Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 1

Parallel On-Demand Hierarchy Construction
on Contemporary GPUs

Marek Vinkler!

Vlastimil Havran?

Jifi Bittner? Jifi Sochor!

'Faculty of Informatics, Masaryk University, Czech Republic
2Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
E-mail: xvinkl@fi.muni.cz, havran@fel.cvut.cz, bittner@fel.cvut.cz, sochor@fi.muni.cz

Abstract—We present the first parallel on-demand spatial hierarchy construction algorithm targeting ray tracing on many-core
processors such as GPUs. The method performs simultaneous ray traversal and spatial hierarchy construction focused on
the parts of the data structure being traversed. The method is based on a versatile framework built around a task pool and
runs entirely on the GPU. We show that the on-demand construction can improve rendering times compared to full hierarchy
construction. We evaluate our method on both object (BVH) and space (kd-tree) subdivision data structures and compare them
mutually. The on-demand method is particularly beneficial for rendering large scenes with high occlusion. We also present SAH
kd-tree builder that outperforms previous state-of-the-art builders running on the GPU.

Index Terms—GPU, bounding volume hierarchies, kd-trees, lazy build, ray tracing.

1 INTRODUCTION

AY tracing is a fundamental algorithm used in

the global illumination methods rendering high
quality images. Most of these methods sample the
illumination by tracing rays inside the scene. These
rays solve visibility queries by computing their near-
est intersections with the scene. Hierarchical data
structures are commonly used in order to reduce ray
tracing times. The performance of ray tracing is then
directly related to the quality of these data structures.
However, building a data structure for a scene in an
efficient way is a time consuming task. Until recently,
only static scenes could be ray traced at interactive
rates because of the required preprocessing time. With
the advent of fast parallel processors, algorithms have
been proposed allowing for interactive rendering of
moderately sized dynamic scenes.

In this paper, we propose a novel method for
building the hierarchical data structures in parallel
with tracing rays, while building only those hierarchy
nodes that are needed during the traversal. To the
best of our knowledge, this is the first method of
its kind (called “on-demand” below) targeting many-
core architectures such as GPUs. The method features
complex synchronization and load balancing to run
correctly and efficiently on these parallel processors.

The result of this approach are faster build times for
both bounding volume hierarchy (BVH) and kd-tree
data structures. On average the on-demand method
saves 50% of the time to image compared to full
hierarchy build. The savings are higher for larger
scenes with more occlusion (up to 89%), especially
for the kd-tree data structure. As an additional benefit

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

the constructed data structures have smaller memory
footprint because the nodes not needed for the ray
traversal are not built. Moreover, the method runs
entirely on the GPU leaving the CPU free for other
computational tasks such as animating the scene ge-
ometry.

Our single kernel kd-tree builder is also currently
the fastest algorithm for building kd-trees using the
surface area heuristic (SAH) on a GPU.

2 RELATED WORK

Bounding Volume Hierarchies on the GPU. The
first Bounding Volume Hierarchy (BVH) build method
harnessing the high bandwidth and floating point
performance of GPUs was proposed by Lauterbach
et al. [1]. In their method, the primitives are sorted
based on their Morton code and the BVH is built
level-by-level, i.e., bit-by-bit of the Morton code. This
corresponds to building the BVH with spatial median
splitting. To improve the traversal performance of
hierarchies built with spatial median, they propose to
build the lower levels with SAH.

This method was improved by Pantaleoni and Lue-
bke [2] who proposed to build three levels of the
BVH at the same time. Unlike the previous method,
they propose to build the top levels using the SAH
and use their hierarchical linear BVH (HLBVH) build
algorithm for the bottom levels of the tree. This choice
improves the traversal performance.

The HLBVH method was further optimized by
Garanzha et al. [3] who used a faster radix sorting
algorithm and replaced the complex pipeline of the
previous method, requiring multiple kernel launches
by a set of work queues.

