ofS anda∗ andb∗ their mappings toL. Lines that
intersectS and “come from”S− can be expressed in line space as an intersection of halfspacesa∗+ and
b∗−. The opposite oriented lines intersectingS are expressed asa∗− ∩ b∗+ (see Figure6.3-(a,b)).

Sl*

k*

m*
a* b*

a* b*n*

a* b*+ −

− +k

m

n

a

b

l
S

S S+ −

S

(a) (b)

Figure 6.3: (a) A line segmentS and three oriented lines that intersectS. (b) The situation in line
space: the projection of two wedges corresponding to lines intersectingS. Mappings of supporting line
lS of S are two halflines that project to pointl∗S . Line k intersects pointb and therefore maps to plane
b∗. Linesm andn map to the wedge corresponding to their orientation.

6.4. LINE SPACE 73

6.4.3 Lines passing through two line segments

Consider two disjoint line segments such as those depicted in Figure6.4-(a). The set of lines passing
through the two line segments can be described as an intersection of four halfspaces in line space. The
four halfspaces correspond to mappings of endpoints of the two line segments. Since the halfspaces
pass through the origin ofL, their intersection is a pyramid with the apex at the origin. The boundary
halflines of the pyramid correspond to mappings of the fourextremal linesinduced by the two segments.
DenoteP(S, O) a line space pyramid corresponding to oriented lines intersecting line segmentsS and
O in this order. We represent the pyramid by ablocker polygonB(S, O) (see Figure6.4-(b)). Since
B(S, O) only represents the pyramidP(S, O), it need not be a planar polygon, i.e. its vertices may lay
anywhere on the boundary halflines ofP(S, O). We normalize the vertex coordinates: they correspond
to an intersection of the boundary halfline ofP(S, O) and the unit sphere centered at the origin ofL.

a* b* c* d*+ − + −

ac*
c*

bc*

bd*
ad* d*

b*
a*

d

a c

b

S
O

(a) (b)

Figure 6.4: (a) Two line segments and corresponding four extremal lines oriented fromS to O. Sepa-
rating linesad andbc bound region of partial visibility ofS behindO (penumbra). Supporting linesac
andbd bound region whereS is invisible (umbra).(b) Blocker polygonB(S, O) representing pyramid
P(S, O).

In Figure6.5-(a), the supporting line ofcd intersectsab at pointx. The set of rays passing throughab
andcd can be decomposed to rays passing throughax andcd, and throughxb andcd. Rays throughax
andcd map to a pyramid that is described by intersection of only three halfspaces induced by mappings
of a, x andd. Rays throughxb andcd can be described similarly. The configuration in line space is
depicted in Figure6.5-(b).

6.4.4 Lines passing through a set of line segments

Consider a set ofn+1 line segments. We call one line segment thesource(denoted byS) and the other
n segments we call occluders (denoted byOk, 1 ≤ k ≤ n). Further in the chapter we will use the term
ray as a representative of an oriented line that is oriented from the source “towards” the occluders.

Assume that we can process all occluders in a strict front-to-back order with respect to the given
source. We have already processedk occluders and we continue by processingOk+1. Ok+1 can be
visible through rays that correspond to the pyramidP(S, Ok+1). Nevertheless some of these rays can
be blocked by combination of already processed occludersOx (1 ≤ x ≤ k). To determine ifOk+1 is
visible we subtract allP(S, Ox) fromP(S, Ok+1):

V(S, Ok+1) = P(S, Ok+1) −
⋃

1≤x≤k

P(S, Ox)

V(S, Ok+1) is a set pyramids representing rays through whichOk+1 is visible fromS. In turn, all rays
corresponding toV(S, Ok+1) are blocked behindOk+1. If V(S, Ok+1) is an empty set, occluderOk+1

74 CHAPTER 6. FROM-REGION VISIBILITY IN 2D SCENES

a*

ac*

ad*

x*

b*cd*

c*d* bc*

bd*

c
x

a

d

b

OS

(a) (b)

Figure 6.5: (a) Degenerate configuration of line segments: the supporting line ofcd intersectsab
at pointx. There are five extremal lines. Note, that there is no umbra region.(b) In line space the
configuration yields two pyramids sharing a boundary that is a mapping of the oriented linecd.

is invisible. This suggest incremental construction of an arrangement of pyramidsAk that corresponds
to rays blocked by thek processed occluders. We determineV(S, Ok+1) andAk+1 (A0 is empty):

V(S, Ok+1) = P(S, Ok+1) − Ak,

Ak+1 = Ak ∪ P(S, Ok+1) = Ak ∪ V(S, Ok+1).

Figures6.6-(a,b) depict a projection of an arrangementA3 of a source and three occluders. Note that
the shorter the source line segment the narrower (s∗a ands∗b get closer) are the pyramidsP(S, Ok).

O1

O2

O3
O3

O2

S

a bs*

o*

o*

o*1b

o*1a

2b

2a

3bo*

o*3a

e
e*

s*

3

Q*

Q*2

1

2

O1

Q1

Q

3
Q

Q*

(a) (b)

Figure 6.6: (a) The source line segmentS and three occluders.Q1−3 denote unoccluded funnels.(b)
The line space subdivision. For each cell, the corresponding occluder-sequence is depicted. Note the
cellsQ∗

1, Q∗
2 andQ∗

3 corresponding to unoccluded funnels.

Recall that the pyramidP(S, Ok) is represented by blocker polygonB(S, Ok). The construction of
the arrangementAk resembles the from-point visibility problem, more specifically the hidden surface
removal applied on the blocker polygons with respect to the origin ofL. The difference is that the depth
information is irrelevant in line space. The priority of blocker polygons is either completely determined
by the processing order of occluders or their depth must be compared in primal space. This observation

6.5. OCCLUSION TREE 75

is supported by the classification of visibility problems presented in Chapter2. Visibility from point in
3D and visibility from region in 2D induce a two-dimensional problem-relevant line set. This suggests
the possibility of mapping one problem to another.

In the next section we show how the arrangementAk can be maintained consistently and efficiently
using the occlusion tree.

6.5 Occlusion tree

The occlusion tree for visibility from region in 2D is a BSP tree maintaining the arrangementAk. Each
nodeN of the tree represents certain subset of line spaceQ∗N . The root of the tree represents the whole
L. If N is an interior node, it is associated with a planehN . The left child ofN representsQ∗N ∩ h−N ,
the right childQ∗N ∩ h+

N , whereh−N andh+
N are halfspaces induced byhN .

Leaves of the occlusion tree are classifiedin or out. If N is anout-leaf,Q∗N represents unoccluded
rays emerging from the source. IfN is anin-leaf, it is associated with an occluderON that blocks the
corresponding set of raysQ∗N . FurtherN stores an intersection of the blocker polygonB(S, ON) and
Q∗N , denotedBN . Q∗N represents afunnelQN in primal space that is bound by points corresponding to
planes of the occlusion tree on the path from root toN . NodeN also contains a line segmentIN that is
an intersection ofON andQN .

Consider a source and a single occluder such as in Figure6.4-(a). The corresponding tree has four
interior nodes that represent endpoints of the two line segments. In this case the occlusion tree is actually
a BSP tree representation of the pyramidP(S, O) (see Figure6.7-(a)). We call this tree elementary
occlusion tree for a blocker polygonB(S, O), denoted e-OT(B(S, O)). A more complex situation is
depicted in Figure6.7-(b).

bs*

1bo*

o*
2b

Q*

−s*

O*1

O*2 O*3

− +

+−

− +

− +

Q*

− +

+−

+− Q*1

2 3

out

in

− +

+−

− +

+−

O*

−a

b

−c

d

a

2a

3a

−o*1a

−o*

−o*

(a) (b)

Figure 6.7:(a) Elementary occlusion tree for a configuration shown in Figure6.4-(a). (b) Occlusion
tree for the three occluders depicted in Figure6.6-(a). The threein-leaves correspond to rays blocked
by the relevant occluders. Theout-leavesQi represent three funnels of unoccluded rays emerging from
S in the direction of occluders.

We need to perform polyhedra set operations on the arrangementAk to obtain both the arrangement
Ak+1, andV(S, Ok+1) that describes visibility of occluderOk+1. In particular we must determine
the set difference ofP(S, Ok+1) andAk to obtainV(S, Ok+1) and the union ofAk andV(S, Ok+1)
to obtainAk+1. The set difference operation can be performed easily using BSP tree by “filtering”
P(S, Ok+1) down the tree as outlined in Section3.3.3. The filtering identifies the desired setV(S, Ok +
1) that is then used to extend the tree so that it represents the arrangementAk+1.

76 CHAPTER 6. FROM-REGION VISIBILITY IN 2D SCENES

6.5.1 Occlusion tree construction

Assume that we can determine a strict front-to-back order of occluders with respect to the sourceS.
When we process occluderOk all occludersOj (1 ≤ j < k) that can block visibility ofOk have been
already processed before. On the other handOk cannot block any occluderOj (1 ≤ j < k).

The occlusion tree construction algorithm can be outlined as follows: For an occluder we construct
a pyramidP(S, Ok) corresponding to rays blocked by this occluder. The pyramid is represented by a
blocker polygonB(S, Ok), that is then filtered down the tree. The algorithm maintains two variables
— the current nodeNc and the current blocker polygonBc. Initially Nc is set to the root of the tree and
Bc equals toB(S, Ok).

If Nc is not a leaf we determine the position ofBc and the planehNc associated withNc. If Bc lies in
the negative halfspace induced byhNc the algorithm continues in the left subtree. Similarly, ifBc lies
in the positive halfspace induced byhNc the algorithm continues in the right subtree. IfBc intersects
both halfspaces it is split byhNc into two partsB−

c andB+
c and the algorithm proceeds in both subtrees

of Nc with appropriate fragments ofBc.
If Nc is a leaf node then we make a decision depending on its classification. IfNc is anin-leaf all

rays represented byBc are blocked by the occluderONc referred inNc. If Nc is anout-leaf then all
rays representedBc are unoccluded. ThusBc is a part ofV(S, Ok). We replace theNc by e-OT(Bc)
representing the pyramid induced byBc that contains planes defined by the origin ofL and edges of
Bc.

Until now we have assumed that a front-to-back order of occluders with respect to the source is
determined. The approximate occlusion sweep determines only an approximate front-to-back order of
occluders. Thus we cannot guarantee the position of the currently processed occluderOk with respect to
the already processed occluders. In the remainder of this section we describe the necessary modification
of the occlusion tree construction algorithm.

The modification involves the behavior of the algorithm when reaching thein-leaves of the tree.
Previously we have assumed that all lines represented by blocker polygonBc are blocked by an occluder
ONc . Now we have to check the position ofOk andONc with respect to the source. We use the line
segmentsIk and INc that are intersections ofOk and ONc with the funnelQNc (seeI2 and I1 on
Figure6.8-(a)). Denote an open halfspace defined byINc that contains the sourceH+ and the opposite
open halfspaceH−.

The two line segments can be in four mutual positions:

1. Ik behindINc : Ik lies completely inH−.

2. Ik in front of INc : Ik lies completely inH+.

3. Ik intersectsINc : Ik lies in bothH+ andH−.

4. Ik on INc : Ik does not intersectH+ norH−.

In the first case all lines represented byBc are blocked byINc . ThusOk is not visible through this
set of lines and no modification to the tree is necessary.

In the second case all lines represented byBc are not blocked byINc . ThusOk is visible through
all lines ofBc and contraryONc is not visible through these lines. We construct e-OT(Bc) and filter
the “old” blocker polygonBNc down this tree (see Figure6.8). Finally, we replace theNc by the
constructed tree. Note that it is possible that the e-OT(Bc) consists of a singlein-leaf node.

In the third case some lines ofBc are blocked byINc and some blockINc . We determine the inter-
sectionX of line segmentsIk andINc . PointX maps to planehX in line space. We splitBc by hX

obtainingB+
c andB−

c . Depending on the position of the endpoints ofIk we decide which of the two
fragments corresponds to lines blocked byINc . This fragment can be deleted as in the case 1. The other
fragment is treated as in the case 2.

6.5. OCCLUSION TREE 77

a b

1b

1a

2b

2a
2

1

O

O

S

2

1 O*

O*

s*s*
o*

o*

o*

o*

I1
I2

Q

Q*

−

−

− −

+

+

+ +

−s*

O*1

O*2

Q*

1b

2b

+−

+−

+−

−s*

O*1

− +

− +

1b

+−

+−

a

s*b

1a−o*

o*

−o*
2a

o*

−o*2a

a

s*b

−o*
1a

o*

(a) (b) (c)

Figure 6.8: (a) OccluderO2 partially hides occluderO1 that is already in the tree. The funnelQ
corresponds to the lines through whichO2 hidesO1. Note thatO1 is still completely visible from some
points onS. (b) Situation in line space. (c) The original occlusion tree and the tree after insertingO2.
Note, the lower left node has both descendants classified asin.

The solution of the fourth case depends on the application. For the sake of simplicity we assume that
Ok is invisible through lines ofBc.

6.5.2 Visibility from a region

Visibility from a convex polygonal region can be determined by computing visibility from its bound-
aries. A separate occlusion tree can be built to capture visibility from each boundary line segmentSi of
the view cellRS . Alternatively we can build a single tree that captures visibility from all boundaries.
The latter approach is more consistent since it keeps a single hierarchical structure for representation
of visibility from the view cell. Inserting rays blocked by occluderOk into the tree involves insertion
of blocker polygonsB(Si, Ok). The blocker polygonB(Si, Ok) represents rays emerging fromi-th
boundary ofRS that is facing the occluderOk.

6.5.3 Visibility of a line segment

Suppose we are interested only in determining visibility of a line segmentG, but we do not want
to include rays intersected byG in the occlusion tree. An example of such situation is determining
visibility of a polygonal region that is bound by a set of ’virtual’ line segments, that should not be used
as occluders. We use the algorithm from Section6.5.1, without performing any modifications to the
tree. We only collect the setV(S, G) of visible fragments of the blocker polygonB(S, G). If this set is
empty,L is not visible from the view cell. Otherwise, it is visible through the set of rays that correspond
to V(S, G).

6.5.4 Fast conservative visibility of a region

Given an occlusion tree and a query regionRX theconservative visibility testdetermines conservatively
if RX is invisible or at least partially visible. It can eventually classify an invisible region as visible, but
it never classifies a visible region as invisible.

The conservative visibility test proceeds as follows: given a view cell and a polygonal regionRX we
find supporting and separating lines of the view cellRS andRX (see Figure6.9-(a,b)). We construct
a blocker polygonB(RS , RX) using mappings of the supporting and separating lines as its vertices.
This blocker polygon generally represents a superset of rays intersectingRS andRX (see Figure6.10-

78 CHAPTER 6. FROM-REGION VISIBILITY IN 2D SCENES

R*S*

R*S*
R*S*

R*S*

s

s

r1

1

2

3

R

R

b

a

r3

1

2

2

1

s*

r*

2

2

a a

a b

s

sup

sep

sep

sup

sep*2

r*3

sup*1
r*1

s*1

s*
3

aS

Sb

r2

RX

RS
sup*2

sep*1

b b

b a

(a) (b)

Figure 6.9: (a) Two rectangular regions and corresponding extremal lines.(b) In line space there are
four blocker polygons corresponding to four combinations of the mutually visible boundaries ofRS and
RX . Note that the vertices of the union of these blocker polygons correspond to supporting (sup1, sup2)
and separating (sep1, sep2) lines ofRS andRX .

(a,b)).B(RS , RX) is filtered down the tree as described in Section6.5.1. Reaching anout-leaf we can
conclude that at least part ofRX is visible and terminate the algorithm.

sep
1

sup
1

r1

r*1

r*2

r*3

sup*2

1sep*

s3

sup
2

sup*1

s2

r2

S

r3

RX

2

s1

sep

R
sep*

2

s* s* s*1 23

(a) (b)

Figure 6.10: (a) A configuration ofRS andRX that leads to a conservative blocker polygon. The
blocker polygon represents lines intersecting the ’virtual’ line segments show dashed.(b) The blocker
polygon constructed from mappings of supporting and separating lines represents a superset of the rays
intersectingRS andRX .

If the filtering procedure reaches anin-leaf L we determine the relative position ofOL andRX .
Denote an open halfspace defined byOL that contains the sourceH+ and the opposite halfspaceH−.
Visibility of RX in L is classified as follows:

1. RX is visible, if RX lies completely inH+.

2. RX is invisible, if RX lies completely inH−.

3. RX is partially visible, ifRX intersects bothH+ andH−.

The decision in the third case is conservative. An exact visibility test ofRX would require computa-
tion of the intersection ofRX and the funnelQL corresponding to leafL, followed by the intersection
test withIL.

6.6. THE COMPLETE HIERARCHICAL VISIBILITY ALGORITHM 79

Further speedup of the visibility test can be achieved for an additional decrease of its accuracy. The
filtering procedure can be modified so that the blocker polygonBc being processed is not split by planes
of the occlusion tree that intersectBc. At each interior nodeNc only the position ofBc with respect to
the planehNc is evaluated. The algorithm then continues in children ofNc that correspond to halfspaces
intersected byBc. Using this approachBc can be filtered down to leaves that correspond to pyramids
that actually does not intersectBc. Nevertheless this case occurs rather seldom in practice. Similar
modification was used for the real-time visibility culling as described in Section4.10.

6.5.5 Maximal visibility distance

Each nodeN of the occlusion tree can be associated with amaximal visibility distance(MVD) in the
corresponding funnelQN . DenotedN the MVD of nodeN . If N is anout-leaf, dN = ∞. If N is
an in-leaf, dN is a maximal distance of the view cellRS and the relevant partIN of occluderON . If
N is an interior node of the tree,dN is a maximum of MVDs of its children. MVDs are updated by
propagating their changes up the tree after each insertion of an occluder. MVD of nodeN can be used
to quickly determine that an occluderOx is invisible with respect toN if the minimal distance ofOx

from RS is greater thandN .
Consider a situation that all oriented lines emerging fromRS are blocked after insertingk occluders.

The visibility distances of nodes near the root of the tree will correspond to distance of a farthest visible
occluders in the corresponding funnels. An occluder or a region farther fromRS is immediately culled
by the distance comparison at nodes near the root.

The maximal visibility distances can be seen as a hierarchical piecewise constant representation of
the depth map with respect to the given view cell. In leaves of the tree the depth is represented exactly
by the associated occluder fragmentsIN .

6.6 The complete hierarchical visibility algorithm

The above mentioned methods are used within a hierarchical visibility algorithm. Occluders are or-
ganized in a kD-tree, in which a nodeN corresponds to rectangular regionRN . The root of the tree
corresponds to the bounding box of the whole scene. Leaves of the kD-tree contain links to the occlud-
ers that intersect the corresponding cells. The kD-tree is used for two main purposes: Firstly, it allows
to determine the approximate front-to-back order of occluders efficiently. Secondly, pruning of the
kD-tree by hierarchical visibility tests leads to the expected output-sensitive behavior of the algorithm.

The scene is processed using an approximate occlusion sweep with respect to the view cell. We have
used two algorithms for the occlusion sweep. The first processes the kD-tree using a strict front-to-back
ordering of kD-tree nodes with respect to the center of the view cell. The second uses a priority queue,
where the priority of nodeN is inversely proportional to the minimal distance ofRN from the view cell.
In both cases occluders stored within a leaf node are processed in a random order. The occlusion tree
is constructed incrementally by inserting blocker polygonsB(Si, Ok) corresponding to the currently
processed occluderOk and thei-th boundary of the view cell that facesOk.

The occlusion tree construction is interleaved with visibility tests of regionRN corresponding to
the currently processed nodeN . If RN intersects the view cellRS , it is classified visible. Otherwise
the visibility test classifies visibility ofRN with respect to the already processed occluders. IfRN is
invisible, the subtree ofN and all occluders it contains are culled. If it is visible, we continue testing
visibility of its descendants that are processed recursively using the approximate occlusion sweep.

Hierarchical visibility tests provide a useful information about visibility of the whole scene from
the given view cell. Nevertheless the visibility classification of hierarchy nodes as described above is
only conservative. Due to the approximate depth ordering of processed nodes it is possible that there is
an unprocessed regionRl containing occluders which might occlude (or at least partially occlude) the

80 CHAPTER 6. FROM-REGION VISIBILITY IN 2D SCENES

currently processed regionRk. Rk can be classified visible, although in fact it is invisible due to the
influence of unprocessed occluders fromRl. If an exact classification of hierarchy nodes is required,
we have to perform additional visibility tests on all leaves of the kD-tree that were previously classified
visible. These tests eventually decide that the tested regions are invisible if all relevant occluders are
considered. The visibility changes can be propagated up the kD-tree and the coarse visibility informa-
tion can then be stored as a list of visible nodes at the highest level of the kD-tree.

6.7 Results

We have evaluated the presented algorithms on three types of scenes: a city plan, a building interior, and
random line segments. The three types of scenes are depicted in Figures6.1, 6.11-(a) and Figure6.11-
(b), respectively. On each figure the blue rectangle represents the view cell. Yellow lines correspond
to extremal lines that bound the funnelsQLx . Red line segments depict visible parts of occludersILx .
Gray regions were culled by the hierarchical node visibility test. All measurements were performed on
a PC, equipped with an Athlon 950MHz CPU, 256MB RAM and Linux OS. Measurements for several
selected regions and various termination criteria for the construction of the kD-tree are summarized in
Table6.1.

(a) (b)

Figure 6.11: (a) The ground plan of the building of the Soda hall (873 occluders).159 occluders are
visible, the occlusion tree has745 nodes. Computation took190ms. (b) A scene with1000 random
line segments.540 segments are visible, the occlusion tree has8607 nodes. The green regions were
reclassified invisible by the second pass of the visibility tests. The computation took1.6s.

Figure 6.1 depicts a 2D cut through the scene representing a city of Glasgow1. For the selected
view cell the majority of the scene was culled by the hierarchical visibility test and only few occluders
corresponding to the neighboring streets were found visible. Figure6.11-(a) depicts a ground plan of the
Soda Hall of the University of Berkeley and Figure6.12-(b) shows the corresponding blocker polygons.

Scenes consisting of random line segments allow to study the dependence of the algorithm on the
complexity of the scene as well as itsvisibility complexity. The size of the occlusion tree is proportional
to the visibility complexity of the given view cell. More precisely the size of the tree corresponds to the
total number of funnelsQNx through which occluders are visible from the view cell.

1http://www.vrglasgow.co.uk

http://www.vrglasgow.co.uk

6.7. RESULTS 81

Tested
kD-tree RS kD-tree Blocker OT Visible

Scene Occluders nodes size nodes polygons nodes occluders Time
[−] [−] [%] [%] [−] [−] [%] [s]

13711 0.017 4.2 4400 1371 0.32 1.2
Glasgow 94460 13711 0.21 6.8 6919 3233 0.75 3.5

13711 0.64 16 13142 7545 1.5 9.2
335 2.5 50 759 1045 19 0.31

Soda 873 2169 2.5 34 619 671 19 0.63
2169 6 65 1078 2605 44 2.2

Random 1000 61 5.1 62 1682 8639 54 1.3
1767 5.1 51 1018 4385 54 1.3

Random 20000 7003 0.21 3.3 964 3185 2 0.61
7003 3.4 8.2 2602 19179 13 5.2

Table 6.1: Summary of the results of the visibility algorithm. The table contains the total number
of kD-tree nodes, relative size of the view cell with respect to the bounding box of the scene, the
number of nodes of the kD-tree on which the hierarchical visibility test was applied, the total number
of blocker polygons constructed for occluders, the total number of occlusion tree nodes, the percentage
of occluders that are visible, and the total running time of the visibility algorithm.

B
C

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000
blocker polygons

A

D

R
O

T
 n

od
es

(a) (b)

Figure 6.12: (a) Dependency of the number of occlusion tree nodes on the number of processed blocker
polygons for various settings of the algorithm (see Section6.7). (b) Visualization of blocker polygons
of processed occluders. Note the spiky triangles on the top-left. These triangles are blocker polygons
of line segments supporting line of which intersectsRS . The chains of blue vertices lay in planes
corresponding to mappings of vertices ofRS .

The behavior of the algorithm also depends on the properties of the kD-tree used to organize occlud-
ers. The more occluders are associated with each leaf of the kD-tree the less accurate depth order is
determined. Consequently, the occlusion tree is slightly larger due to late insertions of visible occlud-
ers. Additionally more occluders are inserted in the occlusion tree, although they could be culled by the
hierarchical visibility test if a more precise front-to-back order was determined.

Figure6.12-(a) depicts the dependence of the size of occlusion tree on the number of inserted blocker
polygons. All curves were measured for a scene with10000 random line segments. CurvesA andB

82 CHAPTER 6. FROM-REGION VISIBILITY IN 2D SCENES

were measured for the kD-tree with50 occluders per leaf. CurvesC andD correspond to the kD-tree
with 5 occluders per leaf. For curvesA andC the occlusion sweep with respect to the center ofRS

was used, whereas for curvesB andD the priority queue based occlusion sweep was applied. Note the
“stairs” in graphsA andC that occur due to the fact that the regions of the kD-tree are processed in
depth-first-like search. It follows from the graphs that the best results were obtained using methodD —
finer kD-tree and the priority queue sweep. The corresponding curve also shows that once the occlusion
tree represents “enough” blocked rays its size does not grow.

6.8 Summary

We have described an algorithm that computes visibility from a given region in a 2D scene consisting of
a set of line segments. The method uses the concept of the approximate occlusion sweep, the occlusion
tree, and hierarchical visibility tests discussed in Chapter3.

The algorithm is exact and accounts for all types of occluder fusion. We have demonstrated that the
method is suitable for visibility preprocessing of large scenes by applying it to a scene representing a
footprint of a large part of a city. Coherence of visibility is exploited by using two hierarchical struc-
tures: the occlusion tree for partitioning of the problem-relevant line set and the kD-tree for organizing
occluders. The algorithm exhibits output-sensitive behavior for all tested scenes. The proposed method
requires implementation of only few geometrical algorithms, namely partitioning of a polygon by a
plane. The presented technique extends to 21

2D and it was used as a core of a visibility preprocessing
algorithm for urban scenes [Bitt01e] discussed in the next chapter.

Chapter 7

From-region visibility in 2 1
2D scenes

In this chapter we present two algorithms for computing from-region visibility in 21
2D scenes. The

proposed techniques are designed for visibility preprocessing for real-time walkthroughs in urban en-
vironments. The first algorithm uses the occlusion tree to maintain a subdivision of line space and the
conservativefunnel visibility teststo calculate a potentially visible set for a given view cell. The second
algorithm computes an exact analytic solution to from-region visibility by using the occlusion tree and
thestabbing line computation. See Figure7.1for an illustration of the from-region visibility in an urban
scene.

(a) (b) (c)

Figure 7.1: (a) Selected view cell in the scene representing the city of Vienna and the corresponding
PVS. The dark regions were culled by hierarchical visibility tests. (b) A closeup of the view cell and its
PVS. (c) Snapshot of an observer’s view from a viewpoint inside the view cell.

We present a detailed evaluation of the methods including a comparison to another recently pub-
lished visibility preprocessing algorithm by Wonka et al. [Wonk00]. The methods presented herein are
specifically targeted for computing from-region visibility in an urban scene. Calculating visibility for
a 3D spatial region is a complex problem. Previous methods (Schaufler et al. [Scha00] and Durand et
al. [Dura00]) rely on several simplifications to cope with the computational complexity of 3D visibility.
While these algorithms can handle a large variety of scenes, they only consider a subset of possible
occluder interactions (occluder fusion) and require comparatively high calculation times.

It is useful to develop visibility algorithms building on simplifications that match the demands of
specific types of scenes. Wonka et al. [Wonk00] observed that urban environments can be seen as
21

2D scenes. Although they propose an algorithm that handles all types of occluder fusion and treats
occlusion systematically, the algorithm does not scale very well to large scenes and large view cells.

83

84 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

The algorithms described in this chapter significantly improve thescalabilityof the previous methods
for the from-region visibility in 212D scenes. The algorithms exhibitoutput-sensitivebehavior and
therefore they are especially useful for large scenes and large view cells, both of which cannot be easily
handled by previous techniques with an exceptions of the method of Koltun et al. [Kolt01]. We will
demonstrate on a test model of Vienna that the proposed methods find atighter PVSthan the method
proposed by Wonka et al. [Wonk00], while requiring lower calculation times.

7.1 Problem statement

The proposed algorithm is designed for scenes of 21
2D nature such as urban scenes (see Section2.5.1).

The scene can contain arbitrary geometry, but theoccludersare restricted to be vertical trapezoids
connected with the ground (typically building façades or roof ridges).

Given a view cell, the task is to determine the potentially visible set (PVS) of objects with respect
to the view cell. The view cell is defined as a convex hull of itsvertical faces. In order to compute the
PVS in a 212D scene it is sufficient to consider only thetop edgesof the view cell faces, occluders, and
object bounding boxes [Wonk00]. The PVS can be determined by solving visibility from eachtop edge
bounding the view cell. The resulting PVS is then a union of PVSs computed for all top edges of the
given view cell.

7.2 Related work

In this section we briefly discuss related methods for visibility preprocessing suitable for an application
to urban scenes.

Airey et al. [Aire90] applied visibility preprocessing to architectural models. Visibility in indoor
scenes was further studied by Teller and Séquin [Tell91]. Both methods partition the scene into cells
and portals. For each cell they identify objects visible through sequences of portals. These objects form
a potentially visible setfor each cell. These methods are restricted to indoor scenes with a particular
structure. Recently, several techniques for visibility preprocessing were introduced that are suited to
urban environments. Cohen-Or et al. [Cohe98a] used ray shooting to sample occlusion due to single
convex occluder. Schaufler et al. [Scha00] usedblocker extensionsto handle occluder fusion. Durand
et al. [Dura00] proposedextended occluder projectionsand occlusion sweep to handle occluder fusion.
Wonka et al. [Wonk00] usedcull mapsfor visibility preprocessing in 212D scenes. Recently Koltun et
al. [Kolt01] proposed a conservative algorithm that computes from-region visibility using mapping to
line space and the z-buffer algorithm. To test visibility of an object the algorithm solves the 2D from-
region visibility in the supporting plane of the object and the view cell. The from-region visibility for
terrains was studied by Stewart [Stew97], and Cohen-Or and Shaked [Cohe95].

7.3 Algorithm overview

The main idea of the presented algorithms is to combine a solution to 2D visibility using the occlusion
tree with a solution inprimal spacefor the remaining “half dimension”. The algorithm organizes
the scene in a kD-tree. For each top edge of a given view cell, it processes the occluders using an
approximate occlusion sweep and incrementally builds the line space occlusion tree that represents the
currently visible parts of the scene with respect to the already processed occluders.

For each occluder, we perform the following steps:

• Construct a line spaceblocker polygonfrom its 2D footprint on the ground plane. The blocker
polygon is a special case of theblocker polyhedrondiscussed in Section3.3.3.

7.4. 21
2D VISIBILITY AND LINE SPACE 85

• Calculate intersections with already processed blocker polygons. As a result, the blocker polygon
is split into several fragments. Each fragment represents a set of rays that can be blocked by the
same sequence of occluders. This set of rays forms afunnelin primal space. The intersection of
the occluder and the funnel is calledoccluder fragment.

• For each blocker polygon fragment, we test visibility of the corresponding occluder fragment by
mapping the problem back to primal space. We describe two techniques for computing visibility
in the given primal space funnel:

– A conservative algorithm using linear approximations of visibility events.

– An exact algorithm using a stabbing line computation in Plücker coordinates.

• If an occluder fragment is found visible, the line space structure is updated accordingly.

The rest of the chapter is organized as follows: In Section7.4we discuss the description of 21
2D vis-

ibility in line space. In Section7.5we describe the conservativefunnel visibility testused to determine
if an occluder fragment is visible with respect to a given set of rays. In Section7.6we present the exact
funnel visibility test. Section7.7outlines the complete hierarchical visibility algorithm. In Sections7.8
and7.9we evaluate and discuss our implementation of the proposed methods.

7.4 21
2D visibility and line space

The proposed visibility algorithm operates mainly on a 2D projection of the scene. The “heights” of
scene entities are considered only when necessary (see Section2.5.1 for a discussion of visibility in
urban scenes). In order to solve the underlying 2D visibility problem, we use a mapping of oriented 2D
lines to points in 2D oriented projective space –line space[Stol91]. This mapping was discussed in the
previous chapter. To denote entities in line space, we use the asterisk notation, e.g. linel maps tol∗.
The mapping of the problem to line space allows us to represent 2D bundles of rays (which carry the
crucial part of visibility information) by simple polygons.

7.4.1 Basic definitions and terminology

We call the 2D projection of the 212D scene theground plan. Each2D ray in the ground plan represents
a vertical plane in the scene. The 2D ray corresponds to infinitely many3D raysthat are rays lying in
the corresponding vertical plane.

We call anextended visibility functiona mapping that assigns each 2D ray a sequence of occluders,
in which each occluder is visible by at least one 3D ray induced by the given 2D ray. Note, that the
sequence might be empty.

7.4.2 Blocker polygon

This section reviews the correspondence of occluders in primal space and blocker polygons in line space.
A detailed description was already presented in the previous chapter. A blocker polygon carries the 2D
visibility information induced by an occluder and an edge of the given view cell. More specifically, it
represents all 2D rays that emanate from the view cell edge and intersect the occluder. This set of rays is
bounded by fourextremal lines, forming an hourglass shaped region that we call a2D funnelor simply
funnel. The four extremal lines map to points in line space and these points define the corresponding line
spaceblocker polygon. Conversely, starting from a blocker polygon a corresponding funnel in primal
space can be constructed by inverse mapping of the vertices of the blocker polygon to oriented lines in
primal space (see Figure6.4in the previous chapter). We call a3D funnela vertical extension of the 2D
funnel that represents all 3D rays projecting to the 2D funnel.

86 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

If only 2D visibility was required, the blocker polygons could be used to solve the visibility problem
in the following way: process occluders in front-to-back order. To determine whether a newly added
occluder is visible, it suffices to test whether its associated blocker polygon is completely covered by
other blocker polygons in line space. In such a case, the occluder is invisible: any 2D ray through which
the new occluder could be visible is occluded by the already processed occluders.

7.4.3 Subdivision of line space

Mapping several occluders to line space induces a subdivision of line space into polygonal cells. Each
cell contains a sequence of blocker polygons ordered by the distance of the occluders from the given
view cell edge. A line space subdivision induced by three occluders is depicted in Figure6.6 of the
previous chapter.

The line space subdivision holds an important visibility information. Each cell corresponds to a
funnel of 2D rays that intersect the same sequence of occluders. Thus for each each cell we have
a sequence of occluders that arepotentially visiblethrough 3D rays corresponding to the cell. We
are looking for a subdivision in which each cell corresponds to a sequence of blocker polygons that
arereally visiblethrough the corresponding 3D rays. All blocker polygons corresponding to invisible
occluders should be eliminated. We therefore construct the subdivision of line space incrementally and
determine whether the currently processed occluderO is visible with respect to the occluders already
processed.

The algorithm for constructing the line space subdivision proceeds as follows: for each occluderO,
we identify the cells of the subdivision that are intersected by the corresponding blocker polygon. For
each such cell, visibility ofO is tested in primal space using occluders associated with this cell. This
test is called thefunnel visibility test. If O is found visible, it is inserted into the sequence of occluders
for the cell, or the cell is further subdivided, depending on the height structure of occluders. IfO is
occluded, no changes are necessary.

For a conservative funnel visibility test discussed in Section7.5 the resulting line space subdivision
is a conservative representation of the extended visibility function. The exact funnel visibility test
presented in Section7.6provides a subdivision representing the extended visibility function exactly.

7.4.4 Occlusion tree

Theocclusion treemaintains a subdivision of line space similarly as described in the previous chapter
for the case of 2D from-region visibility. The occlusion tree for the 21

2D visibility captures also oc-
cluders visible above closer occluders that would not be visible considering only their projections to the
ground plan.

The occlusion tree is a BSP tree, in which each nodeN represents a cellQ∗N of the line space
subdivision. The root of the tree represents the whole problem-relevant line set. IfN is an interior
node, it is associated with a planehN . Left child ofN representsQ∗N ∩h−N , right childQ∗N ∩h+

N , where
h−N andh+

N are halfspaces induced byhN . Leaves of the tree are classifiedin or out. If N is anout-leaf,
Q∗N represents unoccluded rays emerging from the source. IfN is anin-leaf, it is associated with a
sequence of occludersSN that intersect the corresponding set of 2D raysQN . N is also associated with
a blocker polygon that represents the corresponding cell of line space subdivision.