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 2

Karras [4] noticed that when ordering the primitives
along a space-filling curve, the entire tree can be built
in parallel instead of level-by-level. This promotes the
scalability of the method making it particularly well
suited for modern many-core architectures, but only
low quality spatial median hierarchies can be built.

Garanzha et al. [5] proposed to build the entire BVH
with an approximate SAH. A grid is constructed on
the triangle references and a mip-map of the number
of triangles in the cells of the grid is computed. The
SAH is then evaluated using the mip-map for the
number of primitives. Thus, only splits that coincide
with the border between the grid cells on the current
mip-map level are evaluated.

Bounding Volume Hierarchies on other parallel
platforms. Wald [6] presented a parallel version of a
SAH BVH builder with binning for the Intel Many
Integrated Core (MIC) architecture. A hardware ar-
chitecture for building BVHs with binned SAH was
proposed by Doyle et al. [7].

Improving Bounding Volume Hierarchies quality.
The efficiency of updating BVHs in the context of
animations was studied by Kopta et al. [8]. They
propose to extend simple refitting, that fails in the
presence of incoherent motion with more complex
subtree rotations and leaf splitting and merging in
order to keep high traversal efficiency during the
entire animation.

More recently, Gu et al. [9] presented a method to
build the BVH with the use of agglomerative cluster-
ing that allows for setting a tradeoff between build
time and efficiency. Bittner et al. [10] and Karras and
Aila [11] proposed methods that optimize an already
built BVH. These optimization methods, however,
work on the entire tree without knowing which of
its branches are needed for traversal in contrast to
on-demand building.

Kd-trees on the GPU. The performance of GPUs
was first leveraged for kd-tree construction by Zhou
et al. [12]. The algorithm was however limited by
the capabilities of the GPUs at that time to spatial
median splitting only. Danilewski et al. [13] presented
a scalable GPU algorithm using binning for construc-
tion of SAH kd-trees. Wu et al. [14] proposed a
GPU kd-tree builder that evaluates all the splitting
positions by parallelizing the algorithm of Wald and
Havran [15]. A hybrid CPU-GPU implementation of
the same baseline algorithm was proposed by Roccia
et al. [16], that outperforms the previous approaches.
The parallel method of Karras [4] can also be used for
construction of kd-trees with spatial median splitting.

On-demand data structures for ray tracing. The
idea of on-demand construction of spatial hierarchies
for ray tracing has been around for over two decades.
Hook and Forward [17] presented an approach that
for the BVH suggests to mark the nodes as leaf,
split-table leaf, and inner node. The split-table leafs
when visited by a ray during traversal are further

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

subdivided. A similar idea was presented for BSP
trees by Ar et al. [18]. The idea of on-demand con-
struction has been further used for the Bounding-
Interval-Hierarchy by Wachter and Keller [19]. We
are not aware of any work dealing with on-demand
acceleration data structure construction for ray tracing
targeting massively parallel GPU architectures.

Task management on the GPU. Several frame-
works have been recently proposed that limit the
management overhead of launching many kernels to
solve complex computations on the GPU. These run
in a single kernel and manage the computation using
a task pool which schedules the work. The Softshell
framework of Steinberger et al. [20] defines tasks that
are independently solved by computational units on
the GPU. The tasks are stored in fixed size ring buffer
used as a queue. The method of Vinkler et al. [21]
enables communication between computational units
and computational dependencies between individual
tasks allowing for a broader class of algorithms to
be implemented inside a single kernel. To this end
the tasks are stored in a memory pool, with task
at any position being eligible for computation. We
adopt the approach of Vinkler et al. because the ability
of computational unit cooperation is crucial for our
method.

The paper is further structured as follows: the core
of the proposed method is presented in Section 3.
Section 4 describes several optimization techniques of
the basic method. Section 5 presents the results and
their discussion. Finally, the conclusion is in Section 6.

3 ON-DEMAND CONSTRUCTION

This section presents an overview of the proposed
algorithm, discusses the GPU framework supporting
our method, and provides a detailed description of
the extended traversal and building algorithms. Note
that although being mostly generic, the details of our
method reflect the properties of CUDA [22] parallel
programming environment.

3.1 Algorithm Overview

The main idea of the proposed method is to perform
ray tracing and on-demand construction on a mas-
sively parallel architecture in an interleaved manner.
The input of our algorithm are two arrays: the array
containing rays to be shot and the array with geo-
metric primitives (triangles in our case) defining the
scene geometry. The algorithm proceeds by traversing
a ray through the data structure using the traditional
traversal code until a node is reached which should
be further subdivided (e.g. it contains more geometric
primitives than a given threshold). In that case, the
traversal is suspended until the node is subdivided.
The subdivision of nodes runs in parallel with the
tracing of rays that traverse the already constructed
parts of the tree.

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 3

In order to increase the utilization of the parallel
processing units, the nodes which were not yet visited
by any ray may be subdivided speculatively. Such a
speculative subdivision reduces the number of traver-
sal stalls and their latency, since a node may already
be subdivided when visited by a ray for the first time.
On the other hand, a too aggressive speculative tree
construction may overload the processing units with
building such parts of the tree, which will never be
visited during the ray traversal. Our method uses a
simple priority mechanism in which the nodes that
caused a traversal stall are processed with higher pri-
ority. When some processing units are idling because
no traversal progress can be made and the nodes
which caused a traversal stall are processed by other
units, the speculative building of some other nodes
is performed. An illustration of the method is shown
in Figure 1, which depicts a part of the tree already
visited by the ray traversal, a part of the tree built
speculatively and a node at which the traversal is
suspended.

root

[traversed nodes ‘ leaf to be subdivided

[J speculatively constructed nodes

Fig. 1: An example of the situation where ray traversal
is suspended because it has reached a node which
should be further subdivided (shown in red). Notice
that the neighboring nodes of the already visited parts
of the tree (green) were built speculatively in the
otherwise idle time of the GPU (shown in yellow).

3.2 Task Pool

In order to implement the parallel on-demand algo-
rithm on the GPU, we exploit the previously proposed
framework based on the persistent warps [23] and the
task pool [21]. The task pool is responsible for dis-
tributing the computation among the computational
units, where multiple persistent warps reside. These
warps dequeue work to be done from the task pool
and optionally enqueue new work into it. The frame-
work is flexible enough to implement the on-demand
construction and it also provides seamless way of load
balancing between parallel tracing and construction.

The computation is organized on three different
levels. The first level consists of a coarse subdivision
of work into tasks sharing common data. In particular,

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

the subdivision of a node corresponds to a distinct
task. On the second level a task is subdivided into a
set of phases that are executed sequentially (such as
finding the splitting plane, partitioning the geometric
primitives into the left and right subsets, computing
the bounding boxes). The third level is a fine grained
subdivision of the task data into warp sized blocks
called work chunks. A work chunk is the smallest unit
of work in our framework and it is processed by a
single warp. For the data structure construction, a
work chunk consists of 32 geometric primitives con-
tained in the node being subdivided. At any particular
moment in time, multiple tasks may be solved in
parallel (coarse grained parallelism) and for each task
many work chunks of a given phase may be processed
in parallel (fine grained parallelism).

The task pool consists of two arrays, a task data
array and task header array. The task data array
holds all the information necessary to compute the
task, while the header array indicates the state of the
task. The value of an entry in the task header array
represents four different states combined with a state
dependent scalar value [21]:

o Positive value represents the number of work
chunks to be processed on an unlocked task.

o Zero value represents a locked task due to a main-
tenance operation such as switching the phase.
No warp can take work from a locked task.

o Large negative values represent subdivision tasks
inserted into the pool but waiting to be unlocked
by ray traversal.

o Maximum negative value is reserved for tasks that
are waiting to be initialized.