We use the occlusion tree to identify cells intersected by the currently processed blocker polygon.
The tree is then used to efficiently update the line space subdivision if we conclude that the currently
processed occluder is visible.

7.5. CONSERVATIVE FUNNEL VISIBILITY TEST 87

7.5 Conservative funnel visibility test

This section describes the conservativefunnel visibility testthat classifies visibility of a new occluder
On with respect to a cellQ∗L of the current line space subdivision. The test is carried out in primal space
within a funnelQL which the cellQ∗L maps to. The solution proposed in this section is conservative
since it approximates occlusion due to EEE event surfaces by planes.

We want to determine if a fragment of a new occluderOn is visible with respect to the sequence of
occludersSL associated with the funnelQL. The funnel visibility test can have three possible results:

• On is completely occluded by occludersSL associated withQ∗L. In this case,On does not con-
tribute to this cell.

• The top edge ofOn is visible across the whole funnel. In this case, it is simply added to the
sequenceSL of relevant occluders forQ∗L.

• On is visible in only a part of the funnel. This means that a change of visibility occurs insideQL,
and the line space subdivision needs to be updated.

7.5.1 Extended umbra

The visible part ofOn is computed as follows: We select all occluders stored in the cellQ∗L which lie in
front of On in primal space. For each such occluderO, we calculate twoshadow planes, against which
we clip the top edge ofOn . The first plane,πo, is defined by the top edge ofO and a vertex of the top
edge of the view cell faceS, such thatS andO lie on the same side ofπo. The second plane,πs, is
defined by an edge ofS and a vertex of the top edge ofO, such thatS and the top edge ofO lie on
opposite sides ofπs (see Figures7.2and7.3).

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

πs

O

S

πo

S

O

πs πo

(a) (b)

Figure 7.2: (a) Projections of the two shadow planes due to an occluderO and a view cell faceS. (b)
Front view of the view cell face, occluder and the two shadow planes.

The two planesπo andπs define anextended umbraof an occluderO within a funnel: any point inside
the extended umbra is occluded byO considering all rays from the funnel. Note that the extended umbra
of an occluder contains also points that can be visible fromS through the rays that do not belong to the
given funnel. Nevertheless, for the given configuration of the source and occluder the extended umbra
properly captures all points reachable by all 3D rays that project to the given funnel defined by a top
edgeS of the view cell and a top edge of occluderO. If a smaller fragmentS′ of S is considered, the
extended umbra ofS andO is a conservative approximation of the extended umbra ofS′ andO (see
Figure7.4).

88 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

(a) (b)

Figure 7.3: A simple model for studying the lines intersecting two occluders and their relation to the
shadow planes. (a) A top view of the model. (b) A front view of the model.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

πs

πp

πs πp

S S’

O

=
’

’

ρ

Figure 7.4: Extended umbra for a fragmentS′ of the view cell faceS. The original extended umbra of
S is a subset of the extended umbra ofS′.

7.5.2 Occlusion tree updates

The visibility test in a funnel is performed by clipping a top edge of the inserted occluder by shadow
planes of occluders associated with the funnel. Due to the configuration of the shadow planes the
clipping results in at most one visible fragment. After clipping by shadow planes of all occluders in
front of On , there is either a single fragment of the top edge left, orOn is considered occluded.

If we found a visible fragment, each of its endpoints lying inside the funnel is mapped to an edge in
line space. The resulting line space edge(s) are used to subdivide the original line space cellQ∗L into
at most three new cells. In exactly one of these cells, a fragment ofOn is visible and it is added to the
associated sequence of occluders. The update of the occlusion tree is performed by replacing the leaf
of the tree corresponding toQ∗L by a subtree induced by the subdivision edges. One of the new leaves
of the tree corresponds to a funnel in whichOn is visible. The other leaves (if any) correspond to cells
of the line space subdivision whereOn is invisible. These leaves associated with the same sequence of
occluders as the original cellQ∗L.

To see what this means in primal space, consider the two or three newly established funnels corre-
sponding to the new cells. Theprimary funnelincludes the visible part ofOn . Thesecondary funnels
correspond to parts of the original funnel whereOn is invisible.

7.6. EXACT FUNNEL VISIBILITY 89

Figure7.5 depicts a funnelQ containing three occluders. The new occluderOn is partially visible
with respect to the funnel. FunnelQ is split into three new funnels. The primary funnelQp contains the
occluder sequenceO1, O2, On , O3. The first secondary funnelQs1 is induced by the part ofOn hidden
by the shadow plane ofO2. It contains the occluder sequenceO1, O2, O3. The other secondary funnel
Qs2 corresponds to the set of 2D rays that do not intersectOn . Figure7.6 depicts the three blocker
polygons corresponding to funnelsQp,Qs1 andQs2.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

O

O

O

2

1

n

O

O

O

2

1

3

O

O

O

2

1

3

secondary funnel 1primary funnel secondary funnel 2original funnel

O

O

O

O

2

1

3

n

O3

S

front view

On

O1

QQ Q Qp s1 s2

x

S
s sa b

3O

O2

Figure 7.5: Adding a new occluderOn into a funnel induced by three occluders can yield at most three
new funnels.

Q*

Q*

p

Q*s1

s2

as*
s*b

x*

O
O
O
O

1

2

3

n

Figure 7.6: Three blocker polygons corresponding to funnelsQp, Qs1, Qs2 from Figure7.5. x∗ is the
mapping of pointx introduced by clipping occluderOn by a shadow plane.

7.6 Exact funnel visibility

This section presents an exact funnel visibility test that provides an exact analytic solution to from-
region visibility in 21

2D scenes. We use the set of occluders associated with a given funnel to construct a
sequence ofvirtual portalsthrough which the new occluderOn might be visible from a given view cell.
The algorithm then applies astabbing linecomputation on a sequence of polygonal portals [Tell92b].
If there is a stabbing line that piercesOn , the view cell, and all virtual portals,On is classified visible.
Then we determine which part ofOn is visible to update the line space subdivision accordingly.

90 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

7.6.1 Stabbing line computation

For each occluder in the sequence associated withQ∗L that lies in front ofOn we construct a portal that
is bound by a top edge of the occluder and two vertical halflines directed upwards. Then we construct
two portals that correspond to unbounded vertical trapezoids defined byOn and a given view cell face.
A stabbing line algorithm applied on the constructed portal sequence tests an existence of a ray leaving
the view cell and intersectingOn that is not blocked by any occluder (see Figure7.7). If such ray exists,
On is visible with respect to the given funnel. To determine the visible part ofOn in the funnel we need
to reconstruct theantipenumbra[Tell92a] induced by the given set of portals and intersect it withOn .

S

O1

O2

On

P

P

P1

2

S

Px

Figure 7.7: View cell and three occluders. Visibility ofOn is determined by stabbing line computation
applied on four portals.

The stabbing line computation is carried out by halfspace intersection in 5D [Tell92a]. The 5D half-
spaces are defined by hyperplanes that correspond to Plücker coefficients of lines bounding the virtual
portals (more details on Plücker coordinates and associated operations will be presented in Chapter8).
Lines that stab all the portals correspond to 5D points on the Plücker quadric [Tell92a] that lie inside
the intersection of these halfspaces. If there is no such point, there is no stabbing line and henceOn is
invisible with respect to the given occluder sequence.

Due to the 212D nature of the scene we can simplify the computation considering only a subset of
feasible stabbing lines, namely the lines that intersect both the top edge of the occluderOn and the
top edge of the view cell. Consequently, we do not compute a full-dimensional 5D polyhedronB5D

of feasible stabbing lines, but rather its three-dimensional subsetB3D resulting from an intersection of
B5D with the hyperplanes defined by the top edges of the view cell and the occluderOn . The polyhedron
B3D can be computed by treating the hyperplanes defined by the view cell and the occluder as equalities
instead of treating them as halfspace constraints.B3D has lower combinatorial complexity [Good97]
and thus it can be computed faster thanB5D .

The polyhedron corresponding to feasible stabbing lines can be computed by linear programming in
5D [Tell92a]. We evaluated several implementations [Fuku02, Avis02] and finally we used a floating
point version of the reverse search polyhedron enumeration algorithm [Avis96, Bitt97].

7.6.2 Computing visible fragments

The existence of a stabbing line only proves that the occluderOn is visible in the funnelQL. To
determine the visible part ofOn we could reconstruct theantipenumbra[Tell92a] of the given portal

7.7. HIERARCHICAL VISIBILITY ALGORITHM 91

sequence and intersect it withOn . As stated above in 212D scenes we need to consider only a subset of
antipenumbra consisting of lines that intersect the top edge of the view cell and the occluder.

To compute the antipenumbra we first compute the polyhedronB3D as an intersection of the 5D
halfspaces corresponding to portal edges. By intersecting the 1D skeleton ofB3D with the Pl̈ucker
quadric we obtain a set ofextremal stabbing lines[Tell92a]. The visible part of the occluderOn is then
given by the convex hull of the intersections of the extremal stabbing lines and the occluderOn .

7.6.3 Acceleration of the funnel visibility test

The 5D halfspace intersection is a rather costly algorithm with asymptotic time complexityO(n2),
wheren is the number of halfspaces [Tell92a]. Fortunately, we can apply early termination criteria
that decide if the new occluder is either definitely visible or definitely invisible. As a result the higher-
dimensional algorithm is invoked relatively seldom in practice.

We select all occluders associated with the cellQ∗L which lie in front of On in primal space. For
each occluder we compute four shadow planes that bound the wedge defined by its top edge and a given
top edge of the view cell. This wedge bounds a part of penumbra due to the occluder (see Figure7.8).
Note that the “lower” shadow planes correspond to the planes defining an extended umbra discussed in
Section7.5.1.

To determine ifOn is definitely invisible with respect toQ∗L we clip it against the two lower shadow
planes of each relevant occluder. If there is no fragment ofOn that lies above all lower shadow planes,
On is definitely invisible. Otherwise, we clipOn against the “upper” shadow planes. If there is no
fragment ofOn that lies below, all these planes the top edge ofOn is completely visible with respect to
Q∗L.

O S

πu2

πu1

πl

lπ
2

1

Figure 7.8: Four shadow planes bounding the penumbra wedge due to a top edge of occluderO and
view cell faceS. The lower shadow planes are denotedπl1 andπl2 , the upper onesπu1 andπu2 .

In all other cases we evaluate the intersection of the occluder top edge with all wedges (penumbras).
If the result intersects only one penumbra, we can conclude that it is visible. If the result of the clipping
lies in several wedges (penumbras), the merged umbra can be bound by quadratic EEE event surface
(event surfaces will be discussed in Section8.5). Since the EEE event surfaces are not handled by the
conservative funnel visibility test we invoke the stabbing line computation.

7.7 Hierarchical visibility algorithm

The hierarchical visibility algorithm traverses the scene kD-tree using an approximate occlusion sweep
with respect to the given view cell edge. The order is established using a priority queue, in which
the priority of a node is inversely proportional to the minimal distance of the node from the view cell.
Occluders stored within a leaf node are processed in random order.

92 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

The occlusion tree is constructed incrementally by inserting blocker polygons corresponding to the
currently processed occluder. The occlusion tree construction is interleaved with visibility tests of
the currently processed kD-tree node. The visibility test classifies visibility of the node with respect
to the already processed occluders. If the node is invisible, the subtree rooted at the node and all
occluders it contains are culled. If it is visible, the algorithm recursively continues testing visibility of
its descendants. In the special case of a node intersecting the view cell edge, it is classified visible.

Visibility classification of scene objects is carried out after the complete occlusion tree has been
constructed. If an object intersects a visible kD-tree leaf, we check its visibility using the occlusion tree
and the funnel visibility test.

7.8 Results

We have evaluated the proposed methods using a scene representing a large part of the city of Vienna.
First, we made a comparison of the conservative algorithm with the discrete hardware-accelerated ap-
proach by Wonka et al. [Wonk00]. Then the conservative algorithm was compared to the exact method.
In the comparisons, we call the new methods theline space subdivisionmethods, denoted c-LSS (con-
servative) and e-LSS (exact). Thediscrete cull mapmethod of Wonka et al. [Wonk00] is denoted DCM.

7.8.1 c-LSS vs. DCM

For evaluation of the c-LSS we used a PC equipped with a 950MHz Athlon CPU, and 256MB RAM. The
DCM was evaluated on a PC with 650MHz Pentium III, 512MB RAM, and a GeForce DDR graphics
card.

The tested scene represents 8km2 of the city of Vienna and consists of approximately 8 million
triangles. The triangles are grouped into17854 objects that are used for visibility classification. We
automatically synthesized15243 larger polygons to be used as occluders. Most occluders correspond
to building façades.

We conducted three different tests. In the first test, we randomly selected105 out of16447 view cells
in the whole scene. For each view cell edge we computed a PVS. Figure7.9shows two plots depicting
the sizes of the PVS and the running times of the two methods for each processed view cell edge.

The second test was designed to test the scalability of the two methods with respect to view cell size.
We manually placed10 larger view cells (with perimeter between600 and800 meters) and applied
the algorithms on the corresponding edges. Table7.1 summarizes the results for both the first and the
second tests.

Avg. Avg.
Test Method PVS size time

[−] [ms]
Test I DCM 105.2 202.1

c-LSS 84.7 44.6
Test II DCM 274.0 4304.8

c-LSS 236.8 211.9

Table 7.1: The average number of visible objects and the corresponding computational times for the
first and the second tests.

The last test was carried out only for c-LSS. The goal was to test the scalability of the method with
respect to the size of the scene and verify its output-sensitive behavior. We replicated the original scene
on grids of size 2x2, 4x4 and 6x6. We selected a few view cells that provided the same size of the

7.8. RESULTS 93

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

DCM
c−LSS

View cell edge id

PVS size

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350
View cell edge id

DCM
c−LSS

Time [ms]

Figure 7.9: (top) The number of potentially visible objects for305 view cell edges. (bottom) The
running times of the two tested methods.

resulting PVS for each of the tested scenes. Table7.2 depicts the size of the kD-tree and computation
times for the original scene and the three larger replicated scenes.

7.8.2 c-LSS vs. e-LSS

For the comparison of the conservative and the exact LSS methods we have used a 1GHz Pentium III
based PC with 384MB RAM. The tests were conducted using the same scene and view cells as described
in the previous section.

Table 7.3 summarizes the results of the comparison. We can observe that the PVS computed by
the e-LSS method is slightly smaller than the one computed by the c-LSS at the cost of increased
computational time.

More detailed plot of the size of the PVS and the computational time for the Test II is depicted in
Figure7.10. The plot highlights a problem with the numerical accuracy of the two algorithms: for
two view cell edges the conservative method produces a PVS one object smaller than the exact one,
which contradicts the definition of the exact and conservative algorithm. This problem occurs due
to the numerical inaccuracies of floating point computations in some degenerate configurations of the
occluders and the objects. In particular when a top edge of an object is aligned with a shadow plane
of some occluders the decision about its visibility depends on theε-thresholds used for comparison of
floating point values. This behavior can be partially solved by carefully tuning theε-thresholds and
applying them in the same solution space domain.

94 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

kD-tree Avg.
Grid Area nodes time

[km2] [−] [ms]
1x1 8 1609 90
2x2 32 6511 92
4x4 128 26191 101
6x6 288 57935 105

Table 7.2: Average PVS computation times for different scene sizes.

Avg. Avg.
Test Method PVS size time

[-] [ms]
Test I c-LSS 84.7 49.2

e-LSS 84.2 200.1
Test II c-LSS 236.8 206.1

e-LSS 233.9 575.7

Table 7.3: Conservative vs. exact LSS. The average number of visible objects and the corresponding
computational times for the first and second tests.

7.9 Discussion

In this section, we give an interpretation of the results. We discuss the suitability of the method for
real-time rendering, the importance of large view cells, the output-sensitivity of the method, the exact
vs. the conservative algorithm and the relation of the method to the algorithm of Koltun et al. [Kolt01].

7.9.1 Real-time rendering

The first test shows the calculation times and the PVS sizes for smaller view cells. We observe that
both methods produce comparable results. The view cell size for this test was chosen so as to give
reasonably-sized PVSs that would allow for walkthroughs with high frame rates [Wonk00]. The LSS
methods produce a tighter PVS, because they do not rely on discretization and occluder shrinking.

7.9.2 Large view cells

The second test shows the scalability of the method for larger view cells. Although smaller view cells
are more interesting for real-time rendering applications, larger view cells can be very useful. If we
consider a very simple model, for example, where each façade is just one large flat polygon, it can
be sufficient to calculate a solution for a rather large view cell. Another very important application
is the hierarchical precalculation of visibility information. Similar to previous methods [Dura00], the
visibility calculation could start with a subdivision of the view space into larger view cells. Smaller view
cells are only calculated when necessary (e.g., when the size of the PVS is too large or when a heuristic
determines large changes in visibility within the view cell). For urban environments, this hierarchical
approach can be efficiently combined with a priori knowledge about the scene structure. If we use
street sections as view cells, we can observe that visibility within one street section hardly changes
(see Figure7.11). In this context, we also want to emphasize that our view cells are not restricted to
axis-aligned boxes.

7.9. DISCUSSION 95

100

150

200

250

300

350

400

450

500

550

0 5 10 15 20 25 30

conservative
exact

PVS size
[−]

Viewcell edge

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30
Viewcell edge

conservative
exact

time
[s]

Figure 7.10: The size of the PVS and the running times of the c-LSS and the e-LSS methods for the 30
view cell edges used in Test II. The two red circles mark the edges where the PVS computation produces
misleading results due to numerical inaccuracies of floating operations.

7.9.3 Output sensitivity

The third test shows the scalability of the method to larger scenes. It is a desired property of a visibility
algorithm that the computation time mainly depends on the size of the PVS (=output) and not on the
size of the scene (=input). The results strongly indicate output sensitivity of the algorithm in practice:
the calculation times hardly change when the size of the scene is increased. Such a behavior can not be
achieved easily by previous methods [Wonk00, Dura00, Scha00].

7.9.4 Exact vs. conservative

In the measurements the exact method e-LSS provided only slightly smaller PVS than the conservative
one. This is an important result that shows that the solution obtained by the conservative method is very
close the exact one. Due to the optimizations used in the e-LSS method (described in Section7.6.3) the
computational time of is not restrictive even for the large scenes. Nevertheless according to the results
the effort required to implement the higher-dimensional polyhedra enumeration is not really recovered
by the small improvement in the size of the computed PVS.

96 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

Figure 7.11: (left) A small view cell and its PVS. (right) The PVS for a larger view cell can be very
similar.

7.9.5 Comparison with the method of Koltun et. al

Our method and the method proposed by Koltun et al. [Kolt01] share the idea of transforming the
problem to line space. For each occluder Koltun at el. compute an intersection of the supporting plane
of the occluder and the view cell with all other occluders. Visibility of the given occluder is then
determined by solving a from-region visibility problem in that plane. The 2D from-region visibility is
solved in line space using the z-buffer algorithm.

In contrast to the method of Koltun et. al. our method incrementally constructs a data structure
capturing visibility from the view cell. This data structure consists from the occlusion tree and the
shadow planes or the virtual portals. Our approach provides the following benefits:

• Higher accuracy.

Given an occluder the method Koltun et al. uses a single plane in which the 2D from-region
visibility is solved. Our conservative method captures the height structure of already processed
polygons by locating a number of shadow planes withing each funnel of the line space subdivi-
sion. Additionally due to the continuous description of visibility our method does not rely on the
discretization resolution. The exact method is more accurate by definition.

• Better use of coherence.

Once an occluder is processed all visibility interactions with already processed occluders are
identified and stored in the occlusion tree. When processing farther occluders the computed
visibility interactions are reused.

• Generality.

Maintaining visibility information in a general continuous data structure allows to associate vari-
ous auxiliary information with the funnels, extremal lines or occluders.

A possible drawback of our method is its sensitivity to overly detailed inputs, whereas the com-
putational complexity of the method of Koltun et al. is predominantly given by the resolution of the
discretization.

7.10. SUMMARY 97

7.10 Summary

This chapter presented two algorithms that determine visibility from a given view cell in a 21
2D scene.

The algorithms are targeted at computing PVS in an outdoor urban environment. The first, conservative,
method combines an exact solution to the 2D visibility problem with a tight conservative solution for the
remaining “half dimension”. The second, exact, method applies a stabbing line computation on a set of
virtual portals determined by the solution of the 2D visibility problem. Both methods exploit visibility
coherence by using a hierarchical subdivision of line space as well as a hierarchical organization of the
scene. The algorithms achieve output-sensitive behavior by combining ordered processing of occluders
and hierarchical visibility tests.

The methods are suitable for visibility preprocessing of large scenes, which was shown by applying
it to a scene representing a large part of the city of Vienna. The proposed methods compare favorably
with the previously published algorithm of Wonka et al. [Wonk00].

98 CHAPTER 7. FROM-REGION VISIBILITY IN 21
2D SCENES

Chapter 8

From-region visibility in 3D scenes

This chapter presents an algorithm for computing exact from-region visibility in 3D scenes. From-
region visibility problems were disregarded by the research community for a long time [Chaz96]. The
4D nature of these problems makes them difficult to solve. A discrete solution typically leads to a huge
amount of samples that must be taken to obtain a reasonably precise solution. The storage of visibility in
a discrete 4D or 5D data structure can lead to prohibitive memory consumption for the given sampling
density [Arvo87, Simi94, Chry98a]. A continuous solution potentially allows a better use of visibil-
ity coherence, but its robust implementation is difficult [Dret94b, Stew94, Dura96, Dura97, Dugu02,
Nire02]. The computational complexity of exact continuous methods is bounded byO(n4 log n) in the
worst case [Pell97] and thus these methods are sensitive to overly detailed inputs.

The algorithm presented in this chapter provides an analytic solution to the from-region visibility
problem in 3D that is based on the concept presented in Chapter3. The key idea is the mapping from
primal space to a 5D line space using Plücker coordinates. The arrangement of 5D blocker polyhedra
is maintained using a 5D occlusion tree. The occlusion tree facilitates efficient set operations on the
blocker polyhedra and improves robustness of the method by providing a consistent BSP representation
of the union of polyhedra [Nayl90b]. The construction of the tree is based on the operation of splitting
a polyhedron by a hyperplane. Thus the efficiency and robustness of the solution to the from-region
visibility problem is primarily determined by the efficiency and robustness of the polyhedron splitting
algorithm. The principle of the method is simple and in contrast to other analytic from-region visibil-
ity algorithms [Dret94b, Stew94, Dura97] the proposed method treats all visibility events in a unified
manner.

8.1 Problem statement

This chapter addresses the following from-region visibility problems:

I. Given a polygonal scene and two polygons determine:

(a) Are the two polygons visible ?

(b) Which fragments of the two polygons are mutually visible ?

(c) Visibility events between the two polygons.

II. Given a polygonal scene and a polyhedral view cell determine:

(a) A set of potentially visible polygons with respect to the view cell.

(b) Fragments of potentially visible polygons with respect to the view cell.

(c) Mutually visible fragments of the visible polygons and the view cell.

(d) Visual events with respect to the view cell.

99

100 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

The I-(a), I-(b), and I-(c) problems address elementary from-region visibility problems in polygonal
scenes. They reflect the case of a localized visibility computation, i.e. the visibility computation that is
restricted by a set of rays between the two polygons. The other three problems (II-(a), II-(b), and II-(c))
address the PVS computation. They are presented in the order of increasing accuracy of the computed
result. The II-(d) problem addresses a precise computation of shadows with respect to an areal light
source. The proposed method provides an exact analytic solution to all above mentioned problems.

8.2 Related work

Below we briefly discuss the related work on from-region visibility in several application areas.

8.2.1 Aspect graph

The first algorithms dealing with from-region visibility belong to the area of computer vision. Theas-
pect graph[Gigu90, Plan90, Sojk95] partitions the view space into cells that group viewpoints from
which the projection of the scene is qualitatively equivalent. The aspect graph is a graph describing
the view of the scene (aspect) for each cell of the partitioning. The major drawback of this approach is
that for polygonal scenes withn polygons there can beΘ(n9) cells in the partitioning for unrestricted
viewspace. Ascale spaceaspect graph [Egge92, Shim93] improves robustness of the method by merg-
ing similar features according to the given scale.

8.2.2 Potentially visible sets

In the computer graphics community Airey [Aire90] introduced the concept ofpotentially visible sets
(PVS). Airey assumes the existence of a natural subdivision of the environment into cells. For models
of building interiors these cells roughly correspond to rooms and corridors. For each cell the PVS is
formed by cells visible from any point of that cell. Airey uses ray shooting to approximate visibility
between cells of the subdivision and so the computed PVS is not conservative.

This concept was further elaborated by Teller et al. [Tell92b, Tell91] to establish a conservative PVS.
The PVS is constructed by testing the existence of a stabbing line through a sequence of polygonal por-
tals between cells. Teller proposed an exact solution to this problem using Plücker coordinates [Tell92a]
and a simpler and more robust conservative solution [Tell92b]. The portal based methods are well suited
to static densely occluded environments with a particular structure. For less structured models they can
face a combinatorial explosion of complexity [Tell92b]. Yagel and Ray [Yage95] present an algorithm,
that uses a regular spatial subdivision. Their approach is not sensitive to the structure of the model in
terms of complexity, but its efficiency is altered by the discrete representation of the scene.

Plantinga proposed a PVS algorithm based on a conservative viewspace partitioning by evaluating
visual events [Plan93]. The construction of viewspace partitioning was further studied by Chrysanthou
et al. [Chry98b], Cohen-Or et al. [Cohe98a] and Sadagic [Sada00]. Sudarsky and Gotsman [Suda96]
proposed an output-sensitive visibility algorithm for dynamic scenes. Cohen-Or et al. [Cohe98c] de-
veloped a conservative algorithm determining visibility of anε-neighborhood of a given viewpoint that
was used for network based walkthroughs.

Conservative algorithms for computing PVS developed by Durand et al. [Dura00] and Schaufler et
al. [Scha00] make use of several simplifying assumptions to avoid the usage of 4D data structures. Wang
et al. [Wang98] proposed an algorithm that precomputes visibility within beams originating from the
restricted viewpoint region. The approach is very similar to the 5D subdivision for ray tracing [Simi94]
and so it exhibits similar problems, namely inadequate memory and preprocessing complexities. Spe-
cialized algorithms for computing PVS in 21

2D scenes were proposed by Wonka et al. [Wonk00], Koltun
et al. [Kolt01], and Bittner et al. [Bitt01e].

8.2. RELATED WORK 101

The method presented in the thesis was first outlined in [Bitt99]. Recently, a similar exact algo-
rithm for PVS computation was developed by Nirenstein et al. [Nire02]. This algorithm uses Plücker
coordinates to compute visibility in shafts defined by each polygon in the scene.

8.2.3 Rendering of shadows

The from-region visibility problems include the computation of soft shadows due to an areal light
source. Continuous algorithms for real-time soft shadow generation were studied by Chin and Feiner [Chin92],
Loscos and Drettakis [Losc97], and Chrysanthou [Chry96] and Chrysanthou and Slater [Chry97]. Dis-
crete solutions have been proposed by Nishita [Nish85], Brotman and Badler [Brot84], and Soler and
Sillion [Sole98]. An exact algorithm computing an antipenumbra of an areal light source was developed
by Teller [Tell92a].

8.2.4 Discontinuity meshing

Discontinuity meshing is used in the context of the radiosity global illumination algorithm or comput-
ing soft shadows due to areal light sources. First approximate discontinuity meshing algorithms were
studied by Campbell [Camp90, Camp91], Lischinski [Lisc92], and Heckbert [Heck92]. More elaborate
methods were developed by Drettakis [Dret94a, Dret94b], and Stewart and Ghali [Stew93, Stew94].
These methods are capable of creating a complete discontinuity mesh that encodes all visual events
involving the light source.

The classical radiosity is based on an evaluation of form factors between two patches [Schr93].
The visibility computation is a crucial step in the form factor evaluation [Tell93b, Hain94, Tell94,
Nech96, Teic99]. Similar visibility computation takes place in the scope of hierarchical radiosity al-
gorithms [Sole96, Dret97, Daub97].

8.2.5 Global visibility

The aim ofglobal visibilitycomputations is to capture and describe visibility in the whole scene [Dura96].
The global visibility algorithms are typically based on some form ofline space subdivisionthat parti-
tions lines or rays into equivalence classes according to their visibility classification. Each class corre-
sponds to a continuous set of rays with a common visibility classification. The techniques differ mainly
in the way how the line space subdivision is computed and maintained. A practical application of most
of the proposed global visibility structures for 3D scenes is still an open problem. Prospectively these
techniques provide an elegant method for ray shooting acceleration — the ray shooting problem can be
reduced to a point location in the line space subdivision.

Pocchiola and Vegter introduced the visibility complex [Pocc93] that describes global visibility in
2D scenes. The visibility complex has been applied to solve various 2D visibility problems [Rivi95,
Rivi97b, Rivi97a, Orti96]. The approach was generalized to 3D by Durand et al. [Dura96]. Never-
theless, no implementation of the 3D visibility complex is currently known. Durand et al. [Dura97]
introduced thevisibility skeletonthat is a graph describing a skeleton of the 3D visibility complex.
The visibility skeleton was verified experimentally and the results indicate that itsO(n4 log n) worst
case complexity is much better in practice. Pu [Pu98] developed a similar method to the one presented
in this chapter. He uses a BSP tree in Plücker coordinates to represent a global visibility map for a
given set of polygons. The computation is performed considering all rays piercing the scene and so the
method exhibits unacceptable memory complexity even for scenes of moderate size. Recently, Duguet
and Drettakis [Dugu02] developed a robust variant of the visibility skeleton algorithm that uses robust
epsilon-visibility predicates.

Discrete methods aiming to describe visibility in a 4D data structure were presented by Chrysan-
thou et al. [Chry98a] and Blais and Poulin [Blai98]. These data structures are closely related to the

102 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

lumigraph [Gort96, Bueh01] or light field [Levo96]. An interesting discrete hierarchical visibility al-
gorithm for two-dimensional scenes was developed by Hinkenjann and Müller [Hink96]. One of the
biggest problems of the discrete solution space data structures is their memory consumption required
to achieve a reasonable accuracy. Prospectively, the scene complexity measures [Caza97b] provide a
useful estimate on the required sampling density and the size of the solution space data structure.

8.2.6 Other applications

Certain from-point visibility problems determining visibility over a period of time can be transformed
to a static from-region visibility problem. Such a transformation is particularly useful for antialiasing
purposes [Gran85]. The from-region visibility can also be used in the context of simulation of the sound
propagation [Funk98]. The sound propagation algorithms typically require lower resolution than the
algorithms simulating the propagation of light, but they need to account for simulation of attenuation,
reflection and time delays.

8.3 Algorithm overview

The method presented in this chapter follows the concept introduced in Chapter3. The algorithm
incrementally constructs anocclusion treefor a given source polygonPS . Visibility from a polyhedral
view cell is determined by computing visibility from each face of the view cell.

The scene polygons are processed using an approximate occlusion sweep with respect toPS . At
each step the occlusion tree represents the set of lines blocked by the already processed polygons.
Additionally the tree captures a complete description of visibility fromPS including all visual events
that may occur when viewing the scene fromPS .

The key idea is the description of a set of lines intersecting the source polygonPS and a given scene
polygon by a 5D blocker polyhedron in Plücker coordinates. Visibility of all scene polygons is then
evaluated by set theoretical operations on the corresponding polyhedra maintained by the occlusion
tree.

As discussed in Chapter2 the problem-relevant line set for the from-region visibility in 3D is four-
dimensional. As we shall see later we “add” one more dimension, which allows to describe even non-
linear visual events by means of hyperplanes and their intersections. To obtain the final solution the 5D
subdivision is intersected with a 4D hypersurface.

The rest of the chapter is organized as follows: Section8.4discusses the Plücker coordinates of lines
in 3D, Section8.5describes visibility events in polygonal scenes and their relation to the Plücker coordi-
nates. Section8.6discusses the description of the set of lines intersecting a single polygon, Section8.7
discusses lines between two polygons. Section8.8describes the occlusion tree, Section8.9presents the
algorithm of its construction. Section8.10presents algorithms for both conservative and exact visibil-
ity tests using the occlusion tree. Section8.11describes several optimizations. Section8.12mentions
possible applications of the method. Section8.13discusses the implementation issues. Section8.14
summarizes the measured results. Finally, Section8.15concludes the chapter.

8.4 Plücker coordinates of lines

We will use a mapping that describes an oriented 3D line as a point in a projective 5D space [Bois98] by
means of Pl̈ucker coordinates [Tell92b, Pell97, Yama97, Pu98]. Plücker coordinates allow to represent
sets of lines using 5D polyhedra and to compute visibility by means of polyhedra set operations in 5D.

A line in 3D can be described by homogeneous coordinates of two distinct points on that line. Let
l be a line inR3 and letu = (ux, uy, uz, uw) and v = (vx, vy, vz, vw) be two distinct points in

8.4. PLÜCKER COORDINATES OF LINES 103

homogeneous coordinates lying onl. A line l oriented fromu to v can be described by the following
matrix:

l =

(
ux uy uz uw

vx vy vz vw

)
(8.1)

Minors of the matrix correspond to components of thePlücker coordinatesπl of line l:

πl = (πl0, πl1, πl2, πl3, πl4, πl5) =
= (ξwx, ξwy, ξwz, ξyz, ξzx, ξxy),

(8.2)

where

ξrs = det

(
ur us

vr vs

)
. (8.3)

Substitutinguw = 1 andvw = 1 into Eq.8.2enumerates to:

πl0 = vx − ux

πl1 = vy − uy

πl2 = vz − uz

πl3 = uyvz − uzvy

πl4 = uzvx − uxvz

πl5 = uxvy − uyvx

(8.4)

The Pl̈ucker coordinatesπl can be seen as homogeneous coordinates of a point in a projective five-
dimensional spaceP5. We call this point aPlücker pointπ̂l of l. For a given oriented linel the
Plücker coordinatesπl are unique and they do not depend on the choice of pointsp andq. We will use
the notation of a Plücker pointπ̂l in the case when we want to stress that the corresponding Plücker
coordinatesπl are interpreted as a point inP5.

Using the projective duality the Plücker coordinates can be interpreted as coefficients of a hyperplane.
ThePlücker coefficientsωl of line l are given as:

ωl = (ωl0, ωl1, ωl2, ωl3, ωl4, ωl5) =
= (ξyz, ξzx, ξxy, ξwx, ξwy, ξwz)

(8.5)

Substituting Eq.8.4 into Eq.8.5we get:

ωl0 = πl3

ωl1 = πl4

ωl2 = πl5

ωl3 = πl0

ωl4 = πl1

ωl5 = πl2

(8.6)

The Pl̈ucker coefficientsωl define aPlücker hyperplanêωl. We will use the notation of a Plücker
hyperplanêωl when we want to stress that the corresponding Plücker coefficientsωl are interpreted as
a hyperplane inP5. In terms of Pl̈ucker points the Plücker hyperplane can be expressed as:

ω̂l = {π̂|π̂ ∈ P5,ωl � π = 0} (8.7)

The Pl̈ucker hyperplane induces closed positive and negative halfspaces given as:

ω̂+
l = {π̂|π̂ ∈ P5,ωl � π ≥ 0}

ω̂−
l = {π̂|π̂ ∈ P5,ωl � π ≤ 0} (8.8)

104 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

These definitions of Plücker coordinates and coefficients follow the “traditional” convention [Pu98].
They differ from the definitions used by Teller [Tell92b] who used a permuted order of the coordi-
nates. The traditional convention provides an elegant interpretation of Plücker coordinates that will be
discussed in Section8.4.1.

If a andb are two directed lines, the relationside(a, b) is defined as an inner productωa � πb or
permuted inner productπa × πb:

side(a, b) = ωa � πb =
= ωa0πb0 + ωa1πb1 + ωa2πb2 + ωa3πb3 + ωa4πb4 + ωa5πb5 =
= πa × πb =
= πa0πb3 + πa1πb4 + πa2πb5 + πa3πb0 + πa4πb1 + πa5πb2

(8.9)

This relation can be interpreted with the right-hand rule (Figure8.1). If the thumb of the right hand
is directed along linea, then:

• side(a, b) > 0, if line b is oriented in the direction of the fingers,

• side(a, b) = 0, if lines a andb intersect or are parallel,

• side(a, b) < 0, if line b points against the direction of the fingers.

ωaωaπ b

π b

π b

ωa

line space

side(a,b)<0 side(a,b)=0 side(a,b)>0

b b b

aaa

primal space

Figure 8.1: Theside(a, b), interpreted as the right-hand rule.

Plücker coordinates have an important property: Although every oriented line inR3 maps to a point
in Plücker coordinates, not every tuple of six real numbers corresponds to a real line. Only the points
π̂ ∈ P5 Plücker coordinates of which satisfy the condition

π � π = 0 ≡ π0π3 + π1π4 + π2π5 = 0, (8.10)

represent real lines inR3. All other points correspond to lines which are said to beimaginary. The
set of points inP5 satisfying Eq.8.10forms a 4D hyperboloid of one sheet called thePlücker quadric,
also known as theKlein quadricor theGrassman manifold(see Figure8.2).

The six Pl̈ucker coordinates of a real line are not independent. Firstly, they describe an oriented
projective space, secondly, they must satisfy the equation8.10. Thus there are four degrees of freedom
in the description of a 3D line, which conforms with the classification from Chapter2.

Plücker coordinates allow to detect an incidence of two lines by computing an inner product of a
homogeneous point (mapping of one line) with a hyperplane (mapping of the other). Linesl and l′

intersect or are parallel (i.e. meet at infinity) if and only ifπ̂l ∈ ω̂l′ , i.e. side(l, l′) = 0. Note that
according to8.10any line always meets itself.

8.4. PLÜCKER COORDINATES OF LINES 105

R3 P5

Figure 8.2: Real lines map on points on the Plücker quadric.

8.4.1 Geometric interpretation of Pl̈ucker coordinates

For a better understanding of Plücker coordinates it is natural to ask how each individual Plücker coor-
dinate is related to the geometry of the corresponding line. The Plücker coordinates of a given line can
be divided to thedirectionaland thelocationalparts. The directional part encodes the direction of the
line, the locational part encodes the position of the line. Given Plücker coordinatesπl of a linel we can
write:

dl = (πl0, πl1, πl2),
ll = (πl3, πl4, πl5),

(8.11)

wheredl is thedirectional vectorof l andll is thelocational vectorof l. The Pl̈ucker coordinatesπl

and the Pl̈ucker coefficientsωl can be expressed as:

πl = [dl; ll],
ωl = [ll;dl].

(8.12)

Extracting a point

Often we need to describe a line using a parametric representation by means of ananchor pointand
a directional vector. Given a linel the directional vectordl is embedded in the Plücker coordinates ofl
(see Eq.8.12). The anchor pointal can be computed as:

al = (ax, ay, az) =
dl × ll
‖ dl ‖2

. (8.13)

Computing the distance

The distance between two linesl andl′ can be expressed using their anchor points and the directional
vectors:

dist(l, l′) =
|(al − al′) · (dl × dl′)|

‖ dl × dl′ ‖
. (8.14)

The distance is the length of the projection of the line segmental,al′ onto the directiondl × dl′ .

106 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

8.5 Visual events

This section discusses visual events occurring in polygonal scenes [Gigu90]. We will focus on the
boundaries of visual events and their relation to Plücker coordinates. The understanding of the visual
events helps to comprehend the complexity of the from-region visibility in 3D.

Any scene can be decomposed into regions from which the scene has a topologically equivalent
view [Gigu90]. Boundaries of such regions correspond toevent surfaces. Crossing an event surface
causes avisual event, i.e. a change in the topology of the view (visibility map). In polygonal scenes
there are three types of event surfaces [Gigu90]:

• vertex-edge(VE) events involving an edge and a vertex of two distinct polygons.

• edge-edge-edge(EEE) events involving three edges of three distinct polygons.

• supportingevents corresponding to supporting planes of scene polygons. The supporting event
can be seen as a degenerated case of VE or EEE events.

The VE events correspond to planes, the EEE events in general form quadratic surfaces. The defini-
tions assume that the scene polygons are in general non-degenerate position. In real world scenes the
polygons or their edges polygons can be variously aligned. In such a case these definitions of visibility
events form minimal sets of edges and vertices defining an event. For example a VE event can involve
a vertex and several edges of scene polygons (see Figure8.3).

P

P

P

P

3
S

1
2

Figure 8.3: Degenerated VE event. The VE event is induced by a vertex and three edges of scene
polygons.

The intersections of event surfaces correspond toextremal lines[Tell92b]. An extremal line inter-
sects four edges of some scene polygons. There are four types of extremal lines: vertex-vertex (VV)
lines, vertex-edge-edge (VEE) lines, edge-vertex-edge (EVE) and quadruple edge (4E) lines. Imagine
“sliding” an extremal line (of any type) away from its initial position by relaxing exactly one of the four
edge constraints determining the line. The section of the event surface swept out by the sliding line is
called theswath. A swath is either planar if it corresponds to a VE event surface or a regulus if it is
embedded in an EEE event surface.

Figure8.4-(a) shows an extremal VV line tight on four edges A,B,C, and D. Relaxing constraint C
yields a VE (planar) swath defined by A,B, and D. When the sliding line encounters an obstacle (edge E)
it terminates at a VV extremal line defined by A,B,D, and E. Figure8.4-(b) depicts an extremal 4E line
tight on the mutually skew edges A,B,C, and D. Relaxing constraint A produces an EEE event surface
that is a regulus intersecting B,C, and D. When the sliding line encounters edge E the swath terminates
at an VEE extremal line.

8.5. VISUAL EVENTS 107

E

B

C

EEEEEEE

VEE

DC

E

A

VV

VV

VE

A

D

B

(a) (b)

Figure 8.4: Swaths of event surfaces. (a) VE swath. (b) EEE swath.

8.5.1 Visual events and Pl̈ucker coordinates

Plücker coordinates allow an elegant description of event surfaces. An event surface can be expressed
as an intersection of three Plücker hyperplanes, and thus avoiding explicit treatment of quadratic sur-
faces. The non-linear EEE surfaces correspond to curves embedded in the intersection of the Plücker
hyperplanes.

LetH be an arrangement [Good97] of hyperplanes inP5 that correspond to Plücker coefficients of
edges of the scene polygons. The intersection of the arrangementH and the Pl̈ucker quadric yields all
visual events [Tell92b, Pell97, Pu98].

An extremal linel intersects four generator edges. Consequently, the corresponding Plücker point
π̂l lies on four Pl̈ucker hyperplanes. In 5D the four hyperplanes define an edge of the arrangement
H. Thus, we can find all extremal lines of a given set of polygons by examining the edges ofH for
intersections with the Plücker quadric [Pu98].

Consider the situation depicted in Figure8.4. In line space the event surfaces correspond to curves
embedded in the Plücker quadric. In general these curves are conics defined by an intersection of the
2D-faces ofH with the Pl̈ucker quadric (see Figure8.5).

(edge)

2D−face
other edges

conic trace
(mapping of a swath)

1D−face

extremal Pluecker point
(mapping of an extremal line)

Figure 8.5: 3D swaths correspond to conics on the Plücker quadric.

108 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

8.6 Lines intersecting a polygon

Plücker coordinates provide a tool to map lines from primal space to points in line space. This mapping
allows to perform operations of sets of lines using set theoretical operations on the corresponding sets of
points. In polygonal scenes theelementary set of linesis formed by lines intersecting a given polygon.

Assume that a convex polygonP is defined by edgesei, 0 ≤ i < n that are oriented counterclock-
wise. The set of linesLP intersecting the polygon that are oriented in the direction of the polygon’s
normal satisfies:

LP = {l|l ∈ (R3, R3), side(πl,πei) ≤ 0,∀i ∈ 〈0, n)}, (8.15)

whereπl are Pl̈ucker coordinates of linel andπei are Pl̈ucker coordinates ofi-th edge of the polygon.
Substituting the Eq.8.9and rewriting the equation in terms of a set of Plücker points we get:

FP = {π̂|π̂ ∈ P5,π × πei ≤ 0,∀i ∈ 〈0, n)} =
= {π̂|π̂ ∈ P5,π � ωei ≤ 0,∀i ∈ 〈0, n)}, (8.16)

whereFP is a set offeasible Pl̈ucker pointsfor polygonP . Substituting Eq.8.8into 8.16we obtain:

FP = {π̂|π̂ ∈ P5,π ∈ ω̂−
ei

,∀i ∈ 〈0, n)} (8.17)

Thus the set of feasible Plücker points is defined by an intersection of halfspaces defined by the
Plücker hyperplanes corresponding to edges of the polygon. The set ofstabbersSP is then defined as
an intersection ofFP with the Pl̈ucker quadric:

SP = {π̂|π̂ ∈ FP ,π � π = 0}. (8.18)

The stabbers are Plücker points corresponding to the real lines intersecting the polygon that are
oriented in the direction of the normal. Similarly we can define the sets ofreverse feasible Plücker
pointsF−P andreverse stabbersS−P that correspond to opposite oriented lines intersecting the polygon:

F−P = {π̂|π̂ ∈ P5, π̂ ∈ ω̂+
ei

,∀i ∈ 〈0, n)}
S−P = {π̂|π̂ ∈ F−P ,π � π = 0}. (8.19)

8.7 Lines between two polygons

The above presented definitions of elementary line sets allow to handle visibility computations by means
of set operations on the sets of feasible Plücker points. Visibility between two polygonsPj andPk can
be determined by constructing an intersection of feasible sets of the two polygonsFPj andFPk

and
subtracting all feasible sets of polygons lying betweenPj andPk. To obtain the set of unoccluded
stabbers we intersect the resulting feasible set with the Plücker quadric.

Further in this chapter we restrict our discussion to visibility from a givensource polygonPS . Given
anyoccluder polygonPj we first describe lines intersecting bothPS andPj . Lines betweenPS andPj

can be described by an intersection of their feasible line sets:

FPSPj = FPS
∩ FPj (8.20)

and thus

SPSPj = SPS
∩ SPj . (8.21)

The feasible Pl̈ucker points are defined by an intersection of halfspaces corresponding to edges ofPS

andPj . These halfspaces define ablocker polyhedronBPSPj that is described in the next section.

8.7. LINES BETWEEN TWO POLYGONS 109

Blocker polyhedron

The blocker polyhedron describes lines intersecting the source polygon and the given occluder. The
blocker polyhedron can be seen as an extension of the blocker polygon discussed in Chapters6 and8 for
the from-region visibility in 3D scenes. The blocker polyhedron is a 5D polyhedron in a 5D projective
space. To avoid singularities in the projection fromP5 toR5 the polyhedron can be embedded inR6

similarly to the embedding of blocker polygon inR3 (see Section6.4.3). Then the polyhedron actually
represents a 6D pyramid with an apex at the origin ofR6.

Cap planes

The blocker polyhedron is defined by an intersection of halfspaces defined by Plücker planes that
are mappings of edges of the source polygon and the occluder. As stated above the blocker polyhedron
represents the set of feasible Plücker pointsFPSPj including points not intersecting the Plücker quadric
that correspond to imaginary lines. We bound the polyhedron bycap planesaligned with the Pl̈ucker
quadric so that the resulting polyhedron is a tighter representation of the stabbersSPSPj . We need to
ensure that the resulting polyhedron fully contains the stabbersSPSPj , i.e. contains the cross-section of
the Pl̈ucker quadric andFPSPj .

The cap planes provide the following benefits:

• The computation is localized to the proximity of the Plücker quadric. This reduces the combina-
torial complexity of data structure representing an arrangement of the blocker polyhedra.

• The blocker polyhedron is always bounded. Although the set of lines between two convex poly-
gons is bounded, the set of feasible Plücker points can be unbounded at the “direction” of imag-
inary lines. Adding the cap planes we make sure that the polyhedron is bounded, which allows
its easier treatment. By using the cap planes we avoid the handling of very oblong, almost un-
bounded polyhedra, which improves numerical stability of a floating point implementation of the
algorithm.

We used two cap planes to bound the polyhedron, one for each side of the Plücker quadric (a side
is given by the sign ofπ � π). The cap planes are computed as tangents to the Plücker quadric at the
center of the set of stabbersSPSPj . The planes are translated each at the opposite direction making sure
that they include the whole setSPSPj .

8.7.1 Intersection with the Pl̈ucker quadric

Given a blocker polyhedron representing the set of feasible linesFPSPj we can compute an intersection
of the edges of the polyhedron with the Plücker quadric to determine the set of extremal lines bounding
the set of stabbersSPSPj . An intersection of an edge of the blocker polyhedron with the Plücker quadric
results in at most twoextremal Pl̈ucker pointsthat correspond extremal lines1. Given an edge of the
blocker polyhedron the intersection with the Plücker quadric is computed by solving the quadratic equa-
tion (Eq.8.10). A robust algorithm for computing this intersection was developed by Teller [Tell93a].

Intersecting all edges of the blocker polyhedron with the Plücker quadric yields all extremal lines of
SPSPj [Tell92a, Pu98]. See Figure8.6 for an example of extremal lines computed for the given source
polygon and a set of three occluders.

The intersection of the 2D faces of the blocker polyhedron with the Plücker quadric yields swaths of
event surfaces of the set of stabbersSPSPj [Tell92b]. In general the intersection results in 1D conics.

We can avoid the explicit treatment of conics in 5D by computing the local topology of the edges of
the blocker polyhedron and constructing the swaths in primal space between the topologically connected

1Neglecting the case that the whole edge is embedded in the Plücker quadric, which results in infinite number of extremal
lines.

110 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

Figure 8.6: Extremal lines for the given source polygon (yellow) and three occluders.

extremal lines [Tell92b]. The local topology of an extremal Plücker point is given by connections with
extremal Pl̈ucker points embedded in the same 2D face of the blocker polyhedron. A 2D face of the
blocker polyhedron is given by three Plücker hyperplanes. Thus the pairs of extremal Plücker points
defined by the subset of the same three Plücker hyperplanes define a swath.

For solution of some from-region visibility problems (e.g. PVS computation, region-to-region visi-
bility) the event swaths need not be reconstructed. For example the visibility culling algorithm that will
be discussed in Section8.12.2only computes extremal Plücker points and uses them to test an existence
of a set of stabbers of a given size.

8.7.2 Size of the set of lines

Computing a size measure of a given set of lines is useful for most visibility algorithms. The computed
size measure can be used to drive the subdivision of the given set of lines or to bound the maximal error
of the algorithm. An analytic algorithm can use the computed size measure for thresholding by a given
ε-size to discard very small line sets. A discrete algorithm can use the size measure to determine the
required density of sampling.

The size of a set of lines for the from-point visibility can be formulated easily: the size is given by
the area of the intersection of the line set with a plane. This corresponds to quantifying visibility of
an object according to its projected area. Such a size is determined in the solution space (viewport).
Alternatively we could use a “viewport independent measure” given by a solid angle formed by the
visible part of an object. The size measure for the from-region visibility problems is more complicated
for the following reasons:

• The domain of the solution space is four-dimensional.

• The solution space of the from-region visibility algorithm generally does not correspond to the
solution space of the application. For example, a visible surface algorithm using a precomputed
PVS works in a 2D domain induced by the given viewport.

General size measure

A size of a set of lines for the from-region visibility can be computed by evaluating a 4D integral.
Using Pl̈ucker coordinates we can compute a volume of the 4D hyper-surface corresponding to the
given set of lines. The volume however depends on a way of projecting the blocker polyhedron from
P5 toR5. This projection has a similar role as the selection of the viewport for the from-point visibility

8.8. OCCLUSION TREE 111

problem. We can project the blocker polyhedron fromP5 to R5 by projecting it to a 5D hyperplane
defined by certain reference direction, e.g. the “center-line” of the given set of lines. Pu proposed a
different size measure based on measuring theangular spreadand thedistancebetween lines [Pu98].
Both these quantities can be evaluated in terms of Plücker coordinates of the set of extremal lines of the
given line set.

Size measure for the PVS computation

It can be difficult to relate the size measures described above to the domain of the result of a sub-
sequently applied visibility algorithm. We need a simple scheme that fits to the context of the target
application. In this section we suggest a size measure designed for the PVS computation. When com-
puting a PVS we are interested in measuring the size of the set of unoccluded lines (stabbers) between
the source polygonPS and a given scene polygon. If this size is below anε-threshold, we can possi-
bly exclude the polygon from the PVS. We suggest to use an estimate of the minimal angle between
the stabbers at a point insidePS . The idea is to estimate the minimal projected diameter of a polygon
visible through the given set of lines from any point insidePS . This estimate can be used to bound a
maximal error of an image synthesized with respect to any viewpoint insidePS for the case that the
corresponding set of lines is neglected.

Given a blocker polyhedronFPSPj the proposed size measure can be evaluated as follows:

1. Compute the extremal lines of the corresponding set of stabbersSPSPj as described in Sec-
tion 8.7.1.

2. For each polygon edgeei bounding the stabbers determine an extremal linelmi with a maximal
distance from the edge.

3. For each edgeei compute a shortest line segmentzi connectingei and lmi. The length of this
line segment is then scaled according to its distance from the source polygon, i.e. we compute an
angleαi between the lines connecting the center of the source polygon and the endpoints ofzi.

4. Select a minimal angleαm of all αi as the estimate of the size of the given line set.

The evaluation of the size measure is depicted in Figure8.7.
The angleαm can be related to the angular resolution of the synthesized image. Given the resolution

of the image we can threshold “small” line sets withαm below the corresponding angular threshold to
achieve a sub-pixel precision of the rendering algorithm. This measure can also be applied to deal with
the finite precision of the floating point arithmetics by using a smallε-threshold to handle numerical
inaccuracies.

8.8 Occlusion tree

The occlusion tree for the visibility from region problem is a 5D BSP tree maintaining a collection of
the 5D blocker polyhedra. The tree is constructed for each source polygonPS and represents all rays
emerging fromPS . Each nodeN of the tree represents a subset of line spaceQ∗N . The root of the
tree represents the whole problem-relevant line setLR. If N is an interior node, it is associated with a
Plücker planêωN . Left child of N representsQ∗N ∩ ω̂−

N , right childQ∗N ∩ ω̂+
N , whereω̂−

N andω̂+
N are

halfspaces induced bŷωN .
Leaves of the occlusion tree are classifiedin or out. If N is anout-leaf,Q∗N represents unoccluded

rays emerging from the source polygonPS . If N is anin-leaf, it is associated with an occluderON that
blocks the corresponding set of raysQ∗N . Additionally N stores a fragment of the blocker polyhedron
BN representingQ∗N . The intersection ofBN and the Pl̈ucker quadric corresponds to a set of stabbers
SN through whichON is visible fromPS .

112 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

P

P

P

P

S

1

2

3

m

z3

z

α

z1
2

Figure 8.7: A 2D example of evaluation of the size of a set of lines. The three line segmentsz1, z2

andz3 maximize the distance of the corresponding occluder edges from the extremal lines. The line
segmentz3 spans a minimal angleαm with respect to the center of the source polygonPS .

8.9 Occlusion tree construction

The occlusion tree is constructed incrementally by inserting blocker polyhedra in the order given by
the approximate occlusion sweep of the scene polygons. When processing a polygonPj the algorithm
inserts a polyhedronBPSPj representing the feasible line set between the source polygonPS and the
polygonPj . The polyhedron is split into fragments that represent either occluded or unoccluded rays.

We describe two methods that can be used to insert a blocker polyhedron into the occlusion tree. The
first method inserts the polyhedron by splitting it using hyperplanes encountered during the traversal of
the tree. The second method identifies hyperplanes that split the polyhedron and uses them later for the
construction of polyhedron fragments in leaf nodes.

8.9.1 Insertion with splitting

The polyhedron insertion algorithm maintains two variables — the current nodeNc and the current
polyhedron fragmentBc. Initially Nc is set to the root of the tree andBc equals toBPSPj . The insertion
of a polyhedron in the tree proceeds as follows: IfNc is an interior node, we determine the position of
Bc and the hyperplanêωNc associated withNc. If Bc lies in the positive halfspace induced byω̂Nc the
algorithm continues in the right subtree. Similarly, ifBc lies in the negative halfspace induced byω̂Nc ,
the algorithm continues in the left subtree. IfBc intersects both halfspaces, it is split byω̂Nc into two
partsB+

c andB−
c and the algorithm proceeds in both subtrees ofNc with relevant fragments ofBc.

If Nc is a leaf node then we make a decision depending on its classification. IfNc is anout-leaf then
Bc is visible andNc is replaced by the elementary occlusion tree ofBc. If Nc is anin-leaf, the mutual
position of the currently processed polygonBj and the polygonBNc associated withNc is determined.
This test will be described in Section8.9.3. If Bc is behindBNc it is invisible and no modification
to the tree necessary. Otherwise we need tomergeBc into the tree. The merging replacesNc by the
elementary occlusion tree ofBc and inserts the old fragmentBNc in the new subtree.

8.9. OCCLUSION TREE CONSTRUCTION 113

8.9.2 Insertion without splitting

The above described polyhedron insertion algorithm requires that the polyhedron is split by the hyper-
planes encountered during the traversal of the occlusion tree. Another possibility is an algorithm that
only tests the position of the polyhedron with respect to the hyperplane and remembers the hyperplanes
that split the polyhedron on the path from the root to the leaves. Reaching a leaf node these hyper-
planes are used to construct the corresponding polyhedron fragment using a polyhedron enumeration
algorithm.

The splitting-free polyhedron insertion algorithm proceeds as follows: we determine the position of
the blocker polyhedron and the hyperplaneω̂Nc associated with the current nodeNc. If Bc lies in the
positive halfspace induced bŷωNc the algorithm continues in the right subtree. Similarly ifBc lies
in the negative halfspace induced byω̂Nc the algorithm continues in the left subtree. IfBc intersects
both halfspaces the algorithm proceeds in both subtrees ofNc andω̂Nc is added to the list of splitting
hyperplanes with a correct sign for each subtree. Reaching anout-leaf the list of splitting hyperplanes
and the associated signs correspond to halfspaces bounding the corresponding polyhedron fragment.
The polyhedron enumeration algorithm is applied using these halfspaces and the original halfspaces
defining the blocker polyhedron. Note that it is possible that no feasible polyhedron exists since the
intersection of halfspaces is empty. Such a case occurs due to the conservative traversal of the tree
that only tests the position of the inserted polyhedron with respect to the splitting hyperplanes2. If the
fragment is not empty, the tree is extended as described in the previous section.

Reaching anin-leaf the polygon positional test is applied. If the inserted polygon is closer than the
polygon associated with the leaf, the polyhedron fragment is constructed and it is merged in the tree as
described in the previous section. The splitting-free polyhedron insertion algorithm has the following
properties:

• If the polyhedron reaches onlyin-leaves the 5D set operations on the polyhedron are avoided
completely.

• If the polyhedron reaches only a few leaves the application of the polyhedron enumeration algo-
rithm is potentially more efficient than the sequential splitting. On the contrary, when reaching
manyout-leaves the splitting-free method makes less use of coherence, i.e. the polyhedron enu-
meration algorithm is applied independently in each leaf even if the corresponding polyhedra are
bound by coherent sets of hyperplanes.

• An existing implementation of the polyhedron enumeration algorithm can be used [Fuku02,
Avis02].

The polyhedron enumeration algorithm constructs the polyhedron as an intersection of a set of halfs-
paces. The polyhedron is described as a set ofverticesandraysand their adjacency to the hyperplanes
bounding the polyhedron [Fuku96, Avis96]. The adjacency information is used to construct a 1D skele-
ton of the polyhedron that is required for computation of the intersection with the Plücker quadric.

8.9.3 Polygon positional test

The polygon positional test aims to determine the order of two polygonsPi andPj with respect to the
source polygonPS [Chry96]. We assume that polygonsPi andPj do not intersect, i.e. all potential
polygon intersections were resolved in preprocessing. The test is applied to determine which of the
two polygons is closer toPS with respect to the given set of rays intersecting both polygons. The test
proceeds as follows:

2Such a traversal was also used in Section4.10in the context of the from-point visibility culling.

114 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

1. If Pi lays in the positive/negative halfspace defined byPj , it is before/behindPj . Otherwise,
proceed with the next step.

2. If Pj lays in the positive/negative halfspace defined byPi, it is before/behindPi. Otherwise,
proceed with the next step.

3. Find a ray from the given set of rays that intersects both polygons. Compute an intersection
of the ray withPi andPj and determine the position of the polygons according to the order of
intersection points along the ray.

The first two steps aim to determine the absolute priority of one of the polygons. If these steps fail,
the order of the polygons is determined using a sample ray in step 3.

8.10 Visibility test

The visibility test classifies visibility of a given polygon with respect to the source polygon. The test can
be used to classify visibility of a polyhedral region by applying it on the boundary faces of the region
and combining the resulting visibility states.

8.10.1 Exact visibility test

The exact visibility for a given polyhedral region proceeds as follows: for each face of the region facing
the given source polygon we construct a blocker polyhedron. The blocker polyhedron is then tested for
visibility by the traversal of the occlusion tree. The visibility test proceeds as the algorithms described
in Section8.9, but no modifications to the tree are performed. If the polyhedron is classified as visible
in all reached leaves, the current face is fully visible. If the polyhedron is invisible in all reached leaves,
the face is invisible. Otherwise it is partially visible since some rays connecting the face and the source
polygon are occluded and some are unoccluded. The visibility of the whole region is computed using a
combination of visibility states of its boundary faces according to Table3.1.

8.10.2 Conservative visibility test

The conservative visibility test provides a fast estimation of visibility of the given region since it does
not require the 5D polyhedra enumeration. Visibility of the given face of the region is determined by
a traversal of the occlusion tree and testing the position of the corresponding blocker polyhedron with
respect to the encountered hyperplanes as described in Section8.9.2. If the blocker polyhedron reaches
only in-leaves and the face is behind the polygon(s) associated with the leaves, the face is classified
invisible . Otherwise, it is conservatively classified as visible. The visibility of the whole region is
determined using a combination of visibility of its faces as mentioned in the previous section.

8.11 Optimizations

Below we discuss several optimization techniques that can be used to improve the performance of the
algorithm. The optimizations do not alter the accuracy of the visibility algorithm.

8.11.1 Shaft culling

The algorithm as described computes and maintains visibility of all polygons facing the given source
polygon. In complex scenes the description of visibility from the source polygon can reachO(n4)
complexity in the worse case [Tell92b, Pell97, Dura99]. The size of the occlusion tree is then bound

8.11. OPTIMIZATIONS 115

by O(n5). Although such a configuration occurs rather rare in practice we need to apply some general
technique to avoid the worst-case memory complexity. If the algorithm should provide an exact analytic
solution to the problem, we cannot avoid theO(n4 log n) worst-case computational complexity, but the
computation can be decoupled to reduce memory requirements.

We propose to use theshaft culling [Hain94] method that divides the computation into series of
from-region visibility problems restricted by a given shaft of lines. Ideally the shafts are determined so
that thevisibility complexityin the shaft is bound by a given constant. This is however the from-region
visibility problem itself. We can use an estimate based on a number of polygons in the given shaft. First,
the hemicube is erected over the source polygon and it is used to construct five shafts corresponding
to the five faces of the hemicube. The shafts are then subdivided as follows: if a given shaft intersects
more than a predefined number of polygons the corresponding hemicube face is split in two and the
new shafts are processed recursively. Visibility in the shaft is evaluated using all polygons intersecting
the shaft. When the computation for the shaft is finished the occlusion tree is destroyed. The algorithm
then proceeds with the next shaft until all generated shafts have been processed. See Figure8.8 for an
example of a regular subdivision of the problem-relevant line set into 80 shafts.

PS

Figure 8.8: An example of the shaft culling for from-region visibility. Visibility computation is carried
out in each of the 80 shafts defined by the source polygon (the yellow rectangle) and the rectangles on
the hemicube erected over the source polygon.

This technique shares a similarity with the algorithm recently published by Nirenstein et al. [Nire02]
that uses shafts between the source polygon and each polygon in the scene. Our technique provides the
following benefits:

• The shaft can contain thousands of polygons, which allows to better exploit the coherence of
visibility. The hierarchical line space subdivision allows efficient searches and updates.

• The method is applicable even in scenes with big differences in polygon sizes. Unlike the method
of Nirenstein et al. [Nire02], the proposed technique generates shafts to find balance between
the use of coherence and the memory requirements. Due to the hierarchical subdivision of the
problem-relevant line set our method can handle the case when there is a huge number of polygons
in a single shaft between two large scene polygons.

• Visibility in the whole shaft is described in a unified data structure, which can serve for further
computations (e.g. extraction of event surfaces, hierarchical representation of visibility, etc.).

116 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

8.11.2 Occluder sorting

Occluder sorting aims to increase the accuracy of the front-to-back ordering determined by the approx-
imate occlusion sweep. Higher accuracy of the ordering decreases the number of the late merging of
blocker polyhedra in the tree. Recall that the merging extends the occlusion tree by a blocker polyhedron
corresponding to an occluder that hides an already processed occluder.

The occluder sorting is applied when reaching a leaf node of the spatial hierarchy during the approx-
imate occlusion sweep. Given a leaf nodeN the occluder sorting proceeds as follows:

1. Determine a rayr piercing the center of the source polygonPS and the nodeN .

2. Compute intersections ofr and all supporting planes of the polygons associated withN .

3. Sort the polygons according to the front-to-back order of the corresponding intersection points
alongr.

The occluder sorting provides an exact priority order within the given leaf in the case that the poly-
gons are pierced by the computed rayr and they do not intersect.

8.11.3 Visibility estimation

The visibility estimation aims to eliminate the polyhedron enumeration in the leaves of the occlusion
tree. If we find out that the currently processed polygon is potentially visible in the given leaf-node (it
is anout-leaf or it is anin-leaf and the positional test reports the polygon as the closest), we estimate its
visibility by shooting random rays. We can use the current occlusion tree to perform ray shooting in line
space. We select a random ray connecting the source polygon and the currently processed polygon. This
ray is mapped to a Plücker point and this point is tested for inclusion in halfspaces defined by the Plücker
planes splitting the polyhedron on the path from to root to the given leaf. If the point is contained in all
tested halfspaces the corresponding ray is unoccluded and the algorithm inserts the blocker polyhedron
into the tree. Otherwise it continues by selecting another random ray until a predefined number of rays
was tested.

The insertion of the blocker polyhedron devotes further discussion. Since the polyhedron was not
enumerated we do not know which of its bounding hyperplanes really bound the polyhedron fragment
and which are redundant for the given leaf. Considering all hyperplanes defining the blocker polyhedron
could lead to inclusion of many redundant nodes in the tree. We used a simple conservative algorithm
that tests if the given hyperplane is bounding the (unconstructed) polyhedron fragment. For each hyper-
planeHi bounding the blocker polyhedron the algorithm tests the position of extremal lines embedded
in this hyperplane with respect to each hyperplane splitting the polyhedron. If mappings of all extremal
lines lay in the same open halfspace defined by a splitting hyperplane, hyperplaneHi does not bound
the current polyhedron fragment and thus it can be culled.

8.11.4 Visibility merging

Visibility merging aims to propagate visibility classifications from the leaves of the occlusion tree up
into the interior nodes of the hierarchy. Visibility merging is connected with the approximate occlusion
sweep, which simplifies the treatment of the depth of the scene polygons.

The algorithm classifies an interior node of the occlusion tree as occluded (in) if the following con-
ditions hold:

• Both its children arein-nodes.

• The occluders associated with both children are strictly closer than the closest unswept node of
the spatial hierarchy.

8.12. APPLICATIONS 117

The first condition ensures that both child nodes correspond to occluded nodes. The second condition
ensures that any unprocessed occluder is behind the occluders associated with the children. Using this
procedure the effective depth of the occlusion becomes progressively smaller if more and more rays
become occluded.

8.11.5 Hierarchical visibility

As described in the previous chapters the hierarchical visibility tests applied on the nodes of the spatial
hierarchy can be used to cull whole sets of invisible polygons. A hierarchical visibility test is applied
using a bounding box of a node of the spatial hierarchy. Visibility of the box is determined by testing
visibility of its boundary faces. See Figure8.9for an illustration of the hierarchical visibility tests.

Figure 8.9: Illustration of the hierarchical visibility culling in a scene with 10,000 random triangles.
(left) Polygons in the selected shaft that were processed by the visibility algorithm. The wireframe
polygons were then found invisible. (right) Cells of the kD-tree culled by the hierarchical visibility
tests. Green nodes were outside of the given shaft, blue nodes were classified invisible due to the
already processed occluders.

8.12 Applications

The proposed method can be used in the context of various applications of from-region visibility. The
occlusion tree captures a complete description of visibility from the given source polygon. Depending
on the application the visibility information stored in the tree is either refined (the topology of visibility
changes is extracted) or simplified (a PVS is generated).

8.12.1 Discontinuity meshing

We briefly discuss the application of the method to discontinuity meshing, which illustrates the relation
of the structure of the line space subdivision to the visibility events in primal space.

The construction of the discontinuity mesh using the occlusion tree proceeds similarly to the con-
struction of the visibility map described in Chapter5. The occlusion tree for a given polygonal light
source is constructed using all polygons in the scene. The fragments of the blocker polyhedra stored in
in-leaves of the tree correspond to sets of rays through which the associated polygons are visible. The

118 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

intersection of the 2D-faces of the polyhedra with the Plücker quadric then corresponds to a superset of
all event surfaces with respect to the light source.

Vertices of the polyhedra correspond to the extremal lines that induce a superset of vertices of the
discontinuity mesh (DM). Some extremal lines correspond to theapparentDM vertices. These vertices
occur due to the “global impact” of the splitting hyperplanes used for binary space partitioning of line
space. To determine if an extremal line corresponds to an apparent vertex we test it for an intersection
with polygon edges (line segments) defining the corresponding extremal line (recall that at least four
polygon edges, i.e. Plücker hyperplanes are associated with an extremal line). If the extremal line
intersects at least four polygon edges it is a real extremal line inducing a real vertex of the discontinuity
mesh. Otherwise it is an apparent extremal line corresponding to an apparent vertex of the discontinuity
mesh.

The intersections of the 2D-faces of the polyhedra with the Plücker quadric correspond to the superset
of swaths of event surfaces. The computed swath induces a real visual event, if it separates regions
where a change in the topology of the backprojection of the light source occurs. In line space this means
that the polyhedra fragments sharing the given 2D-face are associated with different scene polygons.
Otherwise the swath induces an apparent visual event that is analogical to the BSP edge discussed in
Section5.6.3.

a e

h

c

d

h

h

h h

b

fh

c
b

d

a

f
e

O

Ps

primal spaceline space

Figure 8.10: The intersection of the blocker polyhedron and the Plücker quadric yields all extremal lines
between a source polygon and an occluder. The intersection of the 2D-faces of the blocker polygon
with the Pl̈ucker quadric corresponds to the swaths of event surfaces. These swaths induce edges of the
discontinuity mesh.

8.12.2 Visibility culling

The algorithm presented above is well suited for visibility culling, namely computing a PVS with respect
to the given view cell. The occlusion tree is constructed with respect to all boundary faces of the given
view cell using all occluders in the scene. The occlusion tree can be used to determine the PVS as a
union of all occluders associated within-leaves. In the case that the occluders do not directly correspond
to the scene objects the occlusion tree is used to test visibility of the objects as described in Section8.10.

Since we are interested only in the set of visible objects/polygons we can reduce the memory re-
quirements of the algorithm by deallocating unnecessary data structures as soon as possible during the
computation. For example we can deallocate the blocker polyhedra as soon as we determine its inter-
section with the Pl̈ucker quadric and evaluate the size measure. If we use the shaft culling technique
described in Section8.11.1we can deallocate the whole occlusion tree as soon as we sweep all polygons
in the given shaft.

8.13. IMPLEMENTATION 119

8.12.3 Occluder synthesis

The occlusion tree captures a complete information about visibility and occlusion from the given source
polygonPS . The tree can be seen as a from-region visibility map with a depth information. By ex-
tracting and simplifying the information stored in the tree we can construct virtual occluders valid for
viewing the scene fromPS . The virtual occluders can be computed by extractingsilhouette edgesof the
set of occluders. A silhouette edge is an edge that defines a boundary between the sets of occluded and
unoccluded rays. The silhouette edges describe a virtual occluder resulting from the fusion of possibly
a large number of small occluders at different depths. The depth of the virtual occluder can be described
using a coarse depth subdivision. In the simplest case the virtual occluder can be constructed for a depth
corresponding to a plane parallel to thePS at a specified distance.