As mentioned above, the traversal and building of
nodes are interleaved and we do not know in ad-
vance, what portion of the persistent warps should be
building the nodes and what portion of these warps
should be tracing the rays. This problem is resolved
dynamically since all the persistent warps can do both
these tasks and the ratio changes as needed during the
computation. An overview of the main data structures
of our algorithm and their relation to the task pool is
shown in Figure 2.

3.3 Traversal Loop

Our ray traversal algorithm is an extension of the
Fermi optimized code of Aila and Laine [23]. The
pseudocode of the algorithm for BVHs is shown in
Algorithms 1 and 2.

The BuildAndTrace function (Algorithm 1) con-
tains the main loop of the on-demand traversal and
building algorithm. Inside this loop the rays to be
traced are fetched and they are traced until the traver-
sal is suspended because nodes have to be built. Then
the computation proceeds with subdividing these
nodes, thus building the BVH on demand. The details
of the construction will be presented in Section 3.4.

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015

ray traversal states

[traversed rays
B rays with suspended traversal
[rays to be traversed

TRACING

BUILDING

warp states

[ray traversal / intersections
I priority building
[speculative building

task pool

node states

I built nodes
I nodes being built with priority
[nodes being built speculatively

Fig. 2: Overview of the data structures and the main
computational dependencies of our algorithm.

Algorithm 1: On-demand method for building
BVHs. The parts of the algorithm needed for
on-demand BVH construction are shown by red-
tinged blocks. The traversal function is defined in
Algorithm 2.

1 BuildAndTrace (ray array) begin
2 while (any ray is not computed) do
3 Load ray R and set N to the root if
necessary;
Traversal (R, N);
if (traversal suspended in a node N) then
L Take work from task pool;
Perform building of node X ;

NS an e

The Traversal function (Algorithm 2) describes the
actual traversal loop.

The modified traversal loop contains four addi-
tional conditional branches allowing the code to pro-
cess yet unbuilt nodes. The first condition in the
traversal code (lines 4-5) aims to postpone ray-
triangle intersections and perform speculative traver-
sal [23] for the case that the traversal has been
restarted at a leaf after waiting for an unbuilt node.

The second and third conditions are inside the inner
loop of the node traversal (lines 14-15 and 17-18).
These conditions are executed when a child node,
which should be traversed by relevant rays, is flagged
as unbuilt. Since both children of a node may be
traversed and both may be unbuilt, we need two con-
ditions, one for each child. If either of the conditions
succeeds, the task in the pool corresponding to that
node is unlocked. The address of the unbuilt node
loaded from the node array holds the index of the
corresponding task. This address is replaced in the
thread’s traversal state with a new address holding
the address of the parent node and the child link offset

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Algorithm 2: On-demand traversal function fol-
lowing the traversal algorithm for GPUs [23]. The
first intersected leaf is saved in PostponedLeaf to
maximize SIMD occupancy during ray tracing.
The parts of the algorithm needed for on-demand
BVH construction are shown by red-tinged blocks.

Traversal (ray R, node N) begin

1

2 PostponedLeaf < NULL;

3 if (N is leaf) then

4 PostponedLeaf < N;

5 N <« pop(stack) ;

6 while (N is not NULL or

7 PostponedLeaf is not NULL) do

8 while (N is built inner node) do

9 Load N, intersect its children AABBs;

10 if (neither child intersected) then

11 L N « pop(stack);

12 else

13 if (left child intersected and flagged as
unbuilt) then

14 Mark left child for building;

15 Translate left child address;

16 if (right child intersected and flagged
as unbuilt) then

17 Mark right child for building;

18 Translate right child address ;

19 Determine nearchild from left and
right child using the distance along
the ray;

20 N < nearchild;

21 if (both children intersected) then

2 L push(farchild);

23 if (N is leaf and

24 PostponedLeaf is NULL) then

25 PostponedLeaf < N;

26 N « pop(stack);

27 if (all threads have postponed leaves) then

28 L break;

29 while (PostponedLeaf is not NULL) do

30 Load geometric primitives and

compute intersections;

31 if (N is leaf) then

32 PostponedLeaf < N;

33 L N + pop(stack);

34 else

35 L PostponedLeaf < NULL;

36 if (N flagged as unbuilt for any thread) then

37 Save traversal state;

38 return ; // Suspend to building

39 Save ray intersection data to global memory;

40

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 5

where to access the result of the build, i.e. the final
BVH link to the to-be-built node. The relationship
between the node array and the task pool is shown
in Figure 3.