8.13 Implementation

The proposed method was implemented in C++ under Linux. The implementation consists of operations
with the Pl̈ucker coordinates, 5D BSP tree construction and maintenance, 5D polyhedra splitting and
enumeration and supporting routines such as shaft culling, kD-tree construction etc.

The crucial part of the implementation is the enumeration of the 5D polyhedron described as an
intersection of 5D halfspaces. We evaluated three different implementations of this algorithm: the CDD
library of Fukuda [Fuku02], the LRS library of Avis [Avis02], and the floating point implementation of
the reverse search algorithm [Avis96, Bitt97]. The CDD and LRS libraries use a multi-precision number
representation for accurate computations on rational numbers.

The polyhedron enumeration algorithms can also be used to perform the polyhedron splitting by
adding a halfspace corresponding to the splitting plane and enumerating the resulting polyhedron(s):
The fragment on the negative/positive side of the splitting planes is obtained by adding the nega-
tive/positive halfspace to the list of halfspaces defining the polyhedron and invoking the polyhedron
enumeration algorithm.

Additionally we implemented the polyhedron splitting algorithm of Bajaj and Pascucci [Baja96].
This algorithm uses a polyhedron lattice to classify positions of polyhedra faces with respect to the
splitting plane and to resolve possible inconsistencies in the classification. The implementation algo-
rithm however exhibited problems with numerical stability in some degenerate cases and thus it was
not used for further evaluation of the method. However, a robust efficient implementation of the direct
polyhedron splitting could substantially improve the total running time of the visibility algorithm.

After evaluating the advantages and disadvantages of the different implementations of the polyhe-
dron enumeration and splitting we selected our floating point implementation of the reverse search as a
core for all further measurements [Bitt97]. The drawback of the method is that the floating point imple-
mentation is prone to numerical inaccuracies. The advantage is the speed of the method: it is about 50
times faster than the methods based on multi-precision rational numbers.

In the implementation we treat numerical inaccuracies by normalizing the input of the algorithm
(set of linear inequalities corresponding to the halfspaces bounding the polyhedron) and carefully using
an epsilon-threshold for number comparisons. On the application level the inaccuracies are treated by
using the size measure for the computed sets of lines (see Section8.7.2).

8.14 Results

The implementation of the proposed algorithms was evaluated on a portable PC with 1GHz Pentium III
and 384MB RAM under Linux operating system. We measured the behavior of the algorithm on the
scenes consisting of random triangles, structured scenes consisting of regular patterns of quads, and a
real-world scene representing a part of the city of Graz.

120 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

8.14.1 Random triangles

The scenes consisting of random triangles were used to study the behavior of the algorithm with respect
to the number of triangles, their size and the size of the source polygon. For all measurements we used
the decomposition of the computation into 20 shafts. Hierarchical visibility tests were applied only on
kD-tree nodes containing more than 200 polygons. The measured results are summarized in Table8.1,
two of the tested configurations are depicted in Figure8.11.

SP
PS

Figure 8.11: Computing PVS in scenes consisting of random triangles. (left) Test R1-a: 100 big trian-
gles and a small source polygon. (right) Test R9-d: 30000 small triangles and a larger source polygon.

The results show that the method is sensitive to the area of the source polygon, the number of visible
triangles, and the configuration (density) of visible triangles. The greater the area of the source polygon
the larger is the problem-relevant line setLR and consequently the more complex is the line space
subdivision maintained by the occlusion tree. The size of the occlusion tree is given by the number of
visible triangles and the structure of theirvisibility interactions: a visibility interaction of two triangles
is reflected as an intersection of the corresponding blocker polyhedra in line space.

We can observe that the method is not very sensitive to the number of triangles, but rather to their
configuration. This can be seen at theR8 andR9 tests that correspond to small triangles and a com-
paratively larger source polygon. In these tests increasing the number of triangles increased the amount
of occlusion due to the occluder fusion. Consequently, less triangles were visible and the size of the
occlusion tree as well as the computational time were decreased.

Figure8.12depicts the dependence of the average size of the occlusion tree per shaft and the running
time of the algorithm on the number of visible triangles for R1, R4, and R7 tests. These tests correspond
to a small source polygon and different sizes of the scene triangles. We can observe that decreasing the
size of the triangles slightly increases the average size of the occlusion tree. The total running time of
the algorithm exhibits a slower growth with respect to the number of visible triangles. This behavior can
be explained by the fact that testing visibility of a small triangle is more efficient than testing visibility
of a larger one. A smaller triangle induces a smaller blocker polyhedron that reaches less leaves during
the traversal of the occlusion tree.

8.14.2 Structured scenes

The structured scenes were used to study the behavior in cases when the visible part of the scene remains
constant. We used two types of test scenes. The first type (used in tests S1–S3) were scenes consisting of

8.14. RESULTS 121

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000 4500
visible polygons

R1
R4
R7

OT nodes

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000 4500
visible polygons

time [s]

R1

R7
R4

Figure 8.12: The dependence of the size of the average size of the occlusion tree and the running time
of the algorithm on the number of visible triangles for R1, R4, and R7 tests.

several layers of “walls” where each wall consisted of 20x20 quads. The second type (used in tests S4–
S6) were scenes with layers of quads aligned in a chessboard pattern (see Figure8.13). The tests were
applied using different size of the source polygon and different number of quad layers (20,100,1000).
The results are summarized in Table8.2.

We can observe that the increase of the number of quads in the scene has practically no influence on
the running time of the method. Paradoxically, in some cases (tests S1 and S4) the running time even
decreased for scenes with more quads. This behavior can be explained by the fact that the structure of
the kD-tree was more efficient for the particular configuration of the source polygon and the quads. In
other words the hierarchical visibility tests culled more nodes at the higher level of the spatial hierarchy
than for the scenes with less quads.

Increasing the size of the source polygon always led to the increase of the size of the occlusion tree
and the running time, although the number of visible quads remained constant (tests S1–S3) or slightly
increased (tests S4–S6). This behavior can be explained by the increase of the complexity of the line
space subdivision in the regions of line space that do not correspond to real lines, i.e. the regions in
the neighborhood of the Plücker quadric. The arrangement of the blocker polyhedra is more complex
although its intersection with the Plücker quadric remains constant.

122 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

Figure 8.13: Computing PVS in scenes consisting of regularly structured quads. (left) The configuration
used in test S3-a. (right) The configuration used in test S6-a.

8.14.3 A real-world scene

For evaluation of the method on a real-world scene we used a model of the city of Graz3 depicted in
Figure8.14. The model consists of12235 triangles. Some triangles represent simplified building fa-
cades (typically two triangles per facade), the other triangles represent the streets, parks and the terrain.
The constructed kD-tree consisted of 17167 nodes.

Figure 8.14: An overview of the Graz scene.

We computed a PVS for 100 randomly selected view cells. The view cells were defined as prisms
with a triangular base erected 2 meters over the terrain. The PVS computation was carried out by
computing a PVS for each vertical face and a top face of a given view cell. For all view cells the
computation was initiated to use a single shaft per view cell face, the hierarchical visibility tests were
applied on nodes associated with more than 100 polygons. The results summarized in Table8.3.

The algorithm computed a PVS that consisted of 1% of scene objects on average, the hierarchical
visibility tests culled 93% of polygons per view cell face. The computation took 23s per viewcell on
average. Figure8.15 depicts the plots of the PVS size and the running time for each view cell in a
logarithmic scale.

We can observe that the computation times for several view cells (number 20, 30, and 40) were sub-
stantially higher than for the other ones, although the size of the PVS for these view cells is only slightly
bigger. By studying the PVS for these view cells we could see that these cases correspond to a degen-
erate configuration of the view cell and the occluders, in which the viewcell intersects the occluders or

3Courtesy of VRVis Graz.

8.14. RESULTS 123

10

100

1000

0 20 40 60 80 100
viewcell

PVS size

1

10

100

1000

0 20 40 60 80 100
viewcell

time [s]

Figure 8.15: Plots of the results for the Graz scene. The plots show the size of the PVS and the
computation time for each view cell in logarithmic scale.

there are little gaps between the occluders in the model (see Figure8.16). Such a configuration led to a
significantly bigger occlusion tree and consequently the computation was automatically restarted using
36 shafts to avoid restrictive memory consumption. An a priori handling of such a degenerate cases in
the implementation of the method remains a topic for future work.

8.14.4 Silhouette edges extraction

Finally, we have tested the algorithm for extracting silhouette edges with respect to the source polygon
outlined in Section8.12.3. The algorithm computed silhouette edges with respect to a rectangular source
polygon in a scene consisting of 10000 randomly generated triangles. Recall that a silhouette edge is an
edge that defines a boundary between a set of occluded and unoccluded rays emerging from the source
polygon. The result is depicted in Figure8.17.

There were 521 silhouette edges near the boundary of the cluster of triangles when viewed from the
source polygon. Note that due to the occluder fusion, there are no silhouette edges in the center of the
cluster. The result illustrates that the silhouette extraction algorithm is a good candidate for a synthesis
of virtual occluders in scenes containing many spatially disconnected occluders.

124 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

8.15 Summary

This chapter presented a new method for computing from-region visibility in polygonal scenes. The
method is based on the concept of line space subdivision, approximate occlusion sweep and hierarchical
visibility tests. The key idea is a hierarchical subdivision of the problem-relevant line set using Plücker
coordinates and the occlusion tree. Plücker coordinates allow to perform operations on sets of lines by
means of set theoretical operations on the 5D polyhedra. The occlusion tree is used to maintain a union
of the polyhedra that represent lines occluded from the given region (polygon).

We discussed the relation of sets of lines in 3D and the polyhedra in Plücker coordinates. We pro-
posed a general size measure for a set of lines described by a blocker polyhedron and a size measure
designed for the computation of PVS. The chapter presented two algorithms for construction of the oc-
clusion tree by incremental insertion of blocker polyhedra. The occlusion tree was used to test visibility
of a given polygon or region with respect to the source polygon/region. We proposed several optimiza-
tion of the algorithm that make the approach applicable to large scenes. The chapter discussed three
possible applications of the method: discontinuity meshing, visibility culling, and occluder synthesis.

The implementation of the method was evaluated on scenes consisting of randomly generated trian-
gles, structured scenes, and a real-world urban model. The evaluation was focused on the application
method for PVS computation. By computing a PVS in a model of the city of Graz it was shown that the
approach is suitable for visibility preprocessing in urban scenes. The principal advantage of the method
is that it does not rely on various tuning parameters that are characterizing many conservative or ap-
proximate algorithms. On the other hand the exactness of the method requires higher computational
demands and implementation effort.

8.15. SUMMARY 125

viewcell intersections

gaps

view cell

Figure 8.16: Inconsistencies in the input data. (left) A PVS computed for a view cell that intersects the
occluders (view cell no. 20 in the test). (right) A closeup of the view cell. We can also see gaps between
the occluder walls and the terrain.

Figure 8.17: Extraction of silhouette edges in a scene consisting of 10000 random triangles. The figure
depicts a source polygon, the visible triangles (shown in color), the processed but invisible triangles
(wire-frame) and the computed silhouette edges (red). There were 1300 visible triangles and 521 sil-
houette edges. The computation took 40 seconds.

126 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

avg. avg.
source polygon kD processed OT visible

Test area area polygons nodes polygons nodes polygons time
[m2] [m2] [−] [-] [-] [-] [-] [s]

2.00 200 100 25 9 73 98 0.38
2.00 200 1000 1075 84 125 268 1.52

R1 2.00 200 10000 18355 421 258 539 5.49
2.00 200 30000 34459 868 342 730 9.36
2.00 200 100000 48733 2614 635 1386 27.77

50.00 200 100 25 9 100 99 0.53
50.00 200 1000 1075 90 189 296 2.48

R2 50.00 200 10000 18355 486 391 582 8.06
50.00 200 30000 34459 1005 589 805 15.21
50.00 200 100000 48733 2988 1139 1578 47.99

200.00 200 100 25 10 148 100 0.85
200.00 200 1000 1075 101 307 334 4.48

R3 200.00 200 10000 18355 568 650 617 13.98
200.00 200 30000 34459 1176 974 876 25.23
200.00 200 100000 48733 3479 2315 1811 96.23

2.00 50 100 21 7 68 100 0.12
2.00 50 1000 329 74 417 761 3.53

R4 2.00 50 10000 9479 379 527 1041 7.96
2.00 50 30000 31293 644 689 1285 12.64
2.00 50 100000 56619 1564 963 1935 25.40

50.00 50 100 21 8 99 100 0.20
50.00 50 1000 329 80 993 910 10.06

R5 50.00 50 10000 9479 460 930 1166 15.60
50.00 50 30000 31293 781 1180 1383 22.88
50.00 50 100000 56619 1933 1722 2130 46.46

200.00 50 100 21 9 152 100 0.34
200.00 50 1000 329 88 2442 975 31.97

R6 200.00 50 10000 9479 573 1746 1296 34.85
200.00 50 30000 31293 969 2178 1492 47.70
200.00 50 100000 56619 2404 3480 2293 103.08

2.00 12.5 100 21 6 60 100 0.06
2.00 12.5 1000 231 64 837 995 3.18

R7 2.00 12.5 10000 3913 605 1998 3654 25.04
2.00 12.5 30000 14919 787 2013 3868 29.81
2.00 12.5 100000 42929 1325 2206 4209 38.48

50.00 12.5 100 21 7 85 100 0.08
50.00 12.5 1000 231 70 2452 1000 13.81

R8 50.00 12.5 10000 3913 703 6953 5276 131.37
50.00 12.5 30000 14919 1120 4802 4757 93.98
50.00 12.5 100000 42929 1840 4431 4663 95.44

200.00 12.5 100 21 8 131 100 0.14
200.00 12.5 1000 231 80 6450 1000 64.00

R9 200.00 12.5 10000 3913 791 22086 6730 846.57
200.00 12.5 30000 14919 1553 12187 5758 419.70
200.00 12.5 100000 42929 2458 9490 5196 293.98

Table 8.1: Results for randomly generated triangles. The table shows the name of the test, the area
of the source polygon, the area of each triangle, the number of triangles, the number of kD-tree nodes,
the average number of processed triangles per shaft, the average number of OT nodes per shaft, the
total number of visible triangles (i.e. the size of the PVS), and the total running time of the visibility
algorithm.

8.15. SUMMARY 127

avg. avg.
source polygon kD processed OT visible

Test area area polygons nodes polygons nodes polygons time
[m2] [m2] [−] [-] [-] [-] [-] [s]

2.00 4.0804 8000 31459 1799 1737 400 0.88
S1 2.00 4.0804 40000 64067 1893 1751 400 0.90

2.00 4.0804 400000 104691 1200 1801 400 0.60
50.00 4.0804 8000 31459 1799 1829 400 1.20

S2 50.00 4.0804 40000 64067 1923 1979 400 1.34
50.00 4.0804 400000 104691 1370 2531 400 1.36

200.00 4.0804 8000 31459 1808 1927 400 1.63
S3 200.00 4.0804 40000 64067 1923 2373 400 2.11

200.00 4.0804 400000 104691 1370 3539 400 2.47
2.00 4.0804 4000 17777 1792 7325 924 3.66

S4 2.00 4.0804 20000 43083 1716 7451 924 3.76
2.00 4.0804 200000 83801 1990 7459 924 3.64

50.00 4.0804 4000 17777 2138 11481 1132 7.65
S5 50.00 4.0804 20000 43083 2337 11605 1132 8.39

50.00 4.0804 200000 83801 2545 11613 1132 8.77
200.00 4.0804 4000 17777 2866 19917 1430 28.91

S6 200.00 4.0804 20000 43083 2831 20233 1430 28.98
200.00 4.0804 200000 83801 3001 20251 1430 31.86

Table 8.2: Results for quads aligned in a regular pattern. The table contains the name of the test, the
area of the source polygon, the area of each quad, the number of triangles, the number of kD-tree nodes,
the average number of processed quads per shaft, the average number of OT nodes per shaft, the total
number of visible quads (i.e. the size of the PVS), and the total running time of the visibility algorithm.

avg. avg. avg.
processed OT visible avg.
polygons nodes polygons time

[-] [-] [-] [s]

855.98 2400.89 132.47 23.02

Table 8.3: Results for the Graz scene. The table depicts the average number of processed polygons per
shaft, the average number of occlusion tree nodes per shaft, the average number of visible polygons per
view cell (i.e. the size of the PVS) and the average computational time per view cell.

128 CHAPTER 8. FROM-REGION VISIBILITY IN 3D SCENES

Chapter 9

Conclusions

This chapter summarizes the results of the thesis and discusses possible directions for future work.

9.1 Summary of results

The introductory part of the thesis provides a taxonomy of visibility problems and algorithms, and
discusses important steps in the design of a visibility algorithm. The taxonomy is based on restricting
the domain of visibility problems and specifying the type of the answer to the problem. The domain
of a visibility problem is characterized by the dimension of the problem-relevant line set, which groups
together problems of similar complexity independently of their application area. The dimension of
the problem-relevant line setd(LR) varies from0 to 4. The classification highlighted the fact the from-
region visibility in 2D and the from-point visibility in 3D involve problem-relevant line set of dimension
d(LR) = 2.

The answers to visibility problems are divided in three classes: visibility classification, subset of the
input, and the constructed data structure. The type of the answer restricts the domain of the output
of an algorithm solving a particular visibility problem. Visibility problems with a “coarser” type of
answer (e.g. visibility classification) are simpler to solve than problems requiring a precise description
of visibility.

The taxonomy helps to understand the nature of the given problem and assists in finding relationships
between visibility problems and algorithms in different application areas. It should also help algorithm
designers to transfer existing concepts for solving other visibility problems.

9.1.1 The concept of a visibility algorithm

Chapter3 presented a general concept of a visibility algorithm suitable for several visibility problems.
The concept builds on the top of existing from-point visibility algorithms and it generalizes their ideas
for solving other visibility problems. It aims to capture the essence of efficient solution to visibility
problems localized to a given point or a region. Solving different visibility problems using the same
concept allows to share the experience with the behavior of the method and reuse parts of the imple-
mentation.

The concept is based on three main ideas: theapproximate occlusion sweep, theocclusion tree, and
hierarchical visibility tests. The approximate occlusion sweep is used to generate an approximate depth
order of scene polygons. It represents a compromise between a computationally costly strict ordering
of the scene polygons and a fast ordering that need not be supported by additional data structures and
calculations. The occlusion sweep is used to construct the occlusion tree representing a subdivision of
the problem-relevant line set into sets of occluded and unoccluded lines. The occlusion tree serves as
an abstraction layer making the approach applicable to several visibility problems. The tree maintains

129

130 CHAPTER 9. CONCLUSIONS

a hierarchical binary space partitioning of the problem-relevant line set, which provides the following
benefits:

• The occlusion tree is applicable to problem-relevant line sets of different dimensions.

• The occlusion tree is adaptable to the input data. It reflects the boundaries of visibility events and
consequently it provides a coherent representation of visibility.

• The hierarchical structure of the occlusion tree provides efficient searches and updates.

• The occlusion provides a consistent representation of visibility, what improves the robustness of
the method.

• The construction of the occlusion tree requires only a few geometrical operations. In particular
the tree is constructed by partitioning of a polyhedron by a plane in the dimension given by
dimension the problem-relevant line set.

The occlusion tree can be used to test visibility of an object or a whole spatial region with respect to
the already processed polygons. The hierarchical visibility tests complement the proposed concept by
providing a general means of achieving output-sensitivity of the visibility algorithm. If applied on the
nodes of the spatial hierarchy these tests allow to quickly cull whole groups of invisible scene polygons.
The proposed concept exploits coherence of visibility by using two hierarchical structures: the occlusion
tree for partitioning of the problem-relevant line set and the spatial hierarchy for organizing the scene.

In the next sections we summarize the results of applications of the concept discussed in Chapters4,
5, 6, 7 and 8.

9.1.2 From-point visibility culling

Chapter4 presented an application of the proposed concept to the from-point visibility culling. The
algorithm is designed to accelerate real-time rendering of large densely occluded scenes with large
occluders.

The occlusion tree is constructed using selected occluders close to the viewpoint. Then the tree
is used to classify visibility of nodes of the spatial hierarchy. We have described the algorithm for
constructing the occlusion and three algorithms for visibility tests. The first two algorithms determine
an exact visibility of a polygon and a polyhedron with respect to the selected occluders. The third one
is a fast conservative visibility test suitable for regions of a general shape.

Unlike previous continuous visibility culling methods [Huds97, Coor97] the proposed technique ac-
counts for occluder fusion and it is suitable for the use with a higher number of occluders. In complex
densely occluded scenes the occluder fusion is very important since it can significantly restrict the size
of the PVS computed for the given viewpoint. The lower sensitivity of the method to the number of
selected occluders is given by the hierarchical structure of the occlusion tree. In practice it is difficult
to select an optimal set of occluders since the occluder selection is a visible surface problem itself.
Thus the lower sensitivity of the algorithm to the number of selected occluders significantly improves
its practical usability.

The proposed method was evaluated on walkthroughs of complex architectural scenes. The results
indicate that the conservative visibility test performs superior compared to the exact one for a typical
walkthrough scenario. The savings in rendering time achieved for the tested scenes provided speedup
between 1.8 and 3.8.

The second part of Chapter4 presented a series of modifications of the classical hierarchical visibility
culling aiming at exploiting temporal and spatial coherence. The proposed modifications are applica-
ble to most existing hierarchical visibility culling algorithms. The modifications assume a subsequent
application of a visibility test on nodes of a spatial hierarchy in the scope of a scene walkthrough.

9.1. SUMMARY OF RESULTS 131

The hierarchy updating proved to perform well in practice as it saves almost half of the visibility
tests that would have to be applied using the classical approach. The conservative hierarchy updating
improved the overall frame time for certain settings. The visibility propagation saves only few visibility
tests. This however documents that the spatial coherence is already exploited well in the classical
approach.

9.1.3 Visibility maps

Chapter5 presented an algorithm that constructs a visibility map for a given view of the scene. The
advantage of the method is that it does not rely on a single projection plane and easily handles views
that span the whole spatial angle. The visibility map is constructed by a two stage algorithm: the
construction of a hierarchical representation of the view and its postprocessing. The occlusion tree can
be used to semantically classify elements of the visibility map, which helps to understand the structure
of the given view. The implementation of the technique was evaluated on several non trivial scenes.

The implementation proved the applicability of the proposed concept to the visible surface problem
in 3D. Additionally, it showed that the structure of the occlusion tree can be used to extract various
additional information about visibility that can potentially serve as a starting point for another visibility
algorithm (e.g. discontinuity meshing, occluder synthesis).

9.1.4 From-region visibility in 2D

Chapter6 described an algorithm that computes visibility from a given region in a 2D scene. The
algorithm is exact and it accounts for all types of occluder fusion. The method transforms the problem
from primal space to line space. Visibility is solved by hierarchical partitioning of line space maintained
by the occlusion tree. The algorithm requires an implementation of only a few geometrical algorithms,
namely partitioning of a polygon by a plane. The robustness of the method is thus determined by the
robustness of the polygon splitting algorithm.

The proposed method was tested using randomly generated scenes as well as a real-world scene
representing a footprint of a large part of a city. The results indicate that the method is suitable for
the 2D visibility preprocessing of large scenes and exhibits output-sensitive behavior in practice. An
application of the 2D method in the 3D computer graphics is possible by transforming the input data
to the plane and a correct interpretation of the results. For example we can preprocess visibility in a
building interior by using a (conservative) ground plan of the given building floor.

9.1.5 From-region visibility in 21
2
D

Chapter7 presented two methods for computing from-region visibility in 21
2D scenes. Both methods

are targeted at the application in urban scenes. They build on the observation that the majority of vis-
ibility interactions can be described by solving a 2D visibility problem. The first method combines an
exact solution to the 2D visibility problem with a tight conservative solution for the remaining “half
dimension”. The second method provides an exact analytic solution to the from-region 21

2D visibility
problem. It uses a stabbing line computation by means of a polyhedra enumeration in Plücker co-
ordinates. The exact method is complemented with optimization techniques that make it suitable for
visibility computation in large scenes.

The from-region visibility algorithms for 212D scenes were evaluated by computing PVS in a scene
representing the center of the city of Vienna. The results compare favorably with the previously pub-
lished method of Wonka et al. [Wonk00, Wonk01a] in both the running time and the size of the computed
PVS. The proposed methods efficiently handle large view cells and achieve output-sensitive behavior
in practice. Their suitability to large view cells is given by the fact that the computational complexity
method is given by the complexity of the visible part of the scene. Increasing the size of the view cell

132 CHAPTER 9. CONCLUSIONS

need not result in the proportional increase of the visibility complexity and thus the computational time
is not altered. The conservative algorithm computed a PVS that consisted of less that 1% of total num-
ber of scene objects on average. The PVS computed by the conservative method was 19.5% smaller that
the PVS computed by the algorithm of Wonka et al. [Wonk00] for small view cells and 13.6% smaller
for large viewcells. The exact method decreased the size of the PVS by 0.6% for small view cells and
1.2% for large view cells. The results indicate that the conservative method is very close to the exact
result and the effort required to implement the exact method is probably not worth the minor improve-
ment of the accuracy of the PVS. The tests also highlighted the problem of numerical accuracy of the
floating point implementation. For several tested view cells the exact method reported a PVS containing
an object that was classified as invisible by the conservative method. These cases occurred due to the
finite precision of the floating point computations and were emphasized by the fact that computations
were performed in different solution space domains (primal space for the conservative method, Plücker
coordinates for the exact method). The conclusion taken from this observation is that the visibility al-
gorithms implemented with floating point arithmetics (including the exact ones) should apply a unified
ε-thresholding in the domain reflecting to the target application (e.g. z-buffered rendering).

9.1.6 From-region visibility in 3D

Chapter8 presented a new method for computing from-region visibility in polygonal scenes. The key
idea is a hierarchical subdivision of the problem-relevant line set using Plücker coordinates and the
occlusion tree. The Plücker coordinates allow to perform operations on sets of lines by means of set
theoretical operations on 5D polyhedra in Plücker coordinates. A union of the polyhedra is maintained
by the occlusion tree that represents lines occluded from the given region (polygon).

The chapter discussed the relation of sets of lines in 3D and the polyhedra in Plücker coordinates. It
proposed a general size measure for a set of lines described by a blocker polyhedron and a size measure
designed for the computation of PVS. Two algorithms for the construction of the occlusion tree were
described. The first uses a polyhedron splitting, the second is based on the polyhedron enumeration.
The occlusion tree was used to test visibility of a given polygon or region with respect to the source
polygon/region using either exact or conservative visibility tests. Several optimizations of the method
were proposed that make the approach applicable for large scenes. Three possible applications of the
method were discussed: discontinuity meshing, visibility culling and occluder synthesis.

The implementation of the method was evaluated on scenes consisting of randomly generated trian-
gles, structured scenes, and a real-world urban model. We focused on the application method for the
PVS computation. The artificial scenes allowed to study the behavior of the method, computing a PVS
in the urban model explored the applicability of the method for visibility preprocessing in real-world
scenes. The measured results correspond to the theoretical expectations: the computational and memory
complexities of the method are primarily determined by the size and the structure of the visible part of
the scene. Increasing the number of scene objects need not lead to the increase of the computational
time if visibility remains constant. The results indicated the importance of occluder fusion for scenes
consisting of many small and disconnected polygons: in such scenes increasing the number of polygons
led to the increase in occlusion and consequently to the decrease of the number visible polygons and
the running time of the algorithm.

Although the method is based on a simple straightforward concept, an efficient and robust imple-
mentation of the method became rather complicated. We evaluated several implementations of the
polyhedron enumeration and an implementation of polyhedron splitting. Finally, we used a floating
point implementation of the reverse search polyhedra enumeration algorithm [Avis96, Bitt97] com-
bined withε-thresholding based on the proposed size measure for PVS computation. This combination
proved robust in practice, but it still draws a potential for acceleration of the method. The drawback of
the current implementation is that the polyhedron enumeration is executed independently of each other
although the computed polyhedra might be very coherent.

9.2. SUGGESTIONS FOR FURTHER RESEARCH 133

The principal advantage of the method is its generality. The method does not rely on many tun-
ing parameters or significant restrictions of the input characterizing many conservative or approximate
algorithms [Dura00, Scha00, Wonk00].

9.2 Suggestions for further research

This section discusses suggestions for further research on the topics discussed in the thesis.

9.2.1 The concept of a visibility algorithm

The concept of a visibility algorithm discussed in Chapter3 was targeted at computing visibility from
a given point, line segment, or region. The concept could potentially be extended for computing global
visibility in an adaptive fashion: the global visibility computation could balance a localized from-region
visibility with the merging of the computed results in a global visibility data structure. Another topic is
employing solutions to the simpler from-point or from-segment visibility problems to guide the global
visibility computation and to increase its efficiency.

9.2.2 From-point visibility culling

The visibility culling algorithm presented in Chapter4 assumes that the occluders are sufficiently large
convex polygons. If this assumption is not satisfied we should apply some occluder synthesis techniques
such as the method discussed in Section8.12.3. Finding a balance between the accuracy and computa-
tional demands of the occluder synthesis and the accuracy and the computational demands of real-time
visibility culling is an open problem.

The occlusion tree for the from-point visibility culling is built from scratch in each frame of a walk-
through although the trees constructed for subsequent frames are highly coherent. By reusing the tree
within more frames the tree construction time could be amortized. Consequently, a more complex
occlusion tree might be used to achieve higher culling efficiency.

The conservative hierarchy updating and the probabilistic modification of the visibility propagation
algorithm are based on a user-specified constants. More elaborate methods might be applied that au-
tomatically adjust these probabilities according to the history of visibility changes. The algorithm as
described determines, whether a node is visible or invisible. It could be extended to estimate, whether a
node that was partially visible in the previous frame remains partially visible. This modification would
benefit in sparsely occluded environments where many small regions are classified as partially visible.

9.2.3 Visibility maps

A challenging topic is the construction of an approximate visibility map using the proposed method.
The approximate variant of the algorithm could overcome the problem of overly detailed output of the
exact algorithm for a large number of tiny polygons. Another interesting topic is the application of
occlusion maps in occluder synthesis. Although the visibility map is constructed for a single viewpoint
it provides a lot of structural information that can potentially be exploited in solutions to from-region or
from-segment visibility problems.

9.2.4 From-region visibility in 2D and 21
2
D

The subdivision of the problem-relevant line set maintained by the occlusion tree could be replaced by
a regular subdivision using a discrete occlusion map. The discrete aggregated occlusion map could be
implemented on a dedicated graphics hardware similarly to the recent method of Koltun et al. [Kolt01].

134 CHAPTER 9. CONCLUSIONS

9.2.5 From-region visibility in 3D

The solution of the from-region visibility problem can be used to accelerate algorithms solving problems
of visibility along a line, visibility from point or visibility from a line segment. There is a great poten-
tial in optimizing the proposed technique by using a more efficient polyhedron splitting/enumeration
algorithm.

One of the most promising applications of the method is the computation and the description of
virtual occluders. Another important topic concerns a construction of a viewspace subdivision driven by
the visibility events determined by the from-region visibility algorithm. The method could potentially
be applied in the context of an adaptive global visibility computation that would balance the accuracy
of the visibility computation with the memory and computational demands, considering an estimate of
the benefit achieved by providing a more accurate description visibility.

Appendix

i

Appendix A

Traditional visibility algorithms

Traditional visibility algorithms were designed to solve thevisible surface determination. Nowadays
the visible surface determination is commonly carried out by the z-buffer algorithm implemented in the
graphics hardware. Nevertheless, many recent techniques exploit concepts provided by the classical
algorithms. In the following text we briefly discuss the most important visible surface algorithms.

A.1 Z-buffer

Z-buffer, introduced by Catmull [Catm75], is one of the simplest visible surface algorithms. Its simplic-
ity allows efficient hardware implementation and therefore the z-buffer is nowadays commonly available
even on a low cost graphics hardware. Z-buffer is an image precision algorithm that associates a depth
information with each pixel of the frame buffer. The depths are initiated to zero, representing the depth
at the farthest clipping plane. The largest depth value that can be stored in the buffer corresponds to the
near clipping plane. Polygons are rasterized in an arbitrary order. For each pixel covered by a polygon
the algorithm computes the depth of the polygon at the center of the pixel. The depth is compared to
the corresponding entry in the z-buffer. If the new value is greater, the corresponding polygon fragment
is closer to the viewpoint and both the frame buffer and the z-buffer are updated. Otherwise the new
fragment is discarded since it is hidden by some previously processed polygon.

Z-buffer uses discrete samples of object depths and therefore it is prone to aliasing. This problem is
addressed by the A-buffer algorithm [Carp84]. Another source of aliasing is the finite precision of the
depth values stored in the z-buffer (see FigureA.1).

Z-buffer algorithm can be accelerated by processing objects in the front to back order. Such an order
minimizes the number of updates of both the frame and the depth buffers. The z-buffer algorithm is not
output-sensitive since it needs to rasterize all scene objects even if many objects are invisible. The lack
of output-sensitivity is not restrictive for scenes where most of the scene elements are visible, such as
a single albeit complex object. For large scenes with highdepth complexity, the processing of invisible
objects causes significant “overdraw”. This problem is addressed by visibility culling methods that are
discussed in AppendixB.

A.2 List priority algorithms

List priority algorithms determine an ordering of scene objects making sure that the correct image is
produced if the objects are rendered in this order. Typically objects are processed in a back to front
order: closer objects are painted over the farther ones in the frame buffer. There are several approaches
to determine the appropriate order of scene objects. In some cases no suitable order exists due tocyclic
overlaps. In such a case some object(s) are split. List priority algorithms differ according to which
objects get split and when the splitting occurs.

iii

iv APPENDIX A. TRADITIONAL VISIBILITY ALGORITHMS

z

III

III

Figure A.1: Aliasing in the z-buffer algorithm. The finite precision of the image plane causes alias at
the boundaries (I) and overestimation of small features (II). The finite precision of z-values causes alias
in depth (III).

A.2.1 Depth sort

The basic idea of thedepth sortalgorithm by Newell et al. [Newe72] is to render polygons in the frame
buffer in order of decreasing distance from the viewpoint. The following three steps are performed:

1. Sort all polygons according to the farthest z-coordinate.

2. Resolve any polygon dependency cycles that possibly occur when the polygons’ z-extents over-
lap. In such a case some polygons are split.

3. Rasterize each polygon in ascending order of the smallest z-coordinates, i.e. in the back-to-front
order.

A simplified variant of this algorithm that ignores step (2) is called thepainter’s algorithmdue to the
similarity to the way a painter paints closer objects over distant ones.

To resolve the step 2 up to five tests are applied to determine if polygons overlap in the projection
plane [Newe72, Fole90]. These tests are performed in the order of increasing complexity. If all five tests
fail we now that the polygons overlap and at most two additional tests are applied that aim determine
the correct order of the two polygons. If these fail, one of the polygons must be split.

A.2.2 BSP trees

The Binary Space Partitioning(BSP) tree introduced by Fuchs, Kedem, and Naylor [Fuch80] allows
efficient calculation of visibility ordering among static polygons. A BSP tree is constructed in prepro-
cessing. At this step all potential dependency cycles are broken and the corresponding polygons are
split. The size of the BSP tree corresponds to the number of resulting polygon fragments and it is heav-
ily dependent on the particular BSP construction algorithm. The rendering is performed by an ordered
traversal of the BSP tree in a linear time with respect to the number of tree nodes.

The BSP tree algorithm is based on the work of Schumacker et al. [Schu69] who manually partitioned
the scene into collection of clusters. If clusters can be separated by a plane then the cluster on the same
side of the plane as the viewpoint cannot be obscured by the clusters on the other side of the plane. If

A.2. LIST PRIORITY ALGORITHMS v

such separating planes exist, the clusters can be subdivided recursively. The resulting subdivision of the
scene can be represented by a binary tree where each interior node corresponds to a plane separating a
given set of clusters and each leaf corresponds to one cluster. The clusters are determined so that there
is a viewpoint independent priority ordering of all polygons within a cluster.

The BSP tree algorithm is a generalization of the approach of Schumacher et al. [Schu69] that au-
tomatically solves the problem of polygon priority without the necessity of manual construction of
clusters and their priorities. The BSP tree is constructed recursively as follows:

1. Let the current set of polygonsS be all polygons in the scene.

2. If |S| ≤ 1 create a leaf node with a reference to the single polygon fromS (if any) and terminate
this branch of the algorithm.

3. Select a planeP that partitionsS into S− andS+ corresponding to polygons in the negative and
positive halfspace induced byP . Polygons straddling planeP are split.

4. Construct a new interior nodeN with a reference toP . Associate all polygons embedded in plane
P with N .

5. Construct child nodes ofN by recursively repeating steps 2 to 5 usingS− andS+ for left and
right child nodes respectively.

The crucial step of the BSP tree construction is the selection of the splitting plane (3). The usual
technique is to restrict splitting planes to the planes aligned with the scene polygons. The resulting tree
is calledautopartition[Berg97]. To construct the autopartition we have a finite number of choices. The
order in which the splitting planes are selected is very important. Several heuristics for splitting plane
selection have been proposed that aim to minimize the number of polygons splits and thus the size of
the constructed tree. For purposes of rendering the tree need not be balanced. In fact a tree degenerated
to a linear list would exhibit the same rendering performance as a perfectly balanced tree. Nevertheless
the construction time is increased if the tree is heavily unbalanced. The construction of a balanced tree
is also advantageous for other tasks the tree might be used for such as point location.

In the rendering phase the tree is used to establish a back-to-front order of scene polygons. Visibility
is solved in image space by overwriting farther polygons by the closer ones. Given a viewpoint the
rendering using a BSP tree proceeds as follows:

1. Let current nodeC be the root.

2. If C is a leaf rasterize the associated polygon and terminate this branch of the algorithm.

3. Otherwise determine the position of the viewpoint with respect to the planeP associated withC.

4. Recursively repeat steps 2-4: First, process the child corresponding to the opposite side ofP than
the viewpoint. Second, rasterizeP . Third, process the child on the same side as the viewpoint.

A similar procedure can be used to generate a front-to-back order of polygons. The difference is in
the processing order of child nodes in step 4. Algorithms that use a front-to-back order and a screen
space data structure for correct image updates [Gord91, Nayl92b] can achieve output-sensitive behavior.
An 2D example of a BSP tree and its front-to-back traversal is depicted in FigureA.2.

vi APPENDIX A. TRADITIONAL VISIBILITY ALGORITHMS

− +

− +

−

−

A2

A1C

D

F

E

B

A

viewpoint

A2

A1 B

C
D E

F

order: F,E,D,C,A2,B,A1

Figure A.2: An example of a 2D BSP tree. The scene consist of 6 line segments. The tree contains 7
nodes (segment A is split). On the right a front-to-back traversal order of the BSP tree is depicted.

A.3 Area subdivision algorithms

Area subdivision algorithms use thedivide and conquerstrategy that subdivides the projection plane.
At a time an area of the image is examined. If it is easy to decide which objects are visible in the area the
objects are rendered. Otherwise the algorithm subdivides the current area in smaller ones and continues
recursively. As the areas become smaller less objects need to be considered and the visibility decision
becomes simpler.

A.3.1 Warnock’s algorithm

Warnock [Warn69] developed an area subdivision algorithm that subdivides a given image area into
four equal rectangles. At each step the algorithm identifies the position of each polygon with respect to
the current image area as follows:

1. Surroundingpolygon – it completely contains the area.

2. Intersectingpolygon – partially intersects the area.

3. Containedpolygon – it is completely inside the area.

4. Disjoint polygon – it is completely outside the area.

In the following four cases the visibility within the current area can be solved easily and the area does
need to be subdivided:

1. All polygons aredisjoint. The background color is displayed.

2. There is only oneintersectingor containedpolygon. This polygon is rasterized (an intersecting
polygon is first clipped).

3. There is only onesurroundingpolygon. The area is filled with the polygon color.

4. There is asurroundingpolygon that is in front of all other intersecting, contained or surrounding
polygons. The area is filled by the polygon color. Determining if the polygon is in front of all
other is carried out by comparing z-coordinates of supporting planes of the polygons at the four
corners of the area.

A.3. AREA SUBDIVISION ALGORITHMS vii

If all these four tests fail the area is subdivided. The subdivision is terminated when the area matches
the pixel size. Alternatively sub-pixel subdivision can be used to remove aliasing. An illustration of the
Warnock’s algorithm is shown in FigureA.3.

disjointintersecting intersecting

intersecting intersecting

intersectingcontained

contained contained

1

2

3

4

1

2

3
4

Figure A.3: An illustration of the Warnock’s algorithm. The screen is recursively subdivided into
rectangles. The right part shows a classification of the polygons with respect to the four depicted screen
rectangles.

A.3.2 The Weiler-Atherton algorithm

The algorithm developed by Weiler and Atherton [Weil77] subdivides the image plane using the actual
polygon boundaries, rather than rectangles used in Warnock’s algorithm. The Weiler-Atherton algo-
rithm does not rely on a pixel resolution and typically needs a lower number of subdivision steps. On
the other hand, it requires robust polygon clipping algorithm.

The polygons are sorted according to their nearest z-coordinate (this step is mandatory but improves
efficiency). The polygon closest to the viewer is selected and used clip all other polygons in two sets:
polygons inside or outside with respect to the “shadow” of the selected polygon. All inside polygons
that are behind the selected polygon can be deleted since they are invisible. If an inside polygon is
closer than the selected one it is calledoffending. An offending polygon is used to clip all remaining
offending polygons. All remaining outside polygons are processed recursively. The algorithm uses a
stack to handle cyclic overlaps. An illustration of the algorithm is depicted in FigureA.4.

B

B

B BB −> +1. A

outside

outside

offending

C

A A

A

A

y

x

offending

B
A

C

z

z

z A

B

CA

A

z

x

A −> +

outside

inside

2. B C outside

1b. B

3. C

1

2

1 2

1 2

1

2

B

B

1

22

1
1

2

Figure A.4: An illustration of the Weiler–Atherton algorithm. Four steps are necessary to resolve
visibility of the three depicted polygons.

viii APPENDIX A. TRADITIONAL VISIBILITY ALGORITHMS

A.4 Ray casting

Ray casting [Appe68] is a visible surface algorithm that solves the visibility from the viewpoint by
by ray shooting, i.e. shooting rays through each pixel in the image. The drawback of ray casting in
comparison with the other visible surface algorithms is that it does not exploit coherence of neighboring
rays unless specialized techniques are used [Havr00b]. On the other hand if ray casting is implemented
using a variant of the ray-walking technique proposed by Glassner [Glas84] it results in an output-
sensitive algorithm.

A naive implementation of ray shooting would test each object in the for an intersection with a given
ray and then select the one closest to the viewpoint. The resultingO(n) time complexity for each ray is
not suitable for scenes with more than a few objects. To improve the time complexity of the ray shooting
query many acceleration techniques have been designed. Most of them use a spatial subdivision of the
scene that allows to restrict the set of objects tested for an intersection only to those laying in proximity
of the given ray (see FigureA.5). Ray shooting will be discussed in more detail in SectionC.5.

viewport

Figure A.5: A 2D illustration of ray casting. Ray casting is performed using ray shooting supported by
a uniform grid. Note the output-sensitive behavior of such ray casting algorithm: only visible objects
are touched by the algorithm.

A.5 Scan line algorithms

The first scan-line algorithms introduced in late 60’s and early 70’s are summarized in Foley et
al. [Fole90]. The basic approach is an extension of a scan conversion of a single polygon. The al-
gorithm constructs an edge table of all non horizontal edges of the scene polygons. Entries in the edge
table are sorted into buckets based on the smaller y-coordinate of each edge. Within each bucket edges
are ordered by increasingx-coordinate of their lower endpoint.

The algorithm maintains an active edge table and anin-out flag for each polygon indicating if we are
currently inside our outside of the polygon. If there is more polygons with anin-out flag set to inside
a depth comparison is used to determine the closest one to the viewpoint. The coherence is exploited
using incremental updates of the active edge table similarly as with the scan conversion of a single
polygon [Fole90].

Appendix B

Visibility in real-time rendering

This chapter discusses the use of visibility algorithms for real-time rendering acceleration. It also
presents other important techniques for rendering acceleration that are typically used in combination
with the visibility algorithms.

The are at least three performance goals for real-time rendering: more frames per second, higher
resolution and more realistic scenes [Moll02]. A frame rate of 60-72Hz is typically considered suf-
ficient. Optimally the frame rate should match the monitor refresh rate [Wonk01a]. There is also a
bound on resolution – 1600x1200 seams sufficient for typical size of the display device. Nevertheless
there is no natural upper limit on the scene complexity. For example a reasonably detailed aircraft
model consists include 500M polygons [Moll02], a model of a city with a few building details consists
of 8M polygons [Wonk01a, Bitt01e]. The general conclusion is that the user demands and expecta-
tions on the scene complexity grow even faster than the computer processing power. This draws a
great potential for acceleration techniques that aim to reduce the amount of data sent to the rendering
pipeline [Schm97, Rohl94, Bish98, West97, Deva97, Cham96].

B.1 Backface culling

Back face culling aims to avoid rasterization of surfaces that are not facing the viewpoint. For an
orthographic projection about 50% is of the scene polygons is expected to be culled on average. For the
perspective projection the percentage of backfaces increases as the viewpoint moves closer to the scene
objects.

Backface culling on a per polygon basis is often supported in hardware [nVID02, ATi 02]. The
problem is that it is applied rather late in the rendering pipeline. Additional speedups can be achieved
if a whole group of polygons is identified as backfacing at a single test. This can be achieved by the
clustered backface culling[Kuma96b, Kuma96a, Zhan97a].

B.2 View frustum culling

View frustum culling(VFC) eliminates rendering of objects that are outside of the viewing volume.
The viewing volume is represented by a frustum of a pyramid calledview frustum. Objects that do not
intersect the view frustum cannot be seen and therefore need not be rendered.

The VFC is often supported by the current graphics hardware [nVID02, ATi 02]. Similarly to the
backface culling, considerable savings can be achieved if a whole group of objects is culled before
sending the objects to the graphics pipeline. This is a goal of thehierarchical view frustum culling
(HVFC). HVFC uses either a modeling hierarchy (scene graph) or a spatial hierarchy. Starting at the
root node of the hierarchy, the algorithm computes the intersection of the volume corresponding the
current node and the view frustum. If the volume does not intersect the view frustum the corresponding

ix

x APPENDIX B. VISIBILITY IN REAL-TIME RENDERING

viewpoint

A B C D E F G H I J

B

C D
E

F

G
HI

J

A

Figure B.1: Clustered backface culling. Polygons are grouped according to their supporting planes.
Pruning of the resulting hierarchy results in culling whole groups of backfacing polygons: orange nodes
have ambiguous visibility classification, the blue nodes are invisible, yellow node is visible.

subtree is culled. If it partially intersects the view frustum the algorithm is applied recursively on the
children of the current node. Otherwise the volume is completely included in the view frustum and
objects from the whole subtree of the current node are sent to the graphics pipeline. Note that in this
case the screen space clipping can be disabled for all objects fully contained in the volume.

Often a spatial hierarchy is used for HVFC instead of the scene graph. The spatial hierarchy follows
the idea ofspatialization, i.e. it is built according to the spatial proximity of objects. On the contrary the
scene graph is constructed according to the modeling rules that need not group close objects together.

A popular spatial hierarchy for HVFC is thebounding volume hierarchy(BVH) [Clar76]. BVH
consists of bounding spheres, axis aligned bounding boxes (AABB), or oriented bounding boxes (OBB).
Often a mixture of bounding primitives is used in the same BVH. The choice of the bounding primitive
to use depends on the depth of the given node. For nodes closer to the root only the coarser bounding
sphere or AABB intersection test is applied, for deeper nodes the OBBs are used.

Volumes of the bounding volume hierarchy can overlap significantly, which makes the HVFC algo-
rithm inefficient. This problem is eliminated by using spatial subdivisions at the cost of lower flexibility
for dynamic scenes. Spatial subdivisions commonly used for HVFC are octrees, kD-trees, and BSP
trees. The requirements for construction of spatial hierarchies for VFC are similar to construction of
hierarchies for visibility culling and ray shooting [Ione98]. An illustration of the hierarchical view
frustum culling is depicted in FigureB.2.

Several optimizations of the HVFC algorithm were proposed by Assarsson and Möller [Assa00].
Some of these techniques aim to exploit temporal coherence, other concern efficient implementation of
the intersection tests. Slater and Chrysanthou [Slat97] presented a probabilistic scheme for acceleration
of the view frustum culling. Visibility status of an object is updated according to its estimated distance
from the view frustum.

B.3 From-point visibility culling

View frustum culling eliminates objects outside the view frustum, but there might still be many objects
invisible due to the occlusion. Techniques that aim to avoid rendering of occluded objects are called
visibility culling (also calledocclusion culling).

Visibility culling can be applied with respect to a single point or a whole region. Typically the from-
point visibility culling is appliedonline, i.e. visibility is recomputed after each change of the viewpoint.
On the contrary the from-region visibility culling can be appliedoffline, i.e. it precomputes visibility

B.3. FROM-POINT VISIBILITY CULLING xi

1

2

3 4

5

6

7

8

9

10

2

1

3

4

5

6

9

7

8

10viewpoint viewpoint

C

D

E

F

A

B

C

D

E

F

A

B

A B C D E F

1

2

4

9

11

10

6
8

7

5

3

1

2

3

4 5

6

7 8

9

10 11

A C D FEB

Figure B.2: Hierarchical view frustum culling using hierarchy of bounding spheres (left) and a kD-tree
(right). The white nodes are completely inside the view frustum, orange nodes partially intersect the
view frustum and the blue nodes are culled. The objects are colored according to their visibility classi-
fication. The orange line depicts a cut of the hierarchy at which the HVFC algorithm was terminated.

in preprocessing. The from-region visibility culling will be discussed in SectionB.4. Here we outline
several methods for the from-point visibility culling designed for an online application. We first review
the algorithms that use a discrete representation of occlusion and then the algorithms using a continuous
representation.

B.3.1 Hierarchical z-buffer

A general technique for the from-point visibility culling is thehierarchical z-bufferintroduced by
Greene et al. [Gree93]. It uses a z-pyramid to perform fast visibility queries. Each level of the pyra-
mid corresponds to a z-buffer with a down-sampled resolution. Level 0 corresponds to the traditional
z-buffer, level 1 to a z-buffer with half resolution, etc. Each entry at level n+1 contains the farthest of
the four corresponding entries from level n.

The z-pyramid is used in combination with a scene octree. The octree nodes are recursively tested for
visibility using the corresponding bounding boxes. For each face of the box its depth is first compared
to the coarsest level of the pyramid. If the face is farther it is hidden and thus invisible. Otherwise the
test proceeds using relevant entries at the finer level of the z-pyramid. See FigureB.3 for an illustration
of the hierarchical z-buffer algorithm. The z-pyramid is maintained by propagating changes at the level
0 z-buffer up into the hierarchy. FigureB.4 depicts a conservative depth propagation in the z-pyramid.

To make the algorithm suitable for the current graphics hardware Greene et al. [Gree93] proposed a
heuristics based on the temporal coherence. The two pass algorithm can be outlined as follows: First,
previously visible objects are rendered using traditional z-buffering. The z-buffer is then read back from
the hardware and the z-pyramid is built in software. Second, the octree test is performed in software,
but it skips nodes that have already been rendered in the first pass. Finally, the list of visible objects is
updated for the use in the next frame.

xii APPENDIX B. VISIBILITY IN REAL-TIME RENDERING

z−pyramid octree

viewpoint

0 1 nn−1

level

...

Figure B.3: The hierarchical z-buffer algorithm. The z-pyramid is used to cull invisible nodes of the
octree. Objects are rasterized into the level 0 z-buffer.

level

0 1 ... n−1n−2

z z z z

z far z far z far z far

Figure B.4: The propagation of depths in the z-pyramid. The depths are conservatively propagated up
the z-pyramid: each entry at level n+1 contains the farthest of the four corresponding entries from level
n.

B.3.2 Hierarchical polygon tiling

The hierarchical z-buffer algorithm applies the occlusion test on the octree nodes. Greene [Gree96]
proposedhierarchical polygon tilingalgorithm operating on a per polygon basis. It exploitscoverage
masksto accelerate operations on the z-pyramid. Additionally if a front-to-back order of polygons is
established, the z-pyramid can be replaced by acoverage pyramid. The coverage pyramid contains
only two state values indicating if the corresponding part of screen is occluded. The depth tests are
eliminated completely. The hierarchical polygon tiling with coverage masks is well suited for rendering
large scenes in high resolution without a dedicated graphics hardware.

B.3. FROM-POINT VISIBILITY CULLING xiii

B.3.3 Hierarchical occlusion maps

Zhang et al. [Zhan97b] describedhierarchical occlusion maps(HOM) that use similar idea as the hier-
archical z-buffer and exploit the standard graphics hardware.

Occluder selection

The HOM algorithm assumes that a set ofgood potential occludersis identified in preprocessing.
Ideally for each viewpoint we pick only objects that are visible and cause significant occlusion. This
however is the visible surface problem itself. The solution is to preprocess the scene and identify set of
promising occluders for a given range of viewpoints.

Occlusion map

The algorithm uses a pyramid of occlusion maps. Each entry of the occlusion map contains a opacity
value: 1 corresponds to full occlusion, 0 to no occlusion. Values between 0 and 1 indicate partial
occlusion. Level 0 occlusion map is obtained by rendering selected occluders with lighting and depth
tests disabled. The resolution of the level 0 occlusion map is typically much lower than one of the
rendered image (e.g. 256x256 pixels). Pixels occupied by some occluder contain value 1. Level 1
occlusion map with half resolution is formed by down-sampling: each pixel is an average of the four
corresponding pixels from level 0. The complete hierarchy of occlusion maps is built in the same
manner. The down-sampling can be performed efficiently with the help of the texture filtering operations
implemented in the graphics hardware.

Depth estimation map

Occlusion maps do not contain any depth information. The depth of occluders is represented by the
depth estimation map(DEM). Each entry of DEM corresponds to a rectangular region on the rendered
image (the DEM resolution is typically only 64x64). The DEM entry contains a maximum distance of
occluders that project to the corresponding rectangle. For simplicity only bounding boxes of occluders
are used for the depth estimation (see FigureB.5).

D

A

B

E

C

z

occluders

occludees

estimated depth

Figure B.5: DEM for the hierarchical occlusion map. Note that occludees A and B pass the depth test
although they are invisible with respect to the selected occluders.

HOM culling algorithm

The HOM culling algorithm can be outlined as follows: First, render the occluders to the level 0
occlusion map and form the HOM pyramid. Second, construct the DEM. Third, starting at the root node

xiv APPENDIX B. VISIBILITY IN REAL-TIME RENDERING

of the spatial hierarchy traverse the scene while performing occlusion tests. If a leaf of the hierarchy is
found visible render the associated objects.

The occlusion test is performed as follows: For each node’s bounding box test if the corresponding
pixels are occluded with respect to the coarsest level occlusion map. If they are not occluded (opacity
is lower than 1) descend to the higher resolution occlusion map. The procedure can be easily modified
to perform anapproximatevisibility culling. For details on the algorithm see [Zhan98].

B.3.4 Shadow frusta

The principle of shadow frusta culling of Hudson et al. [Huds97] is rather simple: Identify few good
polygonal occluders and use their shadow volumes to cull invisible objects by hierarchical visibility
tests. A visibility test is performed against each frustum independently using a spatial hierarchy. The
test determines if a bounding box is completely contained in any shadow frustum. If the box is in shadow
the corresponding hierarchy node and its whole subtree are culled. The drawback of the method is that it
does not account for occluder fusion and its time complexity grows linearly with the number of selected
occluders (see FigureB.6).

viewpoint viewpoint

object size

effective frusta

visible

invisible

Figure B.6: (left) Visibility culling using shadow frusta. Four shadow frusta are constructed for the four
depicted occluders. The gray objects are classified invisible. The white objects are classified visible.
(right) Effective shadow frusta for the depicted objects. The algorithm classifies the object as invisible
if the center of the object is located inside an effective shadow frustum.

B.3.5 Visual events

The previously mentioned methods use some representation of the occluded volume with respect to the
given viewpoint. Coorg and Teller [Coor97] developed a method that is based on a different idea. For
a given spatial region they identify an umbra volume from which the region is invisible with respect to
a given occluder. If the viewpoint is located in the umbra the region is culled. The penumbra of the
region and occluder is a volume from which the region is partially visible. The umbra is bound by the
supporting planes of the region and occluder, the penumbra is bound by the separating planes.

For each viewpoint a few promising occluders are identified as in the shadow frusta algorithm of
Hudson et al. [Huds97]. The culling is performed hierarchically starting at the root node of the spatial

B.3. FROM-POINT VISIBILITY CULLING xv

hierarchy (Coorg and Teller use a kD-tree). For the current node supporting and separating planes are
constructed for the corresponding box and each occluder. The algorithm tests the position of the view-
point with respect to the computed umbras and penumbras. The test classifies the node as fully visible,
partially visible or invisible. Invisible nodes are culled, fully visible nodes are rendered. Visibility of
partially visible nodes is recursively refined. To exploit temporal coherence the algorithm maintains a
cache of supporting and separating planes. See FigureB.7 for an illustration of the algorithm.

invisible
visible
partially

fully
visible

v I

Figure B.7: A 2D example of supporting and separating planes for two occluders and an octree node.
There are two umbra regions and four partially overlapping penumbras. The figure depicts the visibility
classification of the node from the five depicted viewpoints. Note that the algorithm conservatively
classifies viewpointvI as partially visible since it does not account for theoccluder fusion.

B.3.6 Cells and portals

Jones [Jone71] proposed to subdivide the scene into cells and portals to solve the hidden line removal.
He manually subdivided the model into convex polyhedral cells and transparent polygonal portals con-
necting these cells. Every polygon of the scene must be embedded in some face of one or more cells.

The scene is traversed starting at the cell containing the viewpoint. All faces of the current cells are
rendered. Then the algorithm recursively continues by processing cells visible through portals of the
current cell. The portal sequence through which any cell is reached forms a convex mask that is used
to clip the faces of the cell. If the mask is empty the current branch of the algorithm is terminated.
This method is complementary to the culling algorithms mentioned so far in the way how the invisible
objects are identified. The culling is not based on identifying that an object isoccluded byother objects
(occluders), but an object is culled if it is notvisible througha portal or a sequence of portals.

The method of Luebke and Georges [Lueb95] is a simplification of the method Jones that uses rect-
angular masks. The rectangular mask is a conservative overestimation of the polygonal mask. This
approach enables simple and fast real-time intersection of the masks. For each viewpoint cells are pro-
cessed in the front-to-back order and the opened portals are represented by a set of rectangles. The
algorithm checks if a given cell is visible through at least one opened portal using rectangle overlap
tests. If the cell is visible its geometry is rendered and the portals of the cell are intersected with the
portals through which the cell is visible (see FigureB.8).

xvi APPENDIX B. VISIBILITY IN REAL-TIME RENDERING

C

B

A

viewpoint

portal masks

Figure B.8: Cells and portals for the from-point visibility culling. The portals are used to create rectan-
gular masks. The masks are intersected and the algorithm traverses the cells until the masks intersection
is non-empty.

These two approaches are similar to the visibility preprocessing algorithm of Teller and Séquin [Tell91]
that will be discussed in SectionB.4.1. The cell/portal methods are well suited for indoor scenes where
cells roughly correspond to rooms and portals to doors. The drawback of these methods is that in gen-
eral scenes there is no natural subdivision into cells and portals. In such a case their efficiency drops
both in the running time and in the percentage of the culled objects.

B.3.7 Occlusion horizons

Occlusion horizonsof Downs et al. [Down01] exploit the 212D nature of outdoor urban areas (see Sec-
tion 2.5.1) to perform a fast and efficient online visibility culling.

The occluded volume is represented by a conservative piecewise constanthorizonthat is maintained
by a balanced binary tree. The scene is swept in a front-to-back order and the horizon is updated by the
processed objects (or their relevant subset). This process is interleaved with the hierarchical visibility
tests. The visibility test checks if the bounding box corresponding to a hierarchy node is below the
horizon. In such a case the node is culled.

The strength of the method is that it accounts for the occluder fusion. Additionally it can handle
significantly more occluders than the other continuous methods.

B.3.8 Occluder shadows for visibility from point

Wonka et al. [Wonk99] proposed theoccluder shadowsfor the from-point visibility culling in 212D
scenes. The algorithm uses orthographic projection and the z-buffer algorithm to merge occlusion due
to a set of occluders.Occluder shrinkingis used to guarantee the conservative behavior of the algorithm.

For a given viewpoint the algorithm determines a set of relevant occluders. Each occluder induces an
occluded volume represented by ashadow polygon. The shadow polygon is a truncated wedge defined
by the viewpoint and the top edge of the shrank occluder.

B.4. FROM-REGION VISIBILITY CULLING xvii

The algorithm creates a discretecullmapthat is formed by rasterizing shadow polygons. An entry of
the cullmap corresponds to the highest point that is guarantied to be occluded from the viewpoint. The
size of necessary occluder shrinking is given by the resolution of the cullmap. See FigureB.9 for an
illustration of the algorithm.

cullmap

viewpoint

occluder
shrinking

Figure B.9: Discrete cullmaps for visibility from point. Shadow polygons polygons are rasterized into
the cullmap. To guarantee a conservative behavior of the algorithm the occluders are shrank according
to the resolution of the cullmap.

B.4 From-region visibility culling

The from-point visibility culling requires recomputation of visibility for each change of the viewpoint.
On the contrary, the from-region visibility culling techniques typically precompute a superset of objects
visible from any point inside a given view cell.

B.4.1 Cells and portals

Airey et al. [Aire90] proposed the concept ofpotentially visible set(PVS). The model of indoor archi-
tectural environment is subdivided into cells and portals. For each cell the algorithm identifies other
cells that can be visible through associated portals or their sequences. The identified cells form a PVS
that is associated with the cell. A more precise solution is to calculate a PVS consisting of visible
objects rather than visible cells.

In real time the algorithm identifies the cell in which the observer is located. Only objects from the
cell’s PVS are rendered. This can deliver speedups of orders of magnitude for large indoor scenes with
restricted visibility.

Airey et al. used ray shooting to find a PVS of the given cell. This method is only approximate since
some objects can be missed by the sample rays. Another drawback is that huge amount of rays must
be cast in order to obtain sufficiently precise results. Visibility in indoor scenes was further studied
by Teller and Śequin [Tell91]. Teller [Tell92b] proposed an exact analytic method to compute PVS in
scenes with natural cell/portal structure. The algorithm uses five-dimensional halfspace intersection to
test the existence of a stabbing line for a sequence of polygonal portals. Teller also proposed a simpler
conservative algorithm based on clipping planes. The cells and portals methods are restricted to indoor
scenes with a particular structure. Next, we present more general methods suitable for other types of
scenes.

xviii APPENDIX B. VISIBILITY IN REAL-TIME RENDERING

B.4.2 Single occluder ray shooting

Cohen-Or et al. [Cohe98a] use ray shooting to sample occlusion due to a single convex occluder. They
cast rays that bound a shaft between the view cell and the region in question. If all rays hit the same
convex occluder the region must be invisible (see FigureB.10). Cohen-Or et al. provide an analysis
of visibility in densely occluded random scenes and derive bounds on the expected efficiency of the
method. They show that in very large densely occluded random scenes the size of computed PVS
is small in comparison to the total size of the scene. Nevertheless, the method generally produces
significantly larger PVS than methods that handle occluder fusion.

viewcell

R

R
O

O

O

O O

1

2

1

3

2

4 5

Figure B.10: Ray shooting based visibility preprocessing. The rays bounding the shaft between the
given region and the view cell must intersect the same convex object. The regionR2 is conservatively
classified as visible since the method does not account for occluder fusion.

B.4.3 Volumetric occluder fusion

Schaufler et al. [Scha00] useblocker extensionsto handle occluder fusion. They use a discrete subdivi-
sion of the scene into transparent and opaque regions. Given a view cell the occluded part of the scene
is determined by extending the opaque regions using a set of simple rules. All objects fully contained
in the occluded regions are excluded from the PVS. The method finds a discrete conservative approx-
imation of occluded volumes. Although the technique handles occluder fusion it fails to resolve all
configurations of occluders.

The principle of discrete volumetric visibility is also used in the method of Yagel and Ray [Yage95]
for computing visibility in caves. The cave system is represented by a volumetric model and visibility
is determined by finding connected sequences of unoccluded voxels. This method can be seen as an
inverse of the method by Schaufler et al. [Scha00], i.e. it extends the visible part of the scene instead of
the occluded one.

B.4.4 Extended projections

Durand et al. [Dura00] proposedextended occluder projectionsandocclusion sweepto handle the oc-
cluder fusion. For a given view cell nearby occluders are projected on a projection plane using extended
projection operators. The resulting occlusion map is swept through the scene using reprojection and
merging using extended projections of encountered occluders. The set of projection planes forms a
discrete conservative approximation of occluded volumes. Graphics hardware can be used to accelerate
both the extended projection and the reprojection operators.

B.5. VISIBILITY IN TERRAINS xix

B.4.5 Occluder shadows

Wonka et al. [Wonk00] extended the occluder shadows method for the from-region visibility in 21
2D

scenes. The algorithm uses orthographic projection and point sampling to merge occlusion due to a set
of occluders. Occluder shrinking is used to guarantee conservative behavior.

The cullmap is formed by sampling visibility from points on boundaries of the given view cell.
For a given view cell the algorithm determines a set of relevant occluders. The cullmap is formed by
an intersection of occluded volumes defined by the occluders and the sample points on the view cell
boundary. For each sample point occluder shadow polygons are rendered into the cullmap. The shadow
polygon is a wedge formed by the sample point and the top edge of the shrank occluder. The size of
necessary occluder shrinking is given by the distance between the sample points and the resolution of
the cullmap.

Wonka et al. [Wonk01b] proposed an application of the occluder shadows method in an online algo-
rithm. The PVS is computed for a small neighborhood of the given viewpoint. This PVS is valid for
several frames assuming that the viewpoint moves smoothly. In this way the time spent on computing
PVS is amortized over several frames.

B.4.6 Dual ray space

Koltun et al. [Kolt01] proposed a conservative algorithm for computing from-region visibility in 21
2D

scenes usingdual ray space. Given a view cell and a region the algorithm computes a plane that is
tangent to the view cell and the region. Visibility is then resolved in 2D using intersections of this plane
and the scene occluders. The 2D visibility is solved using a mapping of rays to the discrete dual space.
The algorithm exploits graphics hardware to perform operations on the duals of the occluded rays.

B.4.7 Hardware occlusion test

Newer graphics hardware provides an occlusion test for bounding boxes. The problem of this occlusion
test is that the results of such an occlusion query are not readily available. A straightforward algorithm
would therefore cause many unnecessary delays (pipeline stalls) in the rendering. The focus of research
has now shifted to finding ways of ordering the scene traversal to interleave rendering and visibility
queries in an efficient manner [Hey01], [Klos01].

B.5 Visibility in terrains

Visibility algorithms for terrains are important for applications such as flight simulation, urban visual-
ization, path planning or telecommunications. Similarly to urban scenes (Section2.5.1) the terrain can
be considered a 2D height function. In comparison to the outdoor urban scenes the terrain is typically
much smoother, i.e. it does not contain many height discontinuities. Furthermore the description of
the terrain is typically much more regular (grid, octree) than description of an urban scene (general ob-
jects). As a result the terrain visibility methods are being developed independently from the algorithms
for general and urban scenes. A survey of terrain visibility problems and algorithms was published
by Nagy [Nagy94]. De Floriani and Magillo present a survey of visibility algorithms for triangulated
terrains [Flor94].

The most common visibility problem in terrains is computing thehorizonor theviewshedfor a given
viewpoint. Stewart [Stew96, Stew98b] proposed an algorithm for computing horizon for a given view-
point. Cabral et al. [Cabr87] and Max [Max88] proposed approximate methods designed specifically for
bump maps. Cohen-Or and Shaked [Cohe95] used sampling to determine visible and invisible parts of
the terrain with respect to the given viewpoint. De Floriani and Magillo [Flor95] developed an algorithm
computing horizon at different resolutions that can be updated at different levels of detail.

xx APPENDIX B. VISIBILITY IN REAL-TIME RENDERING

Stewart [Stew97] proposed a from-region 212D algorithm for visibility preprocessing in terrains. He
maintains a multi-resolution representation of the terrain in a quadtree. For each quad the algorithm
computes a conservative discretehorizon. The horizon for a quad is divided into sectors and for each
sector an ordered list of vertices is determined that represent anocclusion regionfrom which the quad
is not visible. In real time the algorithm processes the quadtree recursively. If the viewpoint lies in an
occlusion region of the current quad the corresponding subtree is culled.

The results from the computational geometry show that to compute a horizon of a point is equiv-
alent to computation of an upper envelope ofO(n) segments for a terrain mesh consisting ofn
points [Atal83]. The horizon hasO(nα(n))1 complexity and can be computed inO(n log n) time.
Cole and Sharir [Cole89] and Bern et al. [Bern94] studied visibility in terrains in order to efficiently
answer ray shooting queries.

B.6 Other acceleration techniques

Visibility culling is only one of many acceleration techniques for real-time rendering. It can yield a
significant speedup for scenes with significant occlusion, but for example it will fail in outdoor scenes
with unrestricted visibility. Visibility culling should be used in combination with other acceleration
techniques to achieve an optimal performance. For example results of visibility computation can be
used to drive the levels of detail [Carl00] or image based rendering [Lueb95]. We review the most
important acceleration techniques and briefly discuss their links to the visibility computations where
appropriate.

B.6.1 Geometry structuring

A general technique to increase rendering performance is to structure the geometry in a way convenient
for the graphics hardware. Optimized geometry structuring saves calculations of transformation and
lighting and reduces the bandwidth between the CPU and the graphics hardware. Geometry structuring
can be successfully applied on most polygonal data and it is rather independent of visibility calculations.

Triangle strips and fans

Any polygonal model can be converted to a set of triangles. Connected triangles share an edge
and two vertices. If the triangles are sent to the graphics hardware independently, there are redundant
computations performed for the shared vertices. Additionally the same data is sent twice.

One way to reduce these overheads is to form strips of connected triangles [Evan96b]. Initially
we sent the vertices of the first triangle in the strip and continue by sending one vertex per triangle.
The algorithm uses a buffer for two vertices to which the current vertex should be connected. By
default the triangle is connected to the edge formed by the last two vertices. If the connecting rule
should be changed a special command indicating aswap is issued or a vertex is retransmitted. The
Iris GL [Neid93] uses an additional bit for each new vertex indicating to which edge the new triangle
should be connected. Triangle fan can be seen as a degenerated triangle strip where the opposite default
connectivity rule is used. All triangles in the fan share a common vertex (see FigureB.11).

A generalization of triangle strips and fans for use with vertex buffers of more than two entries is
calledgeneralized triangle mesh. It was shown that even small buffer sizes can substantially improve
the total rendering performance [Evan96b]. Construction of optimal triangle strips is a NP-complete
problem [Evan96a, Evan96b]. Several heuristics for constructing good triangle strips have been pro-
posed [Evan96b, Belm01, Stew01].

1α(n) is an inverse of the Ackermann function that can be considered a constant for any practical n.

B.6. OTHER ACCELERATION TECHNIQUES xxi

0

1

2 6

53 7

4
0 3

1 2

5 4

Figure B.11: A triangle strip and a triangle fan.

Indexed face sets

Indexed face sets provide a flexible representation of polygonal meshes [Fole90]. The mesh is stored
as a set of vertices and their attributes, and a set of vertex and attribute indices for each face of the mesh.
The typical attributes include normals per vertex, colors per vertex and texture coordinates per vertex.
Colors and normals can also be specified on a per face basis.

Such a representation allows to eliminate the repeated transformation and lighting calculation for
shared vertices. Nevertheless, care must be taken if this representation is used with the graphics hard-
ware. All attributes and their transformed values should then be stored in the graphics hardware so
that efficient indexing can take place. Incoherent access to the attributes can cause significant cache
penalties.

B.6.2 Levels of detail

Complex objects can contain many small details that cannot be seen when observed from a distance. In
real-time applications we often sacrifice the details in order to achieve high frame rates and a pleasant
feedback. Complex objects can be simplified usinglevels of detail(LOD). The lower the level of
detail the less polygons are used to represent the object. The choice of the LOD used in run-time
is typically based on the distance of the object from the viewpoint, its semantic importance or the
desired overall rendering time [Funk93]. Visibility computations can be used to guide the LOD selection
algorithm [Carl00].