Node array
|
\
\\
N\ Task pool
&
AsBB | AsBB |5]\ 0
Left Right s |
5 \ 1
= \
=
O |
el Toll° | 2
|
L |
1 3
Built child address \
] B
Unbuilt child address

Fig. 3: Diagram of our node layout and the relations
between node array and task pool. It depicts a parent
node with the right child (pointer R) built and the left
child (pointer L) waiting to be built. The O pointer
always points to the address of the left child in the
node array with the right child having index O+1.

After unlocking the nodes and translation of the
node addresses, the traversal continues similarly to
the original code, where the intersected child closer
to the ray origin along the ray is chosen as the next
node to be traversed.

The algorithm exits from the inner and outer traver-
sal loops whenever an unbuilt node has to be tra-
versed next (lines 37-38). In particular, after the inner
while-while loops, the algorithm checks whether all
rays (threads) want to traverse already built nodes. In
that case the traversal continues with the next node.
However, if there is at least one ray which aims to
traverse an unbuilt node, the traversal is suspended
for all rays and the warp proceeds with BVH building
(see the next section).

Traversal restart. In order to restart a warp’s sus-
pended traversal, the algorithm periodically checks
whether the nodes that caused the traversal stall have
already been built. This check happens at two places:
when the warp has finished the work chunks that it
has dequeued from the task pool, and when it has
found no work in one scan of the pool and is forced
to search the pool from the beginning. The node is
already built if its child link reloaded from the parent
node no longer contains the unbuilt flag, at which
point traversal is continued with the new address.

Terminating the computation. As the computation
progresses, at some point there are no more rays
to be processed in the ray array. To detect that the
computation should terminate, we use a termination
counter in global memory. The termination counter is
initially set to the number of warps. The warp does
not finish immediately upon detecting that there are
no rays to be processed in the ray array, but instead

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

it atomically decrements the termination counter. The
warp then continues building tasks in the pool. When
all warps are finished, i.e. the termination counter
reaches zero, all warps quit and the kernel termi-
nates. This delayed computation termination is im-
plemented because some warps may still be tracing
their rays and may require yet unbuilt nodes. The
already finished warps help in building the nodes,
which decreases the overall computation time.

3.4 Building BVH Nodes

The BVH traversal algorithm generates requests for
constructing yet unbuilt nodes when they are reached.
Construction of nodes is initialized for a warp when
the BVH traversal of at least one ray from that warp
is stalled due to a yet unbuilt node (lines 6-7 of
Algorithm 1). Any unlocked node may be picked for
construction because a warp may be stalled on up
to 32 nodes and it is infeasible to try to build those
sequentially.

Subdividing nodes. The BVH construction pro-
ceeds in top-down fashion by subdividing the nodes
into smaller ones using the Surface Area Heuristic
(SAH). The task of subdividing a node consists of
three phases — splitting plane computation, partition-
ing of geometric primitives into left and right subsets,
and bounding box computation (AABB). Note that
computing the splitting plane using SAH also gives us
the bounding boxes. The bounding box computation
phase is only needed when SAH fails to subdivide the
node and object median splitting is performed.

The on-demand BVH construction implicates sev-
eral modifications to the full BVH building algorithm.
The node array and the task pool have to be intercon-
nected. In particular, an unbuilt node needs to keep a
pointer to the task that builds it in order to unlock it,
and the task needs to know which node it has built
and how to link that node to its parent. Moreover, in
the on-demand BVH build the node data are not only
written into the node array, but also read from the
array during the traversal in the same kernel launch,
requiring synchronization. Special care is thus needed
when enqueueing children of a node into the task pool
and when unlocking a node.