Discrete LOD

An object can be simplified using several LODs with progressively smaller amount of polygons [Clar76,
Pupp97]. Distracting artifacts calledpoppingcan occur when switching between the LODs. Popping
can be eliminated by continuous blending between the LODs at the cost of additional computations in
real time [Cohe98b, Zach02].

Continuous LOD

The idea of continuous LOD is to perform a series of elementary simplifications of an object in real
time. The simplifications can adapt to the current viewing conditions. This ability is important namely
in large terrains, where the terrain close to the observer should be finely tessellated whereas the farther
parts can use rather coarse representation.

The typical elementary simplification is theedge collapse[Hopp96, Hopp97]. A triangle mesh gets
progressively simplified by a series of edge collapses. At each edge collapse the nearby vertices are
shifted to better express the shape of the object. By using a history of modifications the original shape
can be restored. ThegeomorphLODs use smooth vertex transformations to avoid popping when the
edge is collapsed or expanded [Hopp98, Grab01].

xxii APPENDIX B. VISIBILITY IN REAL-TIME RENDERING

B.6.3 Image-based rendering

Image based renderinghas become an alternative for rendering complex environments in real time [Shad96,
Scha96, Alia97, Scha97]. Many image based rendering techniques use impostors: an impostor repre-
sents a complex geometry by a combination of simple geometry and a texture. The impostor can be
reused until it is no longer a satisfying representation of the view of the represented geometry. The as-
sociated rendering cost mostly depends on the number of pixels in the final image and not on the scene
complexity.

Probably the simplest impostor is a quadrilateral with texture representing a rather flat or distant
object. The texture includes opacity component to capture boundaries of the object. Such impostors
have long been used in computer games for trees. The simple quadrilateral impostor often appears
very flat and unnatural. Many techniques have been designed to improve the quality of representation
as well as to allow an automatic construction and updating of impostors [Wimm01, Jesc02]. Many
recent techniques exploit the idea oflayered depth imagesto capture occluded parts of the model in an
image based representation [Shad98, Pope98, Alia99]. McMillan [McMi97] proposed an algorithm for
warping images with depth information from one viewpoint to another. The algorithm resolves visibility
by a correct occlusion compatible traversal of the input image.

Nailboards

Nailboards proposed by Schaufler [Scha97] are impostors with a texture including a depth component
instead of opacity. This depth information is used to obtain correct depth values in the framework of
z-buffered rendering. The depth stored in the nailboard is an offset from the nailboard polygon using
only a small number of bits.

3D image cache

The 3D image cache proposed independently by Schaufler et al. [Scha96] and Shade et al. [Shad96]
allows an automatic generation of impostors suitable for walkthroughs and flyovers of large 3D scenes
with unrestricted visibility.

A spatial hierarchy is built over the whole scene. For each sufficiently distant node of the hierarchy
an impostor is generated that represents all geometry contained in that node. For leaf nodes the impostor
is generated from the geometry, impostors for intermediate nodes are regenerated from impostors lower
in the hierarchy. For obtaining the final image the hierarchy is traversed in a front to back order and the
impostors are drawn yielding a correct visibility.

B.6.4 Point-based rendering

Point-based rendering is another alternative to the conventional polygon-based rendering. It is useful for
highly complex models, which would otherwise require a huge number of triangles. Most point-based
rendering algorithms project points on the screen usingsplattingand apply somefiltering technique to
render the resulting image. Splatting implicitly reconstructs the local topology of the model to avoid
gaps in the image and to resolve visibility of projected points.

Pfister et al. [Pfis00] use software visibility splatting to identify holes in the image. Most other
techniques use a hardware accelerated z-buffer. Grossman and Dally [Gros98] use a variant of the
hierarchical z-buffer [Gree93] to resolve visibility. Rusinkiewicz and Levoy [Rusi00] use splats of dif-
ferent shapes to improve the quality of the image, particularly of the object silhouette. The randomized
z-buffer algorithm proposed by Wand et al. [Wand01] samples a large triangle mesh to accelerate its
rendering. The mesh is preprocessed and the algorithm selects sufficient number of sample points so
that each pixel receives at least one sample point from a visible triangle with high probability.

Appendix C

Visibility in realistic rendering

The goal of realistic rendering techniques is to generate a (photo)realistic image of a virtual scene using
an accurate simulation of the light propagation. In this chapter we first review methods that aim to
increase realism of the synthesized image by including shadows and discuss how these methods make
use of visibility computations. We first review methods computinghard shadows, i.e. shadows due
to point light sources. Then we discuss algorithms forsoft shadows, i.e. shadows due to areal light
sources. Then we discuss visibility algorithms for theradiosity method and review work on efficient
ray shooting that serves as a core of most recentglobal illuminationalgorithms. Finally, we discuss
severalglobal visibilityalgorithms.

C.1 Hard shadows

The presence of shadows in a computer generated image significantly increases its realism [Woo90b,
Slat92, Moll02]. Shadows provide important visual cues about positions and sizes of objects in the
scene. Traditionally shadow algorithms have been the domain of realistic rendering and they were
too slow for the use in real time. Nowadays some algorithms, particularly these exploiting graphics
hardware, are often suitable for a real-time application.

C.1.1 Ray tracing

The ray tracing [Whit79] algorithm simulates the light propagation by tracing rays from the eye back
to the scene. At each intersection with an object a shadow ray is cast to each point light source. This
point-to-point visibility query determines if the given point is in shadow (light source is invisible) or lit
(light source is visible). Ray tracing does not explicitly reconstruct shadow volumes. It samples points
on the light path for inclusion in the shadow independently of each other.

Tracing of shadow rays can be significantly accelerated by using thelight bufferintroduced by Haines
and Greenberg [Hain86]. The light buffer is an array corresponding to the projection of the scene cen-
tered at the light source. Each element of the array forms a list of objects that need to be tested for an
intersection if the query point projects to this element. Another speedup can be achieved by precomput-
ing shadowed regions in the scene and storing this information within the spatial subdivision [Woo90a].
More details on the ray shooting acceleration techniques will be presented in SectionC.5.

C.1.2 Shadow maps

A shadow map proposed by Williams [Will78] is a discrete representation of shadows due to a single
point light source. It is a 2D array corresponding to a projection of the scene centered at the light
source. Each element of the array contains the depth of the closest object that projects to that element.

xxiii

xxiv APPENDIX C. VISIBILITY IN REALISTIC RENDERING

The algorithm first constructs a shadow map by rendering the scene using the z-buffer algorithm from
the light source point of view [Sega92, Heid99]. Then the scene is rendered using a given view and
projecting visible points to the shadow map. The depth of the point is compared to the value stored
at the shadow map. If the point is farther than the stored value it is in shadow. This algorithm can be
accelerated significantly using extensions of the current graphics hardware [Sega92].

Similarly to ray tracing, shadow maps can represent shadow due to objects defined by complex
surfaces, i.e. any object that can be rasterized into the shadow map is suitable. In contrast to ray
tracing the shadow map approach explicitly reconstructs the shadow volume. The shadow volume is
represented in a discrete form as a set of rays defined by non empty elements of the shadow map. The
disadvantage of the approach is that the discrete representation of the shadow volume can lead to severe
aliasing. Many techniques have been proposed to reduce the aliasing effects [Gran92].

C.1.3 Shadow volumes

The shadow volume of a polygon with respect to a point is a semi-infinite frustum. The intersection
of the frustum with the scene bounding box can be explicitly reconstructed and represented by a set
of polygons bounding the frustum (see FigureC.1). Crow [Crow77] observed that these polygons can
be used to test if a pointp corresponding to the pixel of the rendered image as by counting number of
polygonsin front of p andbehindp. Denotenf number of polygons in front ofp andnb number of
polygons behindp. Then ifnf − nb > 0 the point is in shadow.

shadow planes

shadow volume

light source

Figure C.1: Shadow volume due to a polygon. The volume is bounded by four planes: the supporting
plane of the polygon and three shadow planes.

An efficient real-time implementation of this technique proposed by Heidmann [Heid91] uses
OpenGLstencil bufferto render the shadow polygons and to count thenf − nb for each pixel in the
image. Than the color of all pixels withnf − nb > 0 can be adjusted accordingly.

C.1.4 Shadow volume BSP trees

TheShadow Volume BSP(SVBSP) tree proposed by Chin and Feiner [Chin89] is a variant of the BSP
tree for the representation of polyhedra [Thib87, Nayl90b]. The SVBSP tree represents a union of
shadow volumes cast by convex polygons (occluders). Each internal node of the tree is associated with
ashadow planepassing through the light source and an edge of the occluder.

The direction of the shadow plane normal is used to determine the half-space in which the occluder
and its shadow are located. Each leaf node of the tree corresponds to a semi-infinite pyramid. The leaves
are classified asin orout. An in-leaf is associated with a scene polygon that truncates the corresponding

C.2. SOFT SHADOWS xxv

pyramid to the shadow frustum. Anout-leaf represents an unoccluded pyramid and hence the volume
lit by the light source. The complete shadow volume is a union of all shadow frusta corresponding to
in-leaves. An example of the SVBSP tree is depicted in FigureC.2.

a

b

c

d

in

out

outin

in out

out

e

f

SVBSP

fba
c

e

d

light source

shadow volumes

shadow planes

shadowed
fragment

Figure C.2: A 2D example of the SVBSP tree constructed for three polygons.

The SVBSP tree is constructed incrementally by processing the polygons in the front-to-back order
with respect to the light source. The contribution of one polygon to the tree is determined as follows:

1. Lit fragments of the polygon are determined.

2. The tree is enlarged by shadow volumes cast by the lit fragments.

The lit fragments of the polygon are determined byfiltering the polygon down the tree. The filtering
is a constraineddepth first traversalof the tree that starts at the root. For the current node the position
of the polygon with respect to node’s shadow plane is determined. If the polygon lies completely on
the back or the front side of the shadow plane, it is filtered down the back or the front child of the node,
respectively. Otherwise, the polygon is split by the shadow plane into two fragments that are filtered
down the appropriate children.

Reaching leaf nodes a set of convex polygonal fragments is obtained. These are either lit (out-leaves)
or shadowed (in-leaves). In theout-leaves the tree is enlarged by the shadow volumes cast by the lit
fragments. For each lit fragment new nodes defined by edges of the fragment are used to replace the
corresponding leaf. The lit and shadowed fragments are stored within the original polygon. During
rendering the illumination of these fragments can be set accordingly.

The front-to-back ordering of polygons can be achieved by building a BSP tree for the scene polygons
and its appropriate traversal [Fuch80]. Alternatively, methods exploiting occlusion dependency graphs
can be used [Chen96, Mill96, Jame98, Snyd98]. The SVBSP tree algorithm was designed for static
scenes. Chrysanthou and Slater [Chry95] extended the method for dynamic scenes.

C.2 Soft shadows

Rendering soft shadows is significantly more difficult than rendering hard shadows. Soft shadows ap-
pear in scenes with areal light sources and/or in scenes with secondary illumination due to diffuse
reflections.

A shadow due to an areal light source consists of two parts:umbraandpenumbra. Umbra is a part of
the shadow from which the light source is invisible. Penumbra is that part from which the light source
is partially visible and partially hidden by some scene objects.

xxvi APPENDIX C. VISIBILITY IN REALISTIC RENDERING

C.2.1 Ray tracing and areal light sources

A straightforward extension of the ray tracing algorithm handles areal light sources by shooting ran-
domly distributed shadow rays towards the light source [Cook84]. The illumination due to the light
source is determined by stochastic sampling and Monte Carlo integration.

C.2.2 Soft shadow maps

Heidrich et al. [Heid00] proposed an extension of the shadow map approach forlinear light sources.
They use a discrete shadow map enriched by avisibility channelto render soft shadows at interactive
speeds. The visibility channel consists of estimates of percentage of the light source visible at the cor-
responding points. First, the shadow maps are rendered from the endpoints of the linear light source.
Then an edge detection algorithm is applied to detect depth discontinuities in the shadow maps. The
detected edges are used to formskinpolygons that are warped into the other shadow map. The visibility
channel is updated by merging the visibility estimates with the linearly interpolated estimated visibil-
ity corresponding to the skin polygon. Soler and Sillion [Sole98] proposed a shadow map algorithm
handling areal light sources. They use convolution to compute visibility estimates in the shadow maps.

C.2.3 Shadow volumes for soft shadows

Heckbert and Herf [Heck97] proposed an algorithm extending the concept shadow volumes to areal
light sources. A shadow volume is constructed for each vertex of the light source as with the point light
sources. The illumination of a point in shadow is modified according to the number of shadow volumes
it is contain in.

C.2.4 Shadow volume BSP tree for soft shadows

An adaptation of the SVBSP tree method for areal light sources was proposed by Chin and Feiner [Chin92].
This approach was further elaborated by Chrysanthou [Chry96] and Chrysanthou and Slater [Chry97]
for the use in dynamic scenes.

C.3 Global illumination

Realistic image synthesis aims to solve therendering equationformulated by Kajiya [Kaji86]. The
rendering equation expresses the light transport intensity between two surface pointsx andx′ in the
scene as:

I(x, x′) = v(x, x′)[e(x, x′) + (C.1)∫
Ω

ρ(x, x′, x′′)I(x′, x′′)dx′′] (C.2)

where:

• v(x, x′) is thevisibility functionthat equals 1 is the points x and x’ are visible and 0 otherwise,

• e(x, x′) is the transfer emittance from x’ to x,

• ρ(x, x′, x′′) is the unoccluded three-point transport reflectance. related to BRDF

C.4. RADIOSITY xxvii

x’’

x’’

x’’
1

2

3

v(x’,x’’)=02

x

I(x,x’)

C

B

D

A

ρ i

ε(x,x’)

x’ (x,x’,x’’)

Figure C.3: Geometry involved in the rendering equation. Pointsx′ andx′′2 are occluded and therefore
v(x′, x′′2) = 0.

The terms of the rendering equation are illustrated in FigureC.3. The rendering equation provides
context for evaluation of the rendering algorithms according to the quality of the approximation to the
equation they provide. The evaluation of visibility function is one of the most demanding tasks in global
illumination. The algorithms evaluating the visibility function differ in dependence on the particular
rendering algorithm. For example in the classical radiosity algorithm the visibility function is evaluated
simultaneously for a whole set of rays that intersect the given patch, whereas in most stochastic methods
visibility is evaluated by shooting rays independently.

C.4 Radiosity

The classicalradiositymethod [Gora84] simulates light propagation by solving a system of linear equa-
tions describing the light transfers. It handles scenes that consist of perfect diffuse surfaces. The
surfaces are subdivided into patches and theradiosityBi of patchAi is expressed as:

Bi = Ei + Ri

n∑
j=1

BjFij [
W

m2
] (C.3)

where,Ei is the energy emitted from the patch andFij is aform factorexpressing the mutual transfer
of energy between patchesAi andAj . Fij is given as:

Fij =
energy leaving patch Ai that directly hits Aj

energy leaving patch Ai in all directions
[−] (C.4)

This can be expressed as:

Fij =
1
Ai

∫
Ai

∫
Aj

v(dAi, dAj)
cosφicosφj

πr2
dAjdAi (C.5)

wherev(dAi, dAj) is the visibility term that equals1 if the differential areasdAi anddAj are visible
and0 otherwise (see FigureC.4). In the next sections we discuss several methods of computing form
factors.

xxviii APPENDIX C. VISIBILITY IN REALISTIC RENDERING

φ

φA

dA j

N

iN

AdA i i

i

r

j
jj

Figure C.4: Geometry for computing a form factor between two polygons.

C.4.1 Ray shooting and form factors

The form factor can be evaluated by shooting random rays and using Monte Carlo integration. This
approach was used by several researches [Wall89, Geor90, Shir95, Slus97, Stam98, Stam97].

C.4.2 Hemisphere and hemicube

A simplified form factor evaluation between two patches computes a form-factor of a differential area
of Pi with respect to the other patchPj . The form-factor between the two patches is estimated assuming
that the differential form-factor is almost constant acrossPi.

Thehemispheremethod [Szir95] projects the visible part of the polygon on a unit hemisphere cen-
tered at the middle of the patch. Thehemicubealgorithm proposed by Cohen and Greenberg [Cohe85]
uses five item buffers that are erected above the given patch. The scene is rendered into the item buffers
using a perspective projection from the center of the patch. The item buffers are scanned and their
entries are used to estimate the form factor between the given patch and the patch corresponding to the
entry. There are two sources of error in the hemicube algorithm: the finite resolution of the hemicube
and the fact that visibility is sampled only at the center of the patch.

C.4.3 BSP trees

Campbell [Camp90] proposed an algorithm computing point-to-polygon form factors using a variant of
the Shadow Volume BSP tree. For each vertex of the given patch the algorithm constructs a BSP tree
representing a view of the scene from this vertex. The BSP tree is used to efficiently identify fragments
of visible patches from the vertex. Then the point-to-polygon form factor is evaluated analytically using
a visible fragment of the given patch.

C.4.4 Discontinuity meshing

Following the work of Campbell [Camp90, Camp91], Heckbert [Heck92] and Lischinski et al. [Lisc92]
proposed a precise computation of form factors by computing a discontinuity mesh with respect to the
light source. A discontinuity mesh is a partition of the scene into patches so that each patch “sees”
a topologically equivalent view of the light source. The view of the light source from the patch is
calledbackprojection. Boundaries of the resulting mesh correspond to loci of discontinuities in the
illumination function.

C.5. RAY SHOOTING IN GLOBAL ILLUMINATION xxix

Discontinuity meshing can be used to analytically calculate form factors with respect to an areal light
source: For each patch of the discontinuity mesh that is visible from the light source the form factor can
be evaluated using a corresponding backprojection of the light source from the patch [Schr93].

The algorithms of Heckbert [Heck92] and Lischinski et al. [Lisc92] construct a subset of discontinu-
ity mesh by casting linear surfaces corresponding to the vertex-edge visibility events. More elaborated
methods capable of creating a complete discontinuity mesh were proposed by Drettakis [Dret94a], Dret-
takis and Fiume [Dret94b], and Stewart and Ghali [Stew93, Stew94].

C.5 Ray shooting in global illumination

Ray shooting is crucial for many global illumination algorithms that sample light paths by tracing a
huge number of rays. The first global illumination algorithm is ray tracing [Whit79]. In its original
form ray tracing simulates only specular reflections and point light sources. Many modern methods
solve the rendering equation by Monte Carlo integration [Arvo90, Veac94, Kell97, Slus97, Veac97].
All these methods invoke a huge amount of ray shooting queries to sample visibility within the scene.

Ray shooting is also used within many hybrid approaches that combine finite element approach
(radiosity) with the stochastic algorithms [Sill89, Kok92, Kok93, Jens95, Tobl97]. In the remainder of
this section we review the work on ray shooting acceleration.

C.5.1 Ray shooting acceleration techniques

A naive ray shooting algorithm tests all objects for intersection with a given ray to find the closest visible
object along the ray inO(n) time. For complex scenes this linear time complexity is very restrictive
since a huge amount of rays is cast to synthesize an image.

Researchers from the computational geometry community aim to establish tight bounds of the time
and memory complexities of the proposed algorithms. In order to obtain theoretically provable results
the scene description is usually restricted to polygons. De Berg proposed an algorithm [Berg93b] that
reachesO(log n) time complexity withO(n4+ε) preprocessing time and storage, whereε is an arbi-
trarily small positive constant, andn is a number of polygons. It was shown that theO(log n) time
complexity is asymptotically optimal [Szir97]. The worst-case-optimal results are important theoreti-
cally, but the initial assumptions, the storage complexity and implementation problems usually disallow
their use for the real-world data.

An overview of practical acceleration techniques for ray shooting was given by Arvo [Arvo89]. A
recent comprehensive survey was presented by Havran [Havr00a]. Most of the proposed methods or-
ganize the scene objects in spatial indexing data structures, that allow efficient determination of objects
that can possibly be pierced by a given ray. The goal is to minimize the number of ray/object intersection
tests. The algorithms use various acceleration data structures such as uniform grids [Fuji86], bounding
volume hierarchies [Gold87], octrees [Same89b, Peng87], kD-trees [Fuss88, MacD90, Subr91], irregu-
lar grids [Silv97], hierarchies of sorted lists [Four93], or hierarchical grids [Caza95, Caza97a, Klim97].
Some hybrid approaches combine several hierarchical data structures [Subr90, Subr92]. Other methods
build on a subdivision of line space or ray space [Arvo87, Simi94, Kwon98]. The main disadvantage of
these methods is the high memory complexity of a discrete subdivision of the higher-dimensional (4D
or 5D) space.

Another possibility of acceleration is to reduce the number of rays that are traced. Firstly, the coher-
ence of radiance along similar rays can be utilized [Akim91, Loof93, Kok93, Tell96, Havr00b]. Sec-
ondly, a visibility preprocessing can avoid ray shooting between invisible regions of the scene [Hain86,
Woo90a, Luka98]. Thirdly, some methods trace infinitely many rays enclosed in a beam [Heck84,
Zwaa95, Rajk96, Funk98, Tell98].

xxx APPENDIX C. VISIBILITY IN REALISTIC RENDERING

The ray bundle tracingproposed by Szirmay-Kalos [Szir98a, Szir98b] shoots a set of parallel rays
through the scene according to randomly sampled direction. This approach allows to exploit a visible
surface algorithm for tracing many rays at the same time. When using the z-buffer the algorithm makes
use of the dedicated graphics hardware. The disadvantage of the method is that the rays are highly
correlated and in general more rays need to be traced to obtain sufficiently precise and unbiased results.

Further acceleration of ray shooting can be achieved by speeding up the ray/object intersection it-
self. This is usually carried out by object bounding volumes such as simple axis aligned boxes.
A different approach that uses duality to speedup the ray/polyhedron intersection was proposed by
Kolingerov́a [Koli97]. Recently, there have been attempts to accelerate ray shooting using SIMD exten-
sions of modern CPUs [Wald02] or a dedicated graphics hardware [Purc02].

Ray shooting can also be accelerated by exploiting temporal coherence of subsequent frames within
animation sequences [Glas88, Badt88, Chap90, Jeva92, Bish94, Grol93].

C.5.2 Ray shooting using uniform grid

The uniform grid (UG) is one of the first accelerating data structures for ray shooting [Fuji86]. It
subdivides the scene into equally sized cells. Within each cell a list of objects that intersect the cell is
maintained. Since the UG does not adapt to the distribution of the scene geometry a large number of
UG cells can be vacant. On the other hand the ray shooting algorithm for the UG can be implemented
very efficiently using a 3D-DDA algorithm [Aman87, Fuji86, Clea88].

Starting from the cell containing the ray origin the UG is traversed along the ray direction. Within
each cell objects contained in the corresponding list are tested for intersection with the ray (see Fig-
ureC.5). The traversal is terminated when an object intersecting the ray is found or all relevant cells of
the UG have been visited. Typically many cells contain no objects, thus the traversal algorithm needs
to perform many steps until the intersection is found. To overcome this problem some methods use
precomputed zones where no ray/object intersection can occur [Devi89, Cohe94, Semw97].

VISITED NODE OBJECT TESTED FOR INTERSECTION

Figure C.5: Ray shooting using the uniform grid.

C.5.3 Ray shooting using kD-tree

kD-trees is a common data structure used to organize multi-dimensional data [Bent75, Same89a]. The
fundamental factor influencing the properties of a kD-tree is the positioning of partitioning planes. The
construction of kD-trees for ray shooting purposes was first studied by Kaplan [Kapl85]. A more elab-
orate method of MacDonald and Booth [MacD90] uses asurface area heuristicsto estimate the cost of

C.6. GLOBAL VISIBILITY xxxi

the resulting tree. The kD-tree is built using a greedy algorithm that minimizes the expected cost of the
tree when choosing a partitioning plane [Havr00a]. Kaplan [Kapl85] introduced thesequentialtraversal
algorithm for the kD-tree. A more efficientrecursivealgorithm was proposed by Jansen in [Jans86]
and further elaborated by Arvo [Arvo88], Sung and Shirley [Sung92] and Havran et al. [Havr98b]. The
recursive algorithm performs a constrained depth first traversal starting from the root of the tree. The
traversal order and its constraints are determined by the mutual position of the ray and the partitioning
plane corresponding to the currently visited node.

The ability of the kD-trees to adapt to the scene geometry is paid by the overhead of the traversal of
the interior nodes of the hierarchy. Additionally even if the location of the origin of the ray is known the
recursive traversal proceeds again from the root of the tree. A method overcoming these problems uses
neighbor-links (ropes) [MacD90, Havr98a] in the scope of a non-recursive traversal algorithm. Ray
shooting using kD-tree is illustrated in FigureC.6.

VISITED LEAF NODE OBJECT TESTED FOR INTERSECTION

Figure C.6: Ray shooting using the kD–tree.

C.6 Global visibility

The aim ofglobal visibilitycomputations is to capture and describe visibility in the whole scene [Dura96].
These methods are typically based on some form ofline space subdivisionthat partitions lines or rays
into equivalence classes according to their visibility classification. Each class corresponds to a contin-
uous set of rays with a common visibility classification. The techniques differ mainly in the way how
the line space subdivision is computed and maintained. A practical application of most of the proposed
global visibility structures is still an open problem. Prospectively these techniques provide an elegant
method for ray shooting acceleration — the ray shooting problem can be reduced to point location in
the line space subdivision.

C.6.1 Visibility complex

Pocchiola and Vegter introduced the visibility complex [Pocc93] that describes global visibility in two-
dimensional scenes. The visibility complex has been applied to solve various visibility problems in the
plane [Rivi95, Rivi97b, Rivi97a, Orti96]. The visibility complex was generalized to 3D by Durand et
al. [Dura96]. Nevertheless, no implementation of the 3D visibility complex is known.

xxxii APPENDIX C. VISIBILITY IN REALISTIC RENDERING

C.6.2 Visibility skeleton

Durand et al. [Dura97] introduced thevisibility skeleton. Visibility skeleton is a graph describing the
skeleton of the 3D visibility complex. The visibility skeleton was implemented and verified experimen-
tally. The results indicate that its worst case complexityO(n4 log n) is much better in practice. Recently
Duguet and Drettakis [Dugu02] improved the robustness of the method by using robust epsilon-visibility
predicates.

Bibliography

[Agar97] P. Agarwal, T. Murali, and J. Vitter. Practical Techniques for Constructing Binary Space
Partitions for Orthogonal Rectangles. InProceedings of ACM Symposium on Computa-
tional Geometry, pp. 382–384, 1997. Cited on page31.

[Aire90] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards Image Realism with Interactive
Update Rates in Complex Virtual Building Environments. InProceedings of Symposium
on Interactive 3D Graphics, pp. 41–50, ACM SIGGRAPH, March 1990. Cited on page2,
24, 39, 84, 100, xvii .

[Akim91] T. Akimoto, K. Mase, and Y. Suenaga. Pixel-Selected Ray Tracing.IEEE Computer
Graphics and Applications, Vol. 11, No. 4, pp. 14–22, July 1991. Cited on pagexxix.

[Alia97] D. G. Aliaga and A. A. Lastra. Architectural Walkthroughs Using Portal Textures. In
Proceedings of IEEE Visualization ’97, pp. 355–362, IEEE, Nov. 1997. Cited on page
xxii .

[Alia99] D. G. Aliaga and A. Lastra. Automatic Image Placement to Provide a Guaranteed Frame
Rate. InComputer Graphics (SIGGRAPH ’99 Proceedings), pp. 307–316, Aug. 1999.
Cited on pagexxii .

[Aman84] J. Amanatides. Ray Tracing with Cones. InComputer Graphics (SIGGRAPH ’84 Proceed-
ings), pp. 129–135, July 1984. Cited on page27, 28.

[Aman87] J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray Tracing. InPro-
ceedings of Eurographics ’87, pp. 3–10, Aug. 1987. Cited on pagexxx.

[Appe68] A. Appel. Some Techniques for Shading Machine Renderings of Solids. InAFIPS 1968
Spring Joint Computer Conf., pp. 37–45, 1968. Cited on pageviii .

[Arvo87] J. Arvo and D. Kirk. Fast Ray Tracing by Ray Classification. InComputer Graphics
(SIGGRAPH ’87 Proceedings), pp. 55–64, July 1987. Cited on page99, xxix.

[Arvo88] J. Arvo. Linear-time Voxel Walking for Octrees.Ray Tracing News, Vol. 1, No. 5, 1988.
Cited on pagexxxi.

[Arvo89] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques, pp. 201–262. Aca-
demic Press, 1989. Cited on page4, xxix.

[Arvo90] J. Arvo and D. Kirk. Particle Transport and Image Synthesis. InComputer Graphics
(Proceedings of SIGGRAPH’90), pp. 63–66, Aug. 1990. Cited on pagexxix.

[Asan00] T. Asano, S. K. Ghosh, and T. C. Shermer. Visibility in the Plane. In J. R. Sack and
J. Urrutia, Eds.,Handbook of Computational Geometry, Elsevier, 2000. Cited on page69.

xxxiii

xxxiv BIBLIOGRAPHY

[Assa00] U. Assarsson and T. M̈oller. Optimized View Frustum Culling Algorithms for Bounding
Boxes. Journal of Graphics Tools, Vol. 5, No. 1, pp. 9–22, 2000. Cited on page39, 46,
51, x.

[Atal83] M. Atallah. Dynamic Computational Geometry. InProceedings of 24th Symposium on
Foundations of Computer Science, pp. 92–99, IEEE Computer Society, Baltimora, 1983.
Cited on pagexx.

[ATi 02] ATi Co. Graphics hardware specifications. 2002.http://www.ati.com . Cited on
pageix.

[Avis02] D. Avis. LRS polyhedra enumeration library. 2002. Available athttp://cgm.cs.
mcgill.ca/˜avis/C/lrs.html . Cited on page90, 113, 119.

[Avis96] D. Avis and K. Fukuda. Reverse Search for Enumeration.Discrete Applied Mathematics,
Vol. 6, pp. 21–46, 1996. Cited on page90, 113, 119, 132.

[Badt88] S. Badt, Jr. Two Algorithms for Taking Advantage of Temporal Coherence in Ray Tracing.
The Visual Computer, Vol. 4, No. 3, pp. 123–132, Sep. 1988. Cited on pagexxx.

[Baja96] C. L. Bajaj and V. Pascucci. Splitting a Complex of Convex Polytopes in any Dimension.
In Proceedings of 12th Annual ACM Symposium on Computational Geometry, pp. 88–97,
1996. Cited on page119.

[Bart98] D. Bartz, M. Meissner, and T. Ḧuttner. Extending Graphics Hardware for Occlusion
Queries in OpenGL. InProceedings of the 1998 Workshop on Graphics Hardware, Lisbon,
Portugal, pp. 97–104, 1998. Cited on page40.

[Bart99] D. Bartz, M. Meißner, and T. Ḧuttner. OpenGL-assisted occlusion culling for large polyg-
onal models.Computers and Graphics, Vol. 23, No. 5, pp. 667–679, Oct. 1999. Cited on
page41.

[Belm01] O. Belmonte, J. Ribelles, I. Remolar, and M. Chover. Searching Triangle Strips Guided by
Simplification Criterion. InProceedings of WSCG ’01, 2001. Cited on pagexx.

[Bent75] J. L. Bentley. Multidimensional Binary Search Trees Used for Associative Searching.Com-
munications of the ACM, Vol. 18, No. 9, pp. 509–517, Sep. 1975. Cited on page35, xxx.

[Berg93a] M. de Berg. Generalized hidden surface removal. InProceedings of the 9th Annual Sym-
posium on Computational Geometry (SCG ’93), pp. 1–10, ACM Press, San Diego, CA,
USA, May 1993. Cited on page39.

[Berg93b] M. de Berg. Ray shooting, Depth Orders and Hidden Surface Removal. InLecture Notes
in Computer Science, Springer Verlag, New York, 1993. Cited on page39, xxix.

[Berg97] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geometry: Al-
gorithms and Applications. Springer-Verlag, Berlin, Heidelberg, New York, 1997. Cited
on page21, 31, 37, v.

[Bern94] M. W. Bern, D. P. Dobkin, D. Eppstein, and R. L. Grossman. Visibility with a Moving
Point of View. Algorithmica, Vol. 11, No. 4, pp. 360–378, Apr. 1994. Cited on pagexx.

[Bish94] G. Bishop, H. Fuchs, L. McMillan, and E. J. Scher Zagier. Frameless Rendering: Double
Buffering Considereed Harmful. In A. Glassner, Ed.,Computer Graphics (SIGGRAPH ’94
Proceedings), pp. 175–176, ACM Press, July 1994. ISBN 0-89791-667-0. Cited on page
xxx.

http://www.ati.com
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://cgm.cs.mcgill.ca/~avis/C/lrs.html

BIBLIOGRAPHY xxxv

[Bish98] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz. Designing a PC Game Engine.
IEEE Computer Graphics and Applications, Vol. 18, No. 1, pp. 46–53, Jan./Feb. 1998.
Cited on pageix.

[Bitt01a] J. Bittner and V. Havran. Exploiting Coherence in Hierarchical Visibility Algorithms.
Journal of Visualization and Computer Animation, John Wiley & Sons, Vol. 12, pp. 277–
286, 2001. Cited on page5.

[Bitt01b] J. Bittner and V. Havran. Exploiting Temporal and Spatial Coherence in Hierarchi-
cal Visibility Algorithms. In Proceedings of Spring Conference on Computer Graphics
(SCCG’01), pp. 213–220, IEEE Computer Society, Budmerice, Slovakia, 2001. Cited on
page5.

[Bitt01c] J. Bittner and J. P̌rikryl. Exact Regional Visibility using Line Space Partitioning. Tech.
Rep. TR-186-2-01-06, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, March 2001. Available asftp://ftp.cg.tuwien.ac.at/pub/
TR/01/TR-186-2-01-06Paper.ps.gz . Cited on page5, 13.

[Bitt01d] J. Bittner and P. Slavı́k. Exact Regional Visibility using Line Space Partitioning. Nov.
2001. Submitted to the Computers & Graphics journal. Cited on page5.

[Bitt01e] J. Bittner, P. Wonka, and M. Wimmer. Visibility Preprocessing for Urban Scenes using
Line Space Subdivision. InProceedings of Pacific Graphics (PG’01), pp. 276–284, IEEE
Computer Society, Tokyo, Japan, 2001. Cited on page5, 23, 82, 100, ix.

[Bitt02a] J. Bittner. Efficient Construction of Visibility Maps using Approximate Occlusion Sweep.
In Proceedings of Spring Conference on Computer Graphics (SCCG’02), pp. 163–171,
Budmerice, Slovakia, 2002. Cited on page5.

[Bitt02b] J. Bittner and P. Wonka. Visibility in Computer Graphics. June 2002. Submitted to Journal
of Environmental Planning. Cited on page5.

[Bitt97] J. Bittner. Global Visibility Computations. Master’s thesis, Department of Computer Sci-
ence and Engineering, Czech Technical University Prague, January 1997. Also available
ashttp://www.cgg.cvut.cz/˜bittner/masters.ps.gz . Cited on page90,
119, 132.

[Bitt98] J. Bittner, V. Havran, and P. Slavı́k. Hierarchical Visibility Culling with Occlusion Trees. In
Proceedings of Computer Graphics International ’98 (CGI’98), pp. 207–219, IEEE, 1998.
Cited on page5, 30, 36, 46, 59, 60.

[Bitt99] J. Bittner. Hierarchical Techniques for Visibility Determination. Tech. Rep. DS-
005, Department of Computer Science and Engineering, Czech Technical University in
Prague, March 1999. Also available ashttp://www.cgg.cvut.cz/˜bittner/
publications/minimum.ps.gz . Cited on page101.

[Blai98] M. Blais and P. Poulin. Sampling Visibility in Three-Space. InProc. of the 1998 Western
Computer Graphics Symposium, pp. 45–52, Apr. 1998. Cited on page101.

[Bois98] J.-D. Boissonnat and M. Yvinec.Algorithmic Geometry. Cambridge University Press,
1998. Cited on page102.

[Brot84] L. S. Brotman and N. I. Badler. Generating Soft Shadows with a Depth Buffer Algorithm.
IEEE Computer Graphics and Applications, Vol. 4, No. 10, pp. 5–12, Oct. 1984. Cited on
page101.

ftp://ftp.cg.tuwien.ac.at/pub/TR/01/TR-186-2-01-06Paper.ps.gz
ftp://ftp.cg.tuwien.ac.at/pub/TR/01/TR-186-2-01-06Paper.ps.gz
http://www.cgg.cvut.cz/~bittner/masters.ps.gz
http://www.cgg.cvut.cz/~bittner/publications/minimum.ps.gz
http://www.cgg.cvut.cz/~bittner/publications/minimum.ps.gz

xxxvi BIBLIOGRAPHY

[Bueh01] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen. Unstructured Lu-
migraph Rendering. InComputer Graphics (SIGGRAPH ’01 Proceedings), pp. 425–432,
2001. Cited on page102.

[Cabr87] B. Cabral, N. Max, and R. Springmeyer. Bidirectional Reflection Functions from Surface
Bump Maps. InComputer Graphics (SIGGRAPH ’87 Proceedings), pp. 273–281, July
1987. Cited on pagexix.

[Camp90] A. T. Campbell III and D. S. Fussell. Adaptive Mesh Generation for Global Diffuse Illu-
mination. InComputer Graphics (SIGGRAPH ’90 Proceedings), pp. 155–164, Aug. 1990.
Cited on page3, 101, xxviii .

[Camp91] A. T. Campbell, III.Modeling Global Diffuse Illumination for Image Synthesis. PhD thesis,
CS Dept, University of Texas at Austin, Dec. 1991. Tech. Report TR-91-39. Cited on page
101, xxviii .

[Carl00] I. N. Carlos And́ujar, Carlos Saona-V́azquez and P. Brunet. Integrating Occlusion Culling
with Levels of Detail through Hardly-Visible Sets. InComputer Graphics Forum (Pro-
ceedings of Eurographics ’00), pp. 499–506, 2000. Cited on pagexx, xxi.

[Carp84] L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method. In H. Christiansen,
Ed., Computer Graphics (SIGGRAPH ’84 Proceedings), pp. 103–108, July 1984. Cited
on pageiii .

[Catm75] E. E. Catmull. Computer Display of Curved Surfaces. InProceedings of the IEEE Con-
ference on Computer Graphics, Pattern Recognition, and Data Structure, pp. 11–17, May
1975. Cited on page1, 16, 39, iii .

[Caza95] F. Cazals, G. Drettakis, and C. Puech. Filtering, Clustering and Hierarchy Construction:
A New Solution for Ray-Tracing Complex Scenes.Computer Graphics Forum, Vol. 14,
No. 3, pp. C/371–382, 1995. Cited on pagexxix.

[Caza97a] F. Cazals and C. Puech. Bucket-like space partitioning data-structures with applications to
ray-tracing. In13th ACM Symposium on Computational Geometry, p. To Appear, Nice,
1997. Cited on pagexxix.

[Caza97b] F. Cazals and M. Sbert. Some integral geometry tools to estimate the complexity of 3D
scenes. Tech. Rep. RR-3204, The French National Institue for Research in Computer
Science and Control (INRIA), July 1997. Cited on page102.

[Cham96] B. Chamberlain, T. DeRose, D. Lischinski, D. Salesin, and J. Snyder. Fast rendering of
complex environments using a spatial hierarchy. InProceedings of Graphics Interface ’96,
pp. 132–141, May 1996. Cited on pageix.

[Chap90] J. Chapman, T. W. Calvert, and J. Dill. Exploiting Temporal Coherence in Ray Tracing.
In Proceedings of Graphics Interface ’90, pp. 196–204, Canadian Information Processing
Society, Toronto, Ontario, May 1990. Cited on pagexxx.

[Chaz96] B. Chazelleet al. Application Challenges to Computational Geometry: CG Impact Task
Force Report. Technical Report TR-521-96, Princeton Univ., Apr. 1996. Cited on page
99.

[Chen96] H. Chen and W. Wang. The Feudal Priority Algorithm on Hidden-Surface Removal. In
Computer Graphics (SIGGRAPH ’96 Proceedings), pp. 55–64, Aug. 1996. held in New
Orleans, Louisiana, 04-09 August 1996. Cited on pagexxv.

BIBLIOGRAPHY xxxvii

[Chin89] N. Chin and S. Feiner. Near Real-Time Shadow Generation Using BSP Trees. InComputer
Graphics (Proceedings of SIGGRAPH ’89), pp. 99–106, 1989. Cited on page3, 30, 42,
xxiv.

[Chin92] N. Chin and S. Feiner. Fast object-precision shadow generation for areal light sources using
BSP trees. InProceddings of Symposium on Interactive 3D Graphics, pp. 21–30, March
1992. Cited on page3, 101, xxvi.

[Cho99] F. S. Cho and D. Forsyth. Interactive ray tracing with the visibility complex.Computers
and Graphics, Vol. 23, No. 5, pp. 703–717, Oct. 1999. Cited on page4.

[Choi92] H. K. Choi and C. M. Kyung. PYSHA: a shadow-testing acceleration scheme for ray
tracing.Computer-aided design, Vol. 24, No. 2, Feb. 1992. Cited on page4.

[Chry92] Y. Chrysanthou and M. Slater. Computing dynamic changes to BSP trees. InComputer
Graphics Forum (EUROGRAPHICS ’92 Proceedings), pp. 321–332, Sep. 1992. Cited on
page31.

[Chry95] Y. Chrysanthou and M. Slater. Shadow Volume BSP Trees for Computation of Shadows
in Dynamic Scenes. InProceedings of Symposium on Interactive 3D Graphics, pp. 45–50,
Apr. 1995. Cited on pagexxv.

[Chry96] Y. Chrysanthou. Shadow Computation for 3D Interaction and Animation. PhD thesis,
QMW, Dept of Computer Science, Jan. 1996. Cited on page101, 113, xxvi.

[Chry97] Y. Chrysanthou and M. Slater. Incremental Updates to Scenes Illuminated by Area Light
Sources. InProceedings of Eurographics Workshop on Rendering, pp. 103–114, Springer
Verlag, June 1997. Cited on page3, 101, xxvi.

[Chry98a] Y. Chrysanthou, D. Cohen-Or, and D. Lischinski. Fast Approximate Quantitative Visibility
for Complex Scenes. InProceedings of Computer Graphics International ’98 (CGI’98),
pp. 23–31, IEEE, NY, Hannover, Germany, June 1998. Cited on page99, 101.

[Chry98b] Y. Chrysanthou, D. Cohen-Or, and E. Zadicario. Viewspace Partitioning of Densely Oc-
cluded Scenes. Abstract of a video presentation, at the 13th Annual ACM Symposium on
Computational Geometry, Minnesota, pages 413–414, June 1998. Cited on page100.

[Clar76] J. H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms.Communi-
cations of the ACM, Vol. 19, No. 10, pp. 547–554, Oct. 1976. Cited on page39, 51, x,
xxi.

[Clea88] J. G. Cleary and G. Wyvill. Analysis of an algorithm for fast ray tracing using uniform
space subdivision.The Visual Computer, Vol. 4, No. 2, pp. 65–83, July 1988. Cited on
pagexxx.

[Cohe02] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand. A Survey of Visibility for Walk-
through Applications.To appear in IEEE Transactions on Visualization and Computer
Graphics., 2002. Cited on page2.

[Cohe85] M. F. Cohen and D. P. Greenberg. The Hemi-Cube: A Radiosity Solution for Complex
Environments. InComputer Graphics (SIGGRAPH ’85 Proceedings), pp. 31–40, July
1985. Cited on page3, xxviii .

[Cohe94] D. Cohen and Z. Sheffer. Proximity clouds - an acceleration technique for 3D grid traversal.
The Visual Computer, Vol. 11, pp. 27–38, 1994. Cited on pagexxx.

xxxviii BIBLIOGRAPHY

[Cohe95] D. Cohen-Or and A. Shaked. Visibility and Dead-Zones in Digital Terrain Maps.Compu-
ter Graphics Forum, Vol. 14, No. 3, pp. C/171–C/180, Sep. 1995. Cited on page23, 84,
xix.

[Cohe98a] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative Visibility and Strong
Occlusion for Viewspace Partitioning of Densely Occluded Scenes. InComputer Graphics
Forum (Eurographics ’98 Proceedings), pp. 243–253, 1998. Cited on page2, 84, 100,
xviii .

[Cohe98b] D. Cohen-Or, A. Solomovic, and D. Levin. Three-dimensional distance field metamorpho-
sis. ACM Transactions on Graphics, Vol. 17, No. 2, pp. 116–141, Apr. 1998. Cited on
pagexxi.

[Cohe98c] D. Cohen-Or and E. Zadicario. Visibility Streaming for Network-based Walkthroughs. In
Proceedings of Graphics Interface ’98, pp. 1–7, June 1998. Cited on page2, 100.

[Cole89] R. Cole and M. Sharir. Visibility Problems for Polyhedral Terrains.Journal of Symbolic
Computation, Vol. 7, No. 1, pp. 11–30, Jan. 1989. Cited on pagexx.

[Cook84] R. L. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing. InComputer Graphics
(SIGGRAPH ’84 Proceedings), pp. 137–45, July 1984. Cited on page3, xxvi.

[Cook86] R. L. Cook. Stochastic Sampling in Computer Graphics.ACM Transactions on Graphics,
Vol. 5, No. 1, pp. 51–72, Jan. 1986. Also in Tutorial: Computer Graphics: Image Synthesis,
Computer Society Press, Washington, 1988, pp. 283–304. Cited on page4.

[Coor96a] S. Coorg and S. Teller. A Spatially and Temporally Coherent Object Space Visibility Al-
gorithm. Tech. Rep. TM-546, Department of Computer Graphics, MIT, Feb. 1996. Cited
on page40, 41.

[Coor96b] S. Coorg and S. Teller. Temporally Coherent Conservative Visibility. InProceedings of
the Twelfth Annual ACM Symposium on Computational Geometry, Philadelphia, PA, May
1996. Cited on page40, 46, 49.

[Coor97] S. Coorg and S. Teller. Real-Time Occlusion Culling for Models with Large Occluders. In
Proceedings of the Symposium on Interactive 3D Graphics, pp. 83–90, ACM Press, Apr.
1997. Cited on page2, 5, 40, 42, 46, 59, 60, 130, xiv.

[Crow77] F. C. Crow. Shadow Algorithms for Computer Graphics. InComputer Graphics (SIG-
GRAPH ’77 Proceedings), 1977. Cited on pagexxiv.

[Daub97] K. Daubert, H. Schirmacher, F. X. Sillion, and G. Drettakis. Hierarchical Lighting Simu-
lation for Outdoor Scenes. InProceedings of Eurographics Workshop on Rendering ’97,
pp. 229–238, Springer Wein, June 1997. Cited on page101.

[Deva97] F. Dèvai. On the Computational Requirements of Virtual Reality Systems. InState of the
Art Reports, Eurographics ’97, 1997. Cited on pageix.

[Devi89] O. Devillers. The Macro-regions: an Efficient Space Subdivision Structure for Ray Tracing.
In Computer Graphics Forum (Proceedings of Eurographics ’89), pp. 27–38, Elsevier /
North-Holland, Sep. 1989. Cited on pagexxx.

[Dobk97] D. Dobkin and S. Teller. Computer graphics. In J. E. Goodman and J. O’Rourke, Eds.,
Handbook of Discrete and Computational Geometry, Chap. 42, pp. 779–796, CRC Press
LLC, 1997. Cited on page36.

BIBLIOGRAPHY xxxix

[Down01] L. Downs, T. Möller, and C. H. Śequin. Occlusion Horizons for Driving through Urban
Scenes. InSymposium on Interactive 3D Graphics, pp. 121–124, ACM SIGGRAPH, 2001.
Cited on page23, xvi.

[Dret94a] G. Drettakis.Structured Sampling and Reconstruction of Illumination for Image Synthesis.
PhD thesis, Department of Computer Science, University of Toronto, Toronto, Ontario,
Jan. 1994. Cited on page101, xxix.

[Dret94b] G. Drettakis and E. Fiume. A Fast Shadow Algorithm for Area Light Sources Using Back-
projection. InComputer Graphics (SIGGRAPH ’94 Proceedings), pp. 223–230, 1994.
Cited on page3, 99, 101, xxix.

[Dret97] G. Drettakis and F. Sillion. Interactive Update of Global Illumination Using A Line-Space
Hierarchy. InComputer Graphics (SIGGRAPH ’97 Proceedings), pp. 57–64, Aug. 1997.
Cited on page101.

[Dugu02] F. Duguet and G. Drettakis. Robust Epsilon Visibility. InComputer Graphics (SIGGRAPH
’02 Proceedings), pp. 567–575, ACM Press/ACM SIGGRAPH, 2002. Cited on page99,
101, xxxii .

[Dura00] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative Visibility Preprocess-
ing Using Extended Projections. InComputer Graphics (SIGGRAPH ’00 Proceedings),
pp. 239–248, 2000. Cited on page2, 19, 69, 83, 84, 94, 95, 100, 133, xviii .

[Dura96] F. Durand, G. Drettakis, and C. Puech. The 3D Visibility Complex: A New Approach to the
Problems of Accurate Visibility. InProceedings of Eurographics Workshop on Rendering,
pp. 245–256, Eurographics, Springer Wein, June 1996. Cited on page4, 99, 101, xxxi.

[Dura97] F. Durand, G. Drettakis, and C. Puech. The Visibility Skeleton: A Powerful and Efficient
Multi-Purpose Global Visibility Tool. InComputer Graphics (SIGGRAPH ’97 Proceed-
ings), pp. 89–100, 1997. Cited on page4, 99, 101, xxxii .

[Dura99] F. Durand.3D Visibility: Analytical Study and Applications. PhD thesis, Universite Joseph
Fourier, Grenoble, France, July 1999. Cited on page4, 9, 13, 114.

[Egge92] D. W. Eggert, K. W. Bowyer, C. R. Dyer, H. I. Christensen, and D. B. Goldgof. The Scale
Space Aspect Graph. InProceedings of IEEE Conference on Computer Vision and Pattern
Recognition ’92, pp. 335–40, IEEE Computer Society, 1992. Cited on page100.

[Evan96a] F. Evans, S. Skiena, and A. Varshney. Completing Sequential Triangulations is Hard. Tech.
Rep., Dept. of Computer Science, State University of New York at Stony Brook, 1996.
Cited on pagexx.

[Evan96b] F. Evans, S. S. Skiena, and A. Varshney. Optimizing Triangle Strips for Fast Rendering. In
Proceedings of IEEE Visualization ’96, pp. 319–326, 1996. Cited on pagexx.

[Flor94] L. D. Floriani and P. Magillo. Visibility Algorithms on Triangulated Digital Terrain Mod-
els. In International Journal of Geographical Information Systems, pp. 13–41, Taylor &
Francis, 1994. Cited on pagexix.

[Flor95] L. D. Floriani and P. Magillo. Horizon computation on a hierarchical triangulated terrain
model.The Visual Computer, Vol. 11, No. 3, pp. 134–149, 1995. Cited on page23, xix.

[Fole90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.Computer Graphics: Principles
and Practice. Addison-Wesley Publishing Co., 2nd Ed., 1990. Cited on page20, 60, iv,
viii , xxi.

xl BIBLIOGRAPHY

[Four93] A. Fournier and P. Poulin. A Ray Tracing Accelerator Based on a Hierarchy of 1D Sorted
Lists. InProceedings of Graphics Interface ’93, pp. 53–61, Canadian Information Process-
ing Society, Toronto, Ontario, May 1993. Cited on pagexxix.

[Fran90] W. R. Franklin and M. S. Kankanhalli. Parallel Object-Space Hidden Surface Removal.
Computer Graphics (SIGGRAPH ’90 Proceedings), Vol. 24, No. 4, pp. 87–94, Aug. 1990.
Cited on page39.

[Fuch80] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On Visible Surface Generation by a Priori Tree
Structures. InComputer Graphics (SIGGRAPH ’80 Proceedings), pp. 124–133, July 1980.
Cited on page29, 31, 39, 49, iv, xxv.

[Fuji86] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated Ray Tracing System.IEEE
Computer Graphics and Applications, Vol. 6, No. 4, pp. 16–26, 1986. Cited on pagexxix,
xxx.

[Fuku02] K. Fukuda. CDD polyhedra enumeration library. 2002. Availabale athttp://www.
ifor.math.ethz.ch/˜fukuda/cdd_home/cdd.html . Cited on page90, 113,
119.

[Fuku96] K. Fukuda and A. Prodon. Double Description Method Revisited.Lecture Notes in Com-
puter Science, Vol. 1120, pp. 91–111, 1996. Cited on page113.

[Funk93] T. A. Funkhouser.Database and Display Algorithms for Interactive Visualization of Ar-
chitectural Models. PhD thesis, CS Division, UC Berkeley, 1993. Cited on pagexxi.

[Funk98] T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West. A Beam Trac-
ing Approach to Acoustic Modeling for Interactive Virtual Environments. InComputer
Graphics (SIGGRAPH ’98 Proceedings), pp. 21–32, Addison Wesley, July 1998. Cited
on page102, xxix.

[Fuss88] D. Fussell and K. R. Subramanian. Fast Ray Tracing Using K-D Trees. Technical Re-
port TR-88-07, University of Texas, Austin, Dept. Of Computer Science, March 1988.
Cited on pagexxix.

[Garr96] W. F. Garrett, H. Fuchs, M. C. Whitton, and A. State. Real-Time Incremental Visualiza-
tion of Dynamic Ultrasound Volumes Using Parallel BSP Trees. InProeedings of IEEE
Visualization ’96, Oct. 1996. ISBN 0-89791-864-9. Cited on page31.

[Geor90] D. W. George, F. X. Sillion, and D. P. Greenberg. Radiosity Redistribution for Dynamic
Environments.IEEE Computer Graphics and Applications, Vol. 10, No. 4, pp. 26–34, July
1990. Cited on pagexxviii .

[Geor95] C. Georges. Obscuration Culling on Parallel Graphics Architectures. Tech. Rep. TR95-
017, Department of Computer Science, University of North Carolina, Chapel Hill, 1995.
Cited on page39.

[Ghal96] S. Ghali and A. J. Stewart. Incremental Update of the Visibility Map as Seen by a Moving
Viewpoint in Two Dimensions. InProceedings of the Eurographics Workshop on Computer
Animation and Simulation ’96, pp. 3–13, Springer-Verlag, 1996. Cited on page70.

[Gigu90] Z. Gigus and J. Malik. Computing the aspect graph for line drawings of polyhedral objects.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 2, pp. 113–
122, Feb. 1990. Cited on page100, 106.

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

BIBLIOGRAPHY xli

[Glas84] A. S. Glassner. Space Subdivision For Fast Ray Tracing.IEEE Computer Graphics and
Applications, Vol. 4, No. 10, pp. 15–22, Oct. 1984. Cited on pageviii .

[Glas88] A. S. Glassner. Spacetime ray tracing for animation.IEEE Computer Graphics and Appli-
cations, Vol. 8, No. 2, pp. 60–70, March 1988. Cited on pagexxx.

[Glas95] A. S. Glassner.Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco,
CA, 1995. Cited on page2.

[Gold87] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies for Ray Tracing.
IEEE Computer Graphics and Applications, Vol. 7, No. 5, pp. 14–20, May 1987. Cited on
pagexxix.

[Good97] J. E. Goodman and J. O’Rourke, Eds.Handbook of Discrete and Computational Geometry.
CRC Press, 1997. Cited on page70, 90, 107.

[Gora84] C. M. Goral, K. K. Torrance, D. P. Greenberg, and B. Battaile. Modelling the Interaction
of Light Between Diffuse Surfaces. InComputer Graphics (SIGGRAPH ’84 Proceedings),
pp. 213–222, July 1984. Cited on pagexxvii .

[Gord91] D. Gordon and S. Chen. Front-to-back display of BSP trees.IEEE Computer Graphics
and Applications, Vol. 11, No. 5, pp. 79–85, Sep. 1991. Cited on page31, v.

[Gort96] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph. InComputer
Graphics (SIGGRAPH ’96 Proceedings), pp. 43–54, Addison Wesley, Aug. 1996. Cited
on page102.

[Grab01] M. Grabner. Advanced Techniques for Interactive Visualization of Multi-resolution
Meshes. InThe Journal of Visualization and Computer Animation, pp. 241–252, John
Wiley & Sons, Ltd., 2001. Cited on pagexxi.

[Gran85] C. W. Grant. Integrated Analytic Spatial and Temporal Anti-Aliasing for Polyhedra in 4-
Space. InComputer Graphics (SIGGRAPH ’85 Proceedings), pp. 79–84, July 1985. Cited
on page102.

[Gran92] C. W. Grant.Visibility Algorithms in Image Synthesis. PhD thesis, University of California,
Davis, 1992. Cited on page39, 60, xxiv.

[Gras99] J. Grasset, O. Terraz, J.-M. Hasenfratz, and D. Plemenos. Accurate Scene Display by Using
Visibility Maps. In Spring Conference on Computer Graphics (SCCG ’99), 1999. Cited
on page59, 60.

[Gree93] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility. InComputer Graphics
(SIGGRAPH ’93 Proceedings), pp. 231–238, 1993. Cited on page39, 46, xi, xxii .

[Gree94a] N. Greene and M. Kass. Error-Bounded Antialiased Rendering of Complex Environments.
In Computer Graphics (SIGGRAPH ’97 Proceedings), pp. 59–66, July 1994. Cited on
page40.

[Gree94b] N. Greene. Detecting Intersection of a Rectangular Solid and a Convex Polyhedron. In
P. Heckbert, Ed.,Graphics Gems IV, pp. 74–82, Academic Press, Boston, MA, 1994. Cited
on page45.

[Gree96] N. Greene. Hierarchical Polygon Tiling with Coverage Masks. In H. Rushmeier, Ed.,Com-
puter Graphics (SIGGRAPH ’96 Proceedings), pp. 65–74, Addison Wesley, Aug. 1996.
held in New Orleans, Louisiana, 04-09 August 1996. Cited on page40, 46, xii .

xlii BIBLIOGRAPHY

[Grol93] E. Gr̈oller. Oct-tracing animation sequences. InSpring Conference on Computer Graphics
(SCCG ’93), pp. 96–101, June 1993. Cited on pagexxx.

[Gros98] J. P. Grossman and W. J. Dally. Point Sample Rendering. InRendering Techniques
(Proceedings of Eurographics Workshop on Rendering ’98), pp. 181–192, Springer-Verlag
Wien New York, 1998. Cited on pagexxii .

[Gu97] X. Gu, S. J. Gortier, and M. F. Cohen. Polyhedral Geometry and the Two-Plane Parameter-
ization. InProceedings of Eurographics Workshop on Rendering ’97, pp. 1–12, Springer
Wein, June 1997. Cited on page9.

[Hain86] E. A. Haines and D. P. Greenberg. The Light Buffer: A Ray Tracer Shadow Testing Ac-
celerator.IEEE Computer Graphics and Applications, Vol. 6, No. 9, pp. 6–16, Sep. 1986.
Cited on page4, xxiii , xxix.

[Hain94] E. A. Haines and J. R. Wallace. Shaft Culling for Efficient Ray-Traced Radiosity. In
Photorealistic Rendering in Computer Graphics (Proceedings of Eurographics Workshop
on Rendering ’94), Springer-Verlag, 1994. Cited on page101, 115.

[Havr00a] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague, November 2000. Cited on page4, 36, 56, xxix, xxxi.

[Havr00b] V. Havran and J. Bittner. LCTS: Ray Shooting using Longest Common Traversal Se-
quences. InComputer Graphics Forum (Eurographics ’00 Proceedings), pp. 59–70, Inter-
laken, Switzerland, 2000. Cited on pageviii , xxix.

[Havr02] V. Havran and J. Bittner. On Improving Kd-Trees for Ray Shooting. InJournal of WSCG
(Proceedings of Winter School on Computer Graphics ’02), Plzen, Czech Republic, Feb.
2002. Cited on page41.

[Havr98a] V. Havran, J. Bittner, and J.̌Zára. Ray Tracing with Rope Trees. InProceedings of 13th
Spring Conference on Computer Graphics, pp. 130–139, Budmerice, 1998. Cited on page
50, xxxi.

[Havr98b] V. Havran, T. Kopal, J. Bittner, and J.Žára. Fast Robust BSP Tree Traversal Algorithm for
Ray Tracing.Journal of Graphics Tools, Vol. 2, No. 4, pp. 15–24, Dec. 1998. Cited on
pagexxxi.

[Heck84] P. S. Heckbert and P. Hanrahan. Beam Tracing Polygonal Objects.Computer Graphics
(SIGGRAPH’84 Proceedings), Vol. 18, No. 3, pp. 119–127, July 1984. Cited on page27,
xxix.

[Heck92] P. S. Heckbert. Discontinuity Meshing for Radiosity. InThird Eurographics Workshop on
Rendering, pp. 203–216, Bristol, UK, May 1992. Cited on page3, 59, 101, xxviii , xxix.

[Heck97] P. S. Heckbert and M. Herf. Simulating Soft Shadows with Graphics Hardware. Tech.
Rep., CS Dept., Carnegie Mellon U., Jan. 1997. CMU-CS-97-104. Cited on page3, xxvi.

[Heid00] W. Heidrich, S. Brabec, and H. Seidel. Soft Shadow Maps for Linear Lights. InRender-
ing Techniques (Proceedings of Eurographics Workshop on Rendering ’00), pp. 269–280,
Springer-Verlag Wien New York, 2000. Cited on pagexxvi.

[Heid91] T. Heidmann. Real Shadows, Real Time.Iris Universe, Vol. 18, pp. 28–31, 1991. Silicon
Graphics, Inc. Cited on pagexxiv.

BIBLIOGRAPHY xliii

[Heid99] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl. Applications of Pixel Textures
in Visualization and Realistic Image Synthesis. InACM Symposium on Interactive 3D
Graphics, ACM/Siggraph, 1999. Cited on pagexxiv.

[Hey01] H. Hey, R. F. Tobler, and W. Purgathofer. Real-Time Occlusion Culling with a Lazy Occlu-
sion Grid. InRendering Techniques (Proceedings of Eurographics Workshop on Rendering
’00), pp. 217–222, 2001. Cited on pagexix.

[Hink96] A. Hinkenjann and H. M̈uller. Hierarchical Blocker Trees for Global Visibility Calculation.
Research Report 621/1996, University of Dortmund, Aug. 1996. Cited on page69, 102.

[Hopp96] H. Hoppe. Progressive Meshes. InComputer Graphics (SIGGRAPH ’96 Proceedings),
pp. 99–108, Addison Wesley, Aug. 1996. held in New Orleans, Louisiana, 04-09 August
1996. Cited on pagexxi.

[Hopp97] H. Hoppe. View-Dependent Refinement of Progressive Meshes. InComputer Graphics
(SIGGRAPH ’97 Proceedings), pp. 189–198, Addison Wesley, Aug. 1997. Cited on page
xxi.

[Hopp98] H. Hoppe. Smooth View-Dependent Level-Of-Detail Control and its Application to Terrain
Rendering. InProceedings IEEE Visualization’98, pp. 35–42, IEEE, 1998. Cited on page
xxi.

[Huds97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated Occlu-
sion Culling Using Shadow Frusta. InProceedings of ACM Symposium on Computational
Geometry, pp. 1–10, 1997. Cited on page2, 5, 40, 42, 46, 59, 60, 130, xiv.

[Huer97] J. Huerta, M. Chover, J. Ribelles, and R. Quiros. Constructing and Rendering of Multireso-
lution Binary Space Partitioning Trees. In H. P. Santo, Ed.,Edugraphics + Compugraphics
Proceedings, pp. 212–221, GRASP- Graphic Science Promotions & Publications, P.O. Box
4076, Massama, 2745 Queluz, Portugal, Dec. 15, 1997. Cited on page31.

[Ione98] A. Iones, S. Zhukov, and A. Krupkin. On Optimality of OBBs for Visibility Tests for
Frustum Culling, Ray Shooting and Collision Detection. InProceedings of Computer
Graphics International 1998 (CGI ’98), pp. 256–263, IEEE Computer Society, June 22–
26 1998. Cited on pagex.

[Jame98] A. James and A. Day. The Priority Face Determination Tree for Hidden Surface Removal.
In Computer Graphics Forum, pp. 55–71, march 1998. Cited on pagexxv.

[Jans86] F. W. Jansen. Data Structures for Ray Tracing. In L. R. A. Kessener, F. J. Peters, and
M. L. P. van Lierop, Eds.,Data Structures for Raster Graphics, pp. 57–73, Springer-Verlag,
New York, 1986. Eurographic seminar. Cited on pagexxxi.

[Jens95] H. W. Jensen and N. J. Christensen. Efficiently Rendering Shadows Using the Photon Map.
In H. P. Santo, Ed.,Edugraphics + Compugraphics Proceedings, pp. 285–291, GRASP-
Graphic Science Promotions & Publications, P.O. Box 4076, Massama, 2745 Queluz, Por-
tugal, Dec. 12, 1995. Cited on pagexxix.

[Jesc02] S. Jeschke, M. Wimmer, and H. Schuman. Layered Environment-Map Impostors for Ar-
bitrary Scenes. InProceedings of Graphics Interface ’02, pp. 1–8, May 2002. Calgary,
Alberta. Cited on pagexxii .

[Jeva92] D. Jevans. Object Space Temporal Coherence for Ray Tracing. InProceedings of Graphics
Interface ’92, pp. 176–183, Canadian Information Processing Society, Toronto, Ontario,
May 1992. Cited on pagexxx.

xliv BIBLIOGRAPHY

[Jone71] C. B. Jones. A New Approach to the ‘Hidden Line’ Problem.Computer Journal, Vol. 14,
No. 3, pp. 232–237, Aug. 1971. Cited on pagexv.

[Kaji86] J. T. Kajiya. The Rendering Equation. InComputer Graphics (SIGGRAPH ’86 Proceed-
ings), pp. 143–150, Aug. 1986. Cited on page4, xxvi.

[Kapl85] M. Kaplan. Space-Tracing: A Constant Time Ray-Tracer. InSIGGRAPH ’85 State of the
Art in Image Synthesis seminar notes, pp. 149–158, Addison Wesley, July 1985. Cited on
page41, xxx, xxxi.

[Kell97] A. Keller. Instant Radiosity. InComputer Graphics (SIGGRAPH ’97 Proceedings), pp. 49–
56, Addison Wesley, Aug. 1997. ISBN 0-89791-896-7. Cited on pagexxix.

[Klim97] K. S. Klimaszewski and T. W. Sederberg. Faster Ray Tracing Using Adaptive Grids.IEEE
Computer Graphics and Applications, Vol. 17, No. 1, pp. 42–51, Jan./Feb. 1997. Cited on
pagexxix.

[Klos01] J. T. Klosowski and C. T. Silva. Efficient Conservative Visibility Culling Using the
Prioritized-Layered Projection Algorithm.IEEE Transactions on Visualization and Com-
puter Graphics, Vol. 7, No. 4, pp. 365–379, Oct. 2001. Cited on page2, xix.

[Kok92] A. J. F. Kok and F. W. Jansen. Adaptive Sampling of Area Light Sources in Ray Tracing In-
cluding Diffuse Interreflection.Computer Graphics Forum (Proceedings of Eurographics
’92), Vol. 11, No. 3, pp. 289–298, Sep. 1992. Cited on pagexxix.

[Kok93] A. J. F. Kok, F. W. Jansen, and C. Woodward. Efficient, Complete Radiosity Ray Tracing
Using a Shadow-Coherence Method.The Visual Computer, Vol. 10, pp. 19–33, oct 1993.
Cited on pagexxix.

[Koli97] I. Kolingerov́a. Convex Polyhedron-Line Intersection Detection using Dual Representa-
tion. The Visual Computer, Vol. 13, No. 1, pp. 42–49, 1997. Cited on pagexxx.

[Kolt00] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Virtual Occluders: An Efficient Intermediate
PVS Representation. InRendering Techniques (Proceedings of Eurographics Workshop on
Rendering ’00), pp. 59–70, 2000. Cited on page5.

[Kolt01] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Hardware-Accelerated From-Region Visi-
bility Using a Dual Ray Space. InRendering Techniques (Proceedings of Eurographics
Workshop on Rendering ’01), pp. 205–216, 2001. Cited on page2, 5, 23, 84, 94, 96, 100,
133, xix.

[Kuma96a] S. Kumar and D. Manocha. Hierarcical Visibility Culling for Spline Models. InProceed-
ings of Graphics Interface ’96, pp. 142–150, Canadian Human-Computer Communications
Society, May 1996. Cited on page39, ix.

[Kuma96b] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical Back-Face Computation.
In Rendering Techniques (Proccedings of Eurographics Workshop on Rendering ’96),
pp. 235–244, Springer Wein, June 1996. Cited on page39, ix.

[Kwon98] B. Kwon, D. S. Kim, K.-Y. Chwa, and S. Y. Shin. Memory-Efficient Ray Classification for
Visibility Operations.IEEE Transactions on Visualization and Computer Graphics, Vol. 4,
No. 3, pp. 193–201, jul–sep 1998. Cited on pagexxix.

[Levo96] M. Levoy and P. Hanrahan. Light Field Rendering. InComputer Graphics (SIGGRAPH
’96 Proceedings), pp. 31–42, Addison Wesley, Aug. 1996. held in New Orleans, Louisiana,
04-09 August 1996. Cited on page102.

BIBLIOGRAPHY xlv

[Lisc92] D. Lischinski, F. Tampieri, and D. P. Greenberg. Discontinuity meshing for accurate ra-
diosity. IEEE Computer Graphics and Applications, Vol. 12, No. 6, pp. 25–39, Nov. 1992.
Cited on page3, 101, xxviii , xxix.

[Loof93] N. Loofbourrow and S. A. Shafer. Optimizing ray tracing with visual coherence. Tech.
Rep. CMU-CS-93-209, Carnegie-Mellon University, Department of Computer Science,
1993. Cited on pagexxix.

[Losc97] C. Loscos and G. Drettakis. Interactive High-Quality Soft Shadows in Scenes with Moving
Objects.Computer Graphics Forum, Vol. 16, No. 3, pp. C219–C230, Sep. 4–8 1997. Cited
on page101.

[Lueb95] D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast Evaluation of Potentially
Visible Sets. InProceedings of Symposium on Interactive 3D Graphics ’95, pp. 105–106,
ACM SIGGRAPH, Apr. 1995. Cited on page2, 24, 39, xv, xx.

[Luka98] A. Lukaszewski and A. Formella. Fast Penumbra Calculation in Ray Tracing. InProceed-
ings of Winter School of Computer Graphics (WSCG’98), pp. 238–245, Feb. 1998. Cited
on pagexxix.

[MacD90] J. D. MacDonald and K. S. Booth. Heuristics for Ray Tracing Using Space Subdivision.
Visual Computer, Vol. 6, No. 6, pp. 153–65, 1990. Cited on page36, 41, xxix, xxx, xxxi.

[Mars97] D. Marshall, D. S. Fussell, and A. Campbell III. Multiresolution rendering of complex
botanical scenes. InProceedings of Graphics Interface ’97, pp. 97–104, May 1997. Cited
on page31.

[Max88] N. L. Max. Horizon mapping: shadows for bump-mapped surfaces.The Visual Computer,
Vol. 4, No. 2, pp. 109–117, July 1988. Cited on pagexix.

[McMi97] L. McMillan. An Image-Based Approach to Three-Dimensional Computer Graphics. Ph.D.
Thesis TR97-013, University of North Carolina, Chapel Hill, May 1997. Cited on page
xxii .

[Mill96] T. Miller. Hidden-Surfaces: Combining BSP Trees with Graph-Based Algorithms. Tech.
Rep. CS-96-15, Department of Computer Graphics, Brown University, Apr. 1996. Cited
on pagexxv.

[Moll02] T. Möller and E. Haines.Real-Time Rendering, 2nd edition. A. K. Peters, 2002. Cited on
page1, 2, 22, 46, ix, xxiii .

[More95] P. Morer, A. M. Garcia-Alonso, and J. Flaquer. Optimization of a Priority List Algorithm
for 3-D Rendering of Buildings.Computer Graphics Forum, Vol. 14, No. 4, pp. 217–227,
Oct. 1995. Cited on page31.