Enqueueing items in the task pool. When inserting
tasks into the task pool, we do not know whether their
corresponding nodes will get traversed and whether
they need to be built. Thus, the tasks are added to the
task pool in a locked state, waiting for being unlocked
when some ray aims to traverse the corresponding
node. A task may never get unlocked if there is no
request for building the node. The value used to
represent a locked item is a large negative integer as
mentioned in the previous section. In particular, we
use a value composed of a negative flag, representing
that the item is waiting to be unlocked by a ray, and
the index into the node array for the node corre-
sponding to the task. Thus, each lock value is unique

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 6

preventing an accidental unlocking of a different task
when using atomic Compare-and-Swap.

3.5 Building Kd-trees

The kd-tree and on-demand kd-tree construction al-
gorithms are similar to the above described algo-
rithms for the BVH. The only notable difference is the
need for dynamic memory allocations since geometric
primitives may straddle the splitting planes and thus
the number of interior nodes and leaves cannot be
predicted in advance. We use the CMalloc memory
allocator [24] optimized for GPUs to allocate triangle
index arrays for the left and right children of the split
node.

To make the kd-tree efficient, we had to change
termination criteria for kd-trees built on the GPU
architecture compared to those presented in [25] for
the CPU. In addition to the maximum number of
geometric primitives in a node to declare it a leaf
(Nmae = 16, leaf size criterion), we use the maximum
depth computed as ki.logsN + ko for k; = 1.2 and
ko = 2 (hierarchy depth criterion). The third criterion,
the failure of subdivision is then different to the
CPU. The node is declared as a leaf upon the first
subdivision failure (this corresponds to F,., = 0 in
the paper [25]). We consider a failure if the ratio of the
cost of subdividing a node to the cost of declaring the
node a leaf is higher than 7" = 0.9.

Note that our implementation does not use split
clipping [25] as the technique increases both the build
time and the time to image that we target to minimize
in this paper.

4 OPTIMIZATIONS

Below, we describe three optimization techniques for
the basic algorithm presented in the previous section.

Empty task cache. When storing tasks in the task
pool, an empty item has to be found. To accelerate
finding of such items for the warps, we use a cache
of fixed size which stores indices of recently emptied
items in the task pool. These cached items are tested
before a full scan of the pool is done accelerating
the insertion of new tasks into the task pool. This
optimization is beneficial for all methods including
the ones that fully build the data structure.

Speculative unlocking. Computation stalls may
occur when ray traversal is suspended because of a
request for an unbuilt node and there is not enough
parallel work in the requested nodes for all warps.
To prevent these stalls, we propose a variant of our
on-demand method, which unlocks all node building
tasks immediately after their insertion into the task
pool, increasing the amount of parallel work. These
tasks may then be speculatively built in hope they
will be later needed for the traversal.

Prioritization cache. In order to avoid the situa-
tion that the GPU gets overloaded with speculative

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

construction, we use a simple priority mechanism to
favor the subdivision of nodes that cause a traversal
stall and thus should be built as soon as possible. To
distinguish between requested nodes and speculative
nodes, we use a cache of fixed size. In this cache, we
store only the nodes requested during the traversal.
The other nodes that were unlocked speculatively are
not stored in the cache. A warp searching for a task
to process first checks the tasks stored in this cache.
Only if the warp fails in finding work in the cache, it
searches for tasks by scanning the task pool. As long
as there are requested nodes in the cache, these will
be processed before the speculatively unlocked nodes
in the pool.

5 RESULTS

We have measured the behavior of the proposed
algorithms on a PC with Intel Core i7-2600, 16 GBytes
of RAM and NVIDIA GeForce GTX 680 running 64-
bit version of Windows 7. All images in this paper
were rendered at the resolution of 1024x1024 pixels
and the reported data are averages over four view-
points for each scene. Five runs are executed for each
viewpoint and minimum running times are reported.
Two (outer) viewpoints show majority of the scene
geometry while for the other two viewpoints (close-
up views) some detailed geometry is rendered. The
images for these viewpoints are shown in Figure 4.