[Mulm89] K. Mulmuley. An Efficient Algorithm for Hidden Surface Removal.Computer Graphics
(SIGGRAPH ’89 Proceedings), Vol. 23, No. 3, pp. 379–388, July 1989. Cited on page39.

[Mura97] T. M. Murali and T. A. Funkhouser. Consistent Solid and Boundary Representations from
Arbitrary Polygonal Data. InProceedings of Symposium on Interactive 3D Graphics ’97,
pp. 155–162, ACM SIGGRAPH, Apr. 1997. Cited on page31.

[Nagy94] G. Nagy. Terrain visibility.Computers and Graphics, Vol. 18, No. 6, pp. 763–773, 1994.
Cited on pagexix.

xlvi BIBLIOGRAPHY

[Nayl90a] B. Naylor. Binary Space Partitioning Trees as an Alternative Representation of Polytopes.
Computer–Aided Design, pp. 250–252, 1990. Cited on page31.

[Nayl90b] B. Naylor, J. Amanatides, and W. Thibault. Merging BSP Trees Yields Polyhedral Set
Operations.Computer Graphics (SIGGRAPH ’90 Proceedings), Vol. 24, No. 4, pp. 115–
124, Aug. 1990. Cited on page30, 31, 99, xxiv.

[Nayl92a] B. F. Naylor. Interactive solid geometry via partitioning trees. InProceedings of Graphics
Interface ’92, pp. 11–18, May 1992. Cited on page31.

[Nayl92b] B. F. Naylor. Partitioning tree image representation and generation from 3D geometric
models. InProceedings of Graphics Interface ’92, pp. 201–212, May 1992. Cited on page
27, 28, 30, 31, v.

[Nayl93] B. Naylor. Constructing good partition trees. InProceedings of Graphics Interface ’93,
pp. 181–191, Toronto, Ontario, Canada, May 1993. Cited on page31.

[Nech96] K. Nechv́ıle and J. Sochor. Form-factor Evaluation with Regional BSP Trees. InProceed-
ings of Winter School of Computer Graphics (WSCG ’96), pp. 285–293, Feb. 1996. held at
University of West Bohemia, Plzen, Czech Republic, 12-16 February 1996. Cited on page
31, 101.

[Nech99] K. Nechv́ıle and P. Tobola. Local Approach to Dynamic Visibility in a Plane. InProceed-
ings of Winter School of Computer Graphics (WSCG’99), pp. 202–208, 1999. Cited on
page70.

[Neid93] J. Neider, T. Davis, and M. Woo.OpenGL Programming Guide. Addison-Wesley, Reading
MA, 1993. Cited on pagexx.

[Newe72] M. E. Newell, R. G. Newell, and T. L. Sancha. A Solution to the Hidden Surface Problem.
In Proceedings of the ACM Annual Conference, pp. 443–450, Boston, Massachusetts, Aug.
1972. Cited on pageiv.

[Nire02] S. Nirenstein, E. Blake, and J. Gain. Exact From-Region Visibility Culling. InProceedings
of Eurographics Workshop on Rendering ’02, pp. 199–210, 2002. Cited on page99, 101,
115.

[Nish85] T. Nishita and E. Nakamae. Continuous Tone Representation of 3-D Objects Taking Ac-
count of Shadows and Interreflection.Computer Graphics (SIGGRAPH ’85 Proceedings),
Vol. 19, No. 3, pp. 23–30, July 1985. Cited on page101.

[nVID02] nVIDIA Co. Graphics hardware specifications. 2002.http://www.nvidia.com .
Cited on pageix.

[Orti96] R. Orti, S. Riviere, F. Durand, and C. Puech. Using the Visibility Complex for Radiosity
Computation. InLecture Notes in Computer Science (Applied Computational Geometry:
Towards Geometric Engineering), pp. 177–190, Springer-Verlag, Berlin, Germany, May
1996. Cited on page69, 101, xxxi.

[Pell97] M. Pellegrini. Ray shooting and lines in space. In J. E. Goodman and J. O’Rourke, Eds.,
Handbook of Discrete and Computational Geometry, Chap. 32, pp. 599–614, CRC Press,
1997. Cited on page9, 99, 102, 107, 114.

[Peng87] Q. Peng, Y. Zhu, and Y. Liang. A Fast Ray Tracing Algorithm Using Space Indexing
Techniques. InProceedings of Eurographics ’87, pp. 11–23, North-Holland, Aug. 1987.
Cited on pagexxix.

http://www.nvidia.com

BIBLIOGRAPHY xlvii

[Pfis00] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface Elements as Rendering
Primitives. InComputer Graphics (SIGGRAPH ’00 Proceedings), pp. 335–342, 2000.
Cited on pagexxii .

[Plan90] H. Plantinga, C. R. Dyer, and W. B. Seales. Real-Time Hidden-Line Elimination for a
Rotating Polyhedral Scene Using the Aspect Representation. InProceedings of Graphics
Interface ’90, pp. 9–16, May 1990. Cited on page100.

[Plan93] H. Plantinga. Conservative visibility preprocessing for efficient walkthroughs of 3D scenes.
In Proceedings of Graphics Interface ’93, pp. 166–173, Toronto, Ontario, Canada, May
1993. Cited on page100.

[Pocc93] M. Pocchiola and G. Vegter. The visibility complex. InProceedings of ACM Symposium
on Computational Geometry, pp. 328–337, 1993. Cited on page4, 69, 71, 101, xxxi.

[Pope98] V. Popescu, A. Lastra, D. Aliaga, and M. de Oliveira Neto. Efficient warping for archi-
tectural walkthroughs using layered depth images. InIEEE Visualization ’98 (VIS ’98),
pp. 211–216, IEEE, Washington - Brussels - Tokyo, Oct. 1998. Cited on pagexxii .

[Pu98] F.-T. Pu. Data Structures for Global Illumination and Visibility Queries in 3-Space. PhD
thesis, University of Maryland, College Park, MD, 1998. Cited on page10, 101, 102, 104,
107, 109, 111.

[Pupp97] E. Puppo and R. Scopigno. Simplification, LOD and Multiresolution, Principles and Ap-
plications. InEurographics ’97 Tutorial, 1997. Cited on pagexxi.

[Purc02] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray Tracing on Programmable Graph-
ics Hardware. InComputer Graphics (SIGGRAPH ’02 Proceedings), pp. 703–712, 2002.
Cited on pagexxx.

[Rajk96] A. Rajkumar, B. Naylor, F. Feisullin, and L. Rogers. Predicting RF coverage in large
environments using ray–beam tracing and partitioning tree represented geometry.Wireless
Netwoks, Vol. 2, pp. 143–154, 1996. Cited on pagexxix.

[Rivi95] S. Rivière. Topologically Sweeping the Visibility Complex of Polygonal Scenes. InPro-
ceedings of ACM Symposium Computational Geometry, pp. C36–C37, 1995. Cited on
page69, 101, xxxi.

[Rivi97a] S. Rivière. Dynamic visibility in polygonal scenes with the visibility complex. InProceed-
ings of ACM Symposium on Computational Geometry ’97, pp. 421–423, ACM Press, New
York, June 4–6 1997. Cited on page69, 101, xxxi.

[Rivi97b] S. Rivière. Walking in the Visibility Complex with Applications to Visibility Polygons
and Dynamic Visibility. InProceedings of 9th Canadian Conference on Computational
Geometry, pp. 147–152, 1997. Cited on page69, 101, xxxi.

[Rohl94] J. Rohlf and J. Helman. IRIS Performer: A High Performance Multiprocessing Toolkit for
Real–Time 3D Graphics. InComputer Graphics (SIGGRAPH ’94 Proceedings), pp. 381–
395, July 1994. Cited on page46, 51, ix.

[Rusi00] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point Rendering System for
Large Meshes. InComputer Graphics (SIGGRAPH ’00 Proceedings), pp. 343–352, 2000.
Cited on pagexxii .

xlviii BIBLIOGRAPHY

[Sada00] A. Sadagic and M. Slater. Dynamic Polygon Visibility Ordering for Head-Slaved View-
ing in Virtual Environments. InComputer Graphics Forum, pp. 111–122, Eurographics
Association, 2000. Cited on page100.

[Same89a] H. Samet.Design and analysis of Spatial Data Structures: Quadtrees, Octrees, and other
Hierarchical Methods. Addison–Wesley, Redding, MA, 1989. Cited on pagexxx.

[Same89b] H. Samet. Implementing Ray Tracing with Octrees and Neighbor Finding.Computers and
Graphics, Vol. 13, No. 4, pp. 445–60, 1989. Cited on pagexxix.

[Same90] H. Samet.Applications of Spatial Data Structures. Addison–Wesley, Reading, MA, 1990.
Cited on page35.

[Scha00] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Conservative Volumetric Visibility
with Occluder Fusion. InComputer Graphics (SIGGRAPH ’00 Proceedings), pp. 229–238,
2000. Cited on page2, 19, 69, 83, 84, 95, 100, 133, xviii .

[Scha96] G. Schaufler and W. Sturzlinger. A Three-Dimensional Image Cache for Virtual Reality.
Computer Graphics Forum (Proceedings of Eurographics ’96), Vol. 15, No. 3, pp. C227–
C235, C471–C472, Sep. 1996. Cited on pagexxii .

[Scha97] G. Schaufler. Nailboards: A Rendering Primitive for Image Caching in Dynamic Scenes.
In Rendering Techniques (Proceedings of Eurographics Workshop on Rendering ’97),
pp. 151–162, Springer Wein, June 1997. Cited on pagexxii .

[Schm97] D. Schmalstieg. A Survey of Advanced Interactive 3-D Graphics Techniques. Tech.
Rep. TR-186-2-97-05, Institute of Computer Graphics, Vienna University of Technology,
1997. Cited on pageix.

[Schr93] P. Schr̈oder and P. Hanrahan. On the Form Factor Between Two Polygons. InComputer
Graphics (SIGGRAPH ’93 Proceedings), pp. 163–164, 1993. Cited on page101, xxix.

[Schu69] R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp. Study for Applying Computer-
Generated Images to Visual Simulation. Tech. Rep. AFHRL–TR–69–14, U.S. Air Force
Human Resources Laboratory, 1969. Cited on pageiv, v.

[Sega92] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli. Fast Shadows and
Lighting Effects using Texture Mapping.Computer Graphics (SIGGRAPH ’92 Proceed-
ings), Vol. 26, No. 2, pp. 249–252, July 1992. Cited on pagexxiv.

[Semw97] S. K. Semwal and H. Kvarnstrom. Directed Safe Zones and the Dual Extend Algorithms
for Efficient Grid Tracing during Ray Tracing. InProceedings of Graphics Interface ’97,
pp. 76–87, May 1997. Cited on pagexxx.

[Shad96] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical Image Caching
for Accelerated Walkthroughs of Complex Environments. InComputer Graphics (SIG-
GRAPH ’96 Proceedings), pp. 75–82, Addison Wesley, Aug. 1996. Cited on pagexxii .

[Shad98] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered Depth Images. InComputer
Graphics (SIGGRAPH ’98 Proceedings), pp. 231–242, Addison Wesley, July 1998. Cited
on pagexxii .

[Shar92] M. Sharir and M. H. Overmars. A Simple Output-Sensitive Algorithm for Hidden Surface
Removal.ACM Transactions on Graphics, Vol. 11, No. 1, pp. 1–11, Jan. 1992. Cited on
page39.

BIBLIOGRAPHY xlix

[Shim93] I. Shimshoni and J. Ponce. Finite Resolution Aspect Graphs of Polyhedral Objects.IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 4, pp. 315–327,
1993. Cited on page100.

[Shir95] P. Shirley, B. Wade, P. M. Hubbard, D. Zareski, B. Walter, and D. P. Greenberg. Global
Illumination via Density Estimation. InRendering Techniques ’95 (Proceedings of Euro-
graphics Workshop on Rendering ’95), pp. 219–230, Springer-Verlag, 1995. Cited on page
xxviii .

[Sill89] F. Sillion and C. Puech. A General Two-Pass Method Integrating Specular and Diffuse
Reflection. InComputer Graphics (SIGGRAPH ’89 Proceedings), pp. 335–344, July 1989.
Cited on pagexxix.

[Silv97] C. T. Silva and J. S. B. Mitchell. The Lazy Sweep Ray Casting Algorithm for Rendering
Irregular Grids.IEEE Transaction on Visualization and Computer Graphics, Vol. 3, No. 2,
pp. 142–157, Apr. 1997. Cited on pagexxix.

[Simi94] G. Simiakakis and A. M. Day. Five-dimensional Adaptive Subdivision for Ray Tracing.
Computer Graphics Forum, Vol. 13, No. 2, pp. 133–140, June 1994. Cited on page4, 99,
100, xxix.

[Slat92] M. Slater. A Comparison of Three Shadow Volume Algorithms.The Visual Computer,
Vol. 9, No. 1, pp. 25–38, 1992. Cited on pagexxiii .

[Slat97] M. Slater and Y. Chrysanthou. View Volume Culling Using a Probabilistic Caching
Scheme. InProceedings of ACM Symposium on Virtual Reality Software and Technology
(VRST ’97), pp. 71–78, Lausanne, Switzerland, Sep. 1997. Cited on page46, x.

[Slus97] P. Slusallek. Photo-Realistic Rendering – Recent Trends and Developments. InEURO-
GRAPHICS ’97 State-of-the-Art-Report, Eurographics Association, 1997. Cited on page
xxviii , xxix.

[Snyd98] J. Snyder and J. Lengyel. Visibility Sorting and Compositing without Splitting for Image
Layer Decomposition. InComputer Graphics (SIGGRAPH ’98 Proceedings), pp. 219–230,
Addison Wesley, July 1998. Cited on pagexxv.

[Sojk95] E. Sojka. Aspect Graphs of Three Dimensional Scenes. InProceedings of Winter School
of Computer Graphics (WSCG ’95), Feb. 1995. Cited on page100.

[Sole96] C. Soler and F. Sillion. Accurate Error Bounds for Multi-Resolution Visibility. Inrender-
ing Techniques (Proceedings of Eurographics Workshop on Rendering ’96), pp. 133–142,
Springer Wein, June 1996. Cited on page101.

[Sole98] C. Soler and F. Sillion. Fast Calculation of Soft Shadow Textures Using Convolution. In
Computer Graphics (SIGGRAPH ’98 Proceedings), pp. 321–332, July 1998. Cited on
page101, xxvi.

[Stam97] M. Stamminger, W. Nitsch, and P. Slusallek. Isotropic Clustering for Hierarchical Ra-
diosity – Implementation and Experiences. InProceedings of Winter School of Computer
Graphics (WSCG ’97), 1997. Cited on pagexxviii .

[Stam98] M. Stamminger, P. Slusallek, and H. Seidel. Bounded Clustering: Finding Good Bounds
on Clustered Light Transport. InProceedings of Pacific Graphics ’98, pp. 87–96, IEEE,
Oct. 1998. Cited on pagexxviii .

l BIBLIOGRAPHY

[Stew01] A. J. Stewart. Tunneling for Triangle Strips in Continuous Level-of-Detail Meshes. In
Proceedings of Graphics Interface ’01, pp. 91–100, 2001. Cited on pagexx.

[Stew93] A. J. Stewart and S. Ghali. An Output Sensitive Algorithm for the Computation of
Shadow Boundaries. InProceedings of Canadian Conference on Computational Geom-
etry, pp. 291–296, Aug. 1993. Cited on page101, xxix.

[Stew94] A. J. Stewart and S. Ghali. Fast Computation of Shadow Boundaries Using Spatial Coher-
ence and Backprojections. InComputer Graphics (SIGGRAPH ’94 Proceedings), pp. 231–
238, 1994. Cited on page3, 99, 101, xxix.

[Stew96] A. J. Stewart. Fast horizon computation for accurate terrain rendering. Tech. Rep. 349,
Department of Computer Science, University of Toronto, June 1996. Cited on pagexix.

[Stew97] A. J. Stewart. Hierarchical Visibility in Terrains. InRendering Techniques (Proceedings of
Eurographics Workshop on Rendering ’97), pp. 217–228, 1997. Cited on page23, 84, xx.

[Stew98a] A. J. Stewart and T. Karkanis. Computing the approximate visibility map, with applica-
tions to form factors and discontinuity meshing. InRendering Techniques (Proceedings of
Eurographics Workshop on Rendering ’98), pp. 57–68, 1998. Cited on page59, 60, 67.

[Stew98b] A. J. Stewart. Fast Horizon Computation at All Points of a Terrain With Visibility and
Shading Applications.IEEE Transactions on Visualization and Computer Graphics, Vol. 4,
No. 1, pp. 82–93, Jan. 1998. Cited on pagexix.

[Stol91] J. Stolfi.Oriented Projective Geometry: A Framework for Geometric Computations. Aca-
demic Press, 1991. Cited on page9, 10, 71, 85.

[Subr90] K. Subramanian and D. Fussel. Factors Affecting Performance of Ray Tracing Hierarchies.
Tech. Rep. CS-TR-90-21, The University of Texas at Austin, July 1990. Cited on page
xxix.

[Subr91] K. R. Subramanian and D. S. Fussell. Automatic Termination Criteria for Ray Tracing
Hierarchies. InProceedings of Graphics Interface ’91, pp. 93–100, June 1991. Cited on
pagexxix.

[Subr92] K. Subramanian and D. Fussel. A Search Structure based on K-d Trees for Efficient Ray
Tracing. Tech. Rep. Tx 78712-1188, The University of Texas at Austin, 1992. Cited on
pagexxix.

[Subr97] K. R. Subramanian and B. F. Naylor. Converting Discrete Images to Partitioning Trees.
IEEE Transactions on Visualization and Computer Graphics, Vol. 3, No. 3, pp. 273–288,
July 1997. Cited on page31.

[Suda96] O. Sudarsky and C. Gotsman. Output-Sensitive Visibility Algorithms for Dynamic Scenes
with Applications to Virtual Reality.Computer Graphics Forum, Vol. 15, No. 3, pp. C249–
C258, Sep. 1996. Cited on page100.

[Sung92] K. Sung and P. Shirley. Ray Tracing with the BSP Tree. In D. Kirk, Ed.,Graphics Gems
III , pp. 271–274, Academic Press, San Diego, 1992. Cited on pagexxxi.

[Suth74] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A Characterization of Ten Hidden-
Surface Algorithms.ACM Computing Surveys, Vol. 6, No. 1, pp. 1–55, March 1974. Cited
on page20.

BIBLIOGRAPHY li

[Szir95] L. Szirmay-Kalos ed., G. Ḿarton, B. Dobos, T. Horv́ath, P. Risztics, and E. Kovács.Theory
of Three-Dimensional Computer Graphics. Vol. 13 of Technical Sciences: Advances in
Electronics, Akad́emiai Kiad́o, Budapest, Hungary, Sep. 1995. English revision by Ian A.
Stroud. Cited on pagexxviii .

[Szir97] L. Szirmay-Kalos and G. Marton. On the Limitations of Worst–case Optimal Ray Shooting
Algorithms. InWinter School of Computer Graphics (WSCG ’97), pp. 562–571, Feb. 1997.
Cited on pagexxix.

[Szir98a] L. Szirmay-Kalos. Global Ray-bundle Tracing. Technical Report, TR-186-2-98-18, Vienna
University of Technology, Vienna, 1998. Cited on pagexxx.

[Szir98b] L. Szirmay-Kalos and W. Purgathofer. Global Ray-bundle Tracing with Hardware Accel-
eration. InRendering Techniques (Proceedings of Eurographics Workshop on Rendering
’98), pp. 247–258, Vienna, Austria, June 1998. Cited on pagexxx.

[Teic99] M. Teichmann and S. Teller. A Weak Visibility Algorithm with an Application to an Inter-
active Walkthrough. 1999. Downloaded from the WWW. Cited on page101.

[Tell91] S. J. Teller and C. H. Śequin. Visibility preprocessing for interactive walkthroughs. In
Computer Graphics (SIGGRAPH ’91 Proceedings), pp. 61–69, 1991. Cited on page2, 24,
39, 84, 100, xvi, xvii .

[Tell92a] S. J. Teller. Computing the antipenumbra of an area light source.Computer Graphics
(SIGGRAPH ’92 Proceedings), Vol. 26, No. 2, pp. 139–148, July 1992. Cited on page13,
90, 91, 100, 101, 109.

[Tell92b] S. J. Teller.Visibility Computations in Densely Occluded Polyhedral Environments. PhD
thesis, CS Division, UC Berkeley, Oct. 1992. Tech. Report UCB/CSD-92-708. Cited on
page24, 89, 100, 102, 104, 106, 107, 109, 110, 114, xvii .

[Tell93a] S. Teller and M. Hohmeyer. Computing the Lines Piercing Four Lines. Technical Re-
port UCB/CSD 93/161, UC Berkeley, Apr. 1993. Cited on page109.

[Tell93b] S. Teller and P. Hanrahan. Global Visibility Algorithms for Illumination Computations. In
Computer Graphics (SIGGRAPH ’93 Proceedings), pp. 239–246, 1993. Cited on page
101.

[Tell94] S. Teller, C. Fowler, T. Funkhouser, and P. Hanrahan. Partitioning and Ordering Large
Radiosity Computations. InComputer Graphics (SIGGRAPH ’94 Proceedings), pp. 443–
450, July 1994. Cited on page101.

[Tell96] S. Teller, K. Bala, and J. Dorsey. Conservative Radiance Interpolants for Ray Trac-
ing. In Rendering Techniques (Proceedings of Eurographics Workshop on Rendering ’96),
pp. 257–268, Springer Wien, June 1996. Cited on pagexxix.

[Tell98] S. Teller and J. Alex. Frustum casting for progressive, interactive rendering. Tech.
Rep. MIT LCS TR–740, MIT, January 1998. Cited on page27, 28, xxix.

[Thib87] W. C. Thibault and B. F. Naylor. Set Operations on Polyhedra Using Binary Space Par-
titioning Trees. InComputer Graphics (SIGGRAPH ’87 Proceedings), pp. 153–162, July
1987. Cited on page30, 31, xxiv.

[Tobl97] R. F. Tobler, A. Wilkie, M. Feda, and W. Purgathofer. A Hierarchical Subdivision Algo-
rithm for Stochastic Radiosity Methods. InRendering techniques (Proceedings of Euro-
graphics Workshop on Rendering ’97), pp. 193–204, Springer Wein, June 1997. Cited on
pagexxix.

lii BIBLIOGRAPHY

[Tobo99] P. Tobola and K. Nechvı́le. Linear Size BSP trees for Scenes with Low Directional Density.
In Proceedings of Winter School of Computer Graphics (WSCG’99), pp. 297–304, 1999.
Cited on page31.

[Torr90] E. Torres. Optimization of the Binary Space Partition Algorithm (BSP) for the Visualiza-
tion of Dynamic Scenes. InProceedings of Eurographics ’90, pp. 507–518, North-Holland,
Sep. 1990. Cited on page31.

[Veac94] E. Veach and L. Guibas. Bidirectional Estimators for Light Transport. InRendering Tech-
niques (Proceedings pf Eurographics Workshop on Rendering ’94), pp. 147–162, Darm-
stadt, Germany, June 1994. Cited on pagexxix.

[Veac97] E. Veach and L. J. Guibas. Metropolis Light Transport. InComputer Graphics (SIGGRAPH
’97 Proceedings), pp. 65–76, Addison Wesley, Aug. 1997. Cited on pagexxix.

[Vegt90] G. Vegter. The Visibility Diagram: a Data Structure for Visibility Problems and Motion
Planning. InIn Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory
(SWAT ’90), pp. 97–110, Springer, 1990. Cited on page69, 70.

[Wald02] I. Wald, C. Benthin, and P. Slusallek. Interactive Global Illumination Using Fast Ray
Tracing. InRendering Techniques (Proceedings of Eurographics Workshop on Rendering
’02), Springer Wien, June 2002. Cited on pagexxx.

[Wall89] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A Ray Tracing Algorithm for Progressive
Radiosity. InComputer Graphics (SIGGRAPH ’89 Proceedings), pp. 315–324, July 1989.
Cited on page3, xxviii .

[Wand01] M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and W. Straßer. The Randomized z-
Buffer Algorithm: Interactive Rendering of Highly Complex Scenes. InComputer Graph-
ics (SIGGRAPH ’01 Proceedings), pp. 361–370, 2001. Cited on pagexxii .

[Wang98] Y. Wang, H. Bao, and Q. Peng. Accelerated Walkthroughs of Virtual Environments Based
on Visibility Preprocessing and Simplification. InComputer Graphics Forum (Proceedings
of Eurographics ’98), pp. 187–194, 1998. Cited on page100.

[Warn69] J. Warnock. A Hidden-Surface Algorithm for Computer Generated Half-Tone Pictures.
Tech. Rep. TR 4–15, NTIS AD-733 671, University of Utah, Computer Science Depart-
ment, 1969. Cited on pagevi.

[Weil77] K. Weiler and P. Atherton. Hidden Surface Removal Using Polygon Area Sorting.Com-
puter Graphics (SIGGRAPH ’77 Proceedings), Vol. 11, No. 2, pp. 214–222, July 1977.
Cited on page16, vii .

[Weis99] E. W. Weisstein.The CRC Concise Encyclopedia of Mathematics. CRC Press, 2000 N.W.
Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1999. Cited on page9.

[Welz85] E. Welzl. Constructing the Visibility Graph forn-Line Segments inO(n2) Time. Informa-
tion Processing Letters, Vol. 20, No. 4, pp. 167–171, May 1985. Cited on page69.

[West97] R. Westermann and T. Ertl. The VSBUFFER: Visibility Ordering of Unstructured Volume
Primitives by Polygon Drawing. InIEEE Visualization ’97, pp. 35–42, IEEE, Nov. 1997.
Cited on pageix.

[Whit79] T. Whitted. An improved illumination model for shaded display. InComputer Graphics
(Special SIGGRAPH ’79 Issue), pp. 1–14, Aug. 1979. Cited on page4, xxiii , xxix.

BIBLIOGRAPHY liii

[Wile97] C. Wiley, A. T. Campbell III, S. Szygenda, D. Fussell, and F. Hudson. Multiresolution BSP
Trees Applied to Terrain, Transparency, and General Objects. InProceedings of Graphics
Interface ’97, pp. 88–96, Canadian Information Processing Society, May 1997. ISBN 0-
9695338-6-1 ISSN 0713-5424. Cited on page31.

[Will78] L. Williams. Casting Curved Shadows on Curved Surfaces.Computer Graphics (SIG-
GRAPH ’78 Proceedings), Vol. 12, No. 3, pp. 270–274, Aug. 1978. Cited on page3,
xxiii .

[Wimm01] M. Wimmer, P. Wonka, and F. Sillion. Point-Based Impostors for Real-Time Visualiza-
tion. InRendering Techniques (Proceedings of Eurographics Workshop on Rendering ’01),
pp. 163–176, Springer-Verlag, 2001. Cited on pagexxii .

[Wonk00] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility Preprocessing with Occluder Fu-
sion for Urban Walkthroughs. InRendering Techniques (Proceedings of Eurographics
Workshop on Rendering ’00), pp. 71–82, 2000. Cited on page2, 5, 19, 23, 69, 83, 84, 92,
94, 95, 97, 100, 131, 132, 133, xix.

[Wonk01a] P. Wonka.Occlusion Culling for Real-Time Rendering of Urban Environments. PhD thesis,
Institute of Computer Graphics, Vienna University of Technology, 2001. Cited on page
23, 131, ix.

[Wonk01b] P. Wonka, M. Wimmer, and F. X. Sillion. Instant Visibility. InComputer Graphics Forum
(Proceedings of Eurographics ’01), pp. 411–421, Blackwell Publishing, 2001. Cited on
page2, 46, xix.

[Wonk99] P. Wonka and D. Schmalsteig. Occluder Shadows for Fast Walkthroughs of Urban Envi-
ronments.Computer Graphics Forum (Proceedings of Eurographics ’99), Vol. 18, No. 3,
pp. 51–60, Sep. 1999. Cited on page2, xvi.

[Woo90a] A. Woo and J. Amanatides. Voxel Occlusion Testing: A Shadow Determination Acceler-
ator for Ray Tracing. InProceedings of Graphics Interface ’90, pp. 213–220, May 1990.
Cited on pagexxiii , xxix.

[Woo90b] A. Woo, P. Poulin, and A. Fournier. A Survey of Shadow Algorithms.IEEE Computer
Graphics and Applications, Vol. 10, No. 6, pp. 13–32, Nov. 1990. Cited on page3, xxiii .

[Yage95] R. Yagel and W. Ray. Visibility Computation for Efficient Walkthrough of Complex Envi-
ronments.Presence: Teleoperators and Virtual Environments, Vol. 5, No. 1, 1995. Cited
on page100, xviii .

[Yama97] F. Yamaguchi and M. Niizeki. Some Basic Geometric Test Conditions in Terms of Plücker
Coordinates and Plücker Coefficients.Visual Computer, Vol. 13, No. 1, pp. 29–41, 1997.
Cited on page102.

[Zach02] C. Zach. Integration of Geomorphing into Level of detail management for Real-Time Ren-
dering. InProceedings of Spring Conference on Computer Graphics (SCCG’02), pp. 109–
116, Budmerice, Slovakia, 2002. Cited on pagexxi.

[Zhan97a] H. Zhang and K. E. Hoff III. Fast Backface Culling Using Normal Masks. InProceedings
of 1997 Symposium on Interactive 3D Graphics, pp. 103–106, ACM SIGGRAPH, Apr.
1997. Cited on page39, ix.

[Zhan97b] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. Visibility Culling Using Hierarchical
Occlusion Maps. InComputer Graphics (Proceedings of SIGGRAPH ’97), pp. 77–88,
1997. Cited on page2, 40, 46, xiii .

liv BIBLIOGRAPHY

[Zhan98] H. Zhang. Effective Occlusion Culling for the Interactive Display of Arbitrary Models.
PhD thesis, Department of Computer Science, UNC-Chapel Hill, 1998. Cited on pagexiv.

[Zwaa95] M. van der Zwaan, E. Reinhard, and F. W. Jansen. Pyramid Clipping for Efficient Ray
Traversal. InRendering Techniques (Proceedings of Eurographics Workshop on Rendering
’95), Dublin, Ireland, 1995. Cited on pagexxix.

	Document Start
	Introduction
	Motivation
	Real-time rendering
	Realistic rendering
	Other applications
	Challenges in visibility computations

	Contributions of the thesis
	Structure of the thesis

	Overview of visibility problems and algorithms
	Taxonomy of visibility problems
	Problem domain
	Type of the answer

	Dimension of the problem-relevant line set
	Parametrization of lines in 2D
	Parametrization of lines in 3D
	Visibility along a line
	Visibility from a point
	Visibility from a line segment
	Visibility from a region
	Global visibility
	Summary

	Classification of visibility algorithms
	Scene restrictions
	Accuracy
	Solution space

	Visibility algorithm design
	Scene structuring
	Solution space data structures
	Performance

	Visibility in urban environments
	Analysis of visibility in outdoor urban areas
	Analysis of indoor visibility

	Summary

	The general concept of a visibility algorithm
	Related work
	Beam tracing
	Cone tracing
	BSP tree projection
	Frustum casting

	Approximate occlusion sweep
	Occlusion tree
	Polyhedra set operations using BSP trees
	Structure of the occlusion tree
	Construction of the occlusion tree
	Visibility test using the occlusion tree

	Hierarchical visibility tests
	Complexity analysis
	kD-tree
	Number of swept nodes
	Size of the occlusion tree
	Analysis of a visibility test

	Summary

	Real-time visibility culling
	Problem statement
	Related work
	Algorithm overview
	Spatial hierarchy
	Occluder selection
	Representation of the aggregated occlusion map
	Occlusion tree
	Visibility of a polygon
	Visibility of a polyhedron
	Conservative occlusion tree traversal
	Occlusion tree for the conservative visibility algorithm
	Conservative visibility of a region

	Exploiting temporal and spatial coherence
	Related work
	Classical approach
	Modifications overview
	Hierarchy updating
	Conservative hierarchy updating
	Visibility propagation

	Results
	Visibility culling with occlusion trees
	Temporal and spatial coherence

	Summary

	Construction of visibility maps
	Problem statement
	Related work
	Algorithm overview
	Occlusion tree
	Structure of the occlusion tree
	Construction of the occlusion tree

	Hierarchical visibility tests
	Construction of the visibility map
	Neighbor location
	Inserting fragment edges
	Classification of edges and vertices

	Results
	Summary

	From-region visibility in 2D scenes
	Problem Statement
	Related work
	Algorithm overview
	Line space
	Lines passing through a point
	Lines passing through a line segment
	Lines passing through two line segments
	Lines passing through a set of line segments

	Occlusion tree
	Occlusion tree construction
	Visibility from a region
	Visibility of a line segment
	 Fast conservative visibility of a region
	Maximal visibility distance

	The complete hierarchical visibility algorithm
	Results
	Summary

	From-region visibility in 21 2D scenes
	Problem statement
	Related work
	Algorithm overview
	21 2D visibility and line space
	Basic definitions and terminology
	Blocker polygon
	Subdivision of line space
	Occlusion tree

	Conservative funnel visibility test
	Extended umbra
	Occlusion tree updates

	Exact funnel visibility
	Stabbing line computation
	Computing visible fragments
	Acceleration of the funnel visibility test

	Hierarchical visibility algorithm
	Results
	c-LSS vs. DCM
	c-LSS vs. e-LSS

	Discussion
	Real-time rendering
	Large view cells
	Output sensitivity
	Exact vs. conservative
	Comparison with the method of Koltun et. al

	Summary

	From-region visibility in 3D scenes
	Problem statement
	Related work
	Aspect graph
	Potentially visible sets
	Rendering of shadows
	Discontinuity meshing
	Global visibility
	Other applications

	Algorithm overview
	Plücker coordinates of lines
	Geometric interpretation of Plücker coordinates

	Visual events
	Visual events and Plücker coordinates

	Lines intersecting a polygon
	Lines between two polygons
	Intersection with the Plücker quadric
	Size of the set of lines

	Occlusion tree
	Occlusion tree construction
	Insertion with splitting
	Insertion without splitting
	Polygon positional test

	Visibility test
	Exact visibility test
	Conservative visibility test

	Optimizations
	Shaft culling
	Occluder sorting
	Visibility estimation
	Visibility merging
	Hierarchical visibility

	Applications
	Discontinuity meshing
	Visibility culling
	Occluder synthesis

	Implementation
	Results
	Random triangles
	Structured scenes
	A real-world scene
	Silhouette edges extraction

	Summary

	Conclusions
	Summary of results
	The concept of a visibility algorithm
	From-point visibility culling
	Visibility maps
	From-region visibility in 2D
	From-region visibility in 21 2D
	From-region visibility in 3D

	Suggestions for further research
	The concept of a visibility algorithm
	From-point visibility culling
	Visibility maps
	From-region visibility in 2D and 21 2D
	From-region visibility in 3D

	Appendix
	Traditional visibility algorithms
	Z-buffer
	List priority algorithms
	Depth sort
	BSP trees

	Area subdivision algorithms
	Warnock's algorithm
	The Weiler-Atherton algorithm

	Ray casting
	Scan line algorithms

	Visibility in real-time rendering
	Backface culling
	View frustum culling
	From-point visibility culling
	Hierarchical z-buffer
	Hierarchical polygon tiling
	Hierarchical occlusion maps
	Shadow frusta
	Visual events
	Cells and portals
	Occlusion horizons
	Occluder shadows for visibility from point

	From-region visibility culling
	Cells and portals
	Single occluder ray shooting
	Volumetric occluder fusion
	Extended projections
	Occluder shadows
	Dual ray space
	Hardware occlusion test

	Visibility in terrains
	Other acceleration techniques
	Geometry structuring
	Levels of detail
	Image-based rendering
	Point-based rendering

	Visibility in realistic rendering
	Hard shadows
	Ray tracing
	Shadow maps
	Shadow volumes
	Shadow volume BSP trees

	Soft shadows
	Ray tracing and areal light sources
	Soft shadow maps
	Shadow volumes for soft shadows
	Shadow volume BSP tree for soft shadows

	Global illumination
	Radiosity
	Ray shooting and form factors
	Hemisphere and hemicube
	BSP trees
	Discontinuity meshing

	Ray shooting in global illumination
	Ray shooting acceleration techniques
	Ray shooting using uniform grid
	Ray shooting using kD-tree

	Global visibility
	Visibility complex
	Visibility skeleton

	Bibliography