5.1 Methods

We have measured seven methods in total: fully built
HLBVH [5] with k£ = 4 (HLBVH,), fully built BVH
(BVH), on-demand BVH with building only the re-
quested nodes (BVHg), on-demand BVH with spec-
ulative unlocking and prioritization cache (BVHa),
fully built kd-tree (Kd-tree), on-demand kd-tree with
building only the requested nodes (Kd-treeg), and
on-demand kd-tree with speculative unlocking and
prioritization cache (Kd-treea).

The subdivision terminates when the automatic
SAH termination criteria are met (except in HLBVH,
where this is not possible) or when the number of
geometric primitives drops below 16 (for both BVHs
and kd-trees). This ad-hoc termination criterion was
chosen as it minimized the times to render the frame
for all methods. The termination criteria are optimized
for minimizing the time to image, not for maximizing
the traversal performance.

The size of empty task cache and prioritization
cache described in Section 4 was set to 1024 entries.
Note that the size of the prioritization cache must
be large enough to hold all the nodes requested
at any time in the BVH, and Kd-tree algorithms.
Otherwise, these nodes are not prioritized and the
entire tree may be built before the algorithm finishes.

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

Thefina version of record is available at http://dx.doi.org/10.1109/TV CG.2015.2465898
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 7

#triangles

80k 174K 262K

1,087K

1,819K 2,169K

Outer views

2,880K 3,275K 7,881K 10,918K 11,183K

::3,,

GEas
Sibenik ~ Fairy =~ Crytek Happy Office Sodahall Hairball House San House MPII Power-
Forest Sponza Buddha House 3x3 Miguel 6x5 subset plant

Fig. 4: Rendered images from twelve test scenes and four viewpoints. The image resolution was set to
1024x1024 pixels and eight ambient occlusion samples per primary ray were used. The MPII subset is

composed of layers #1,4,7-10 and 12-13.

To compare fairly the on-demand methods with the
ones that fully build the tree, ray generation and shad-
ing are handled by separate kernel calls and are not
measured. For example, when rendering with eight
ambient occlusion samples per primary ray using the
full BVH, ten kernel calls are measured: BVH build,
tracing primary rays, and eight times tracing ambient
occlusion rays. For the on-demand methods one less
kernel call is necessary as the build is done during
primary and ambient occlusion rays tracing. It would
be beneficial for the on-demand methods to trace all
the ambient rays in a single batch. However, the ray
data would then take a lot of memory allowing only
small scenes to be rendered. We are using batching
in the same way as for the methods with fully built
hierarchy.

Unless otherwise stated, reading data from global
memory bypasses the L1 caches by using a compiler
switch. This is necessary for the pool based methods
because the L1 caches are incoherent on the current
hardware. Imagine a case where a single address is
written by thread T1 and then read by thread T2
running on a different multiprocessor. If incoherent L1
cache is used, the value written by T1 may be written
only into the L1 cache or T2 may read stale L1 cache
data instead of the value written by T1. This leads to
errors since warps from different multiprocessors may
cooperate on building a single task, or may traverse
nodes created by other warps. In our measurements,
only the HLBVH build uses the L1 cache, other ker-
nels are compiled to bypass the L1 cache.

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5.2 Measurements

Tables 1 and 2 show a detailed comparison of the
seven methods for tracing primary rays. The on-
demand methods save significant number of opera-
tions used in geometric primitives sorting, in partic-
ular when shooting only the primary rays. For the
BVHRg and Kd-treer methods, waiting for requested
nodes to be built may incur stalls. These stalls are re-
duced in the BVH, and Kd-treepx methods at the cost
of processing nodes that are not required. Building
extra nodes is usually preferable when more of the
scene geometry is traversed. Savings in the number
of operations used in sorting strongly correlate with
the decreases in build times. The Pearson correlation
coefficient is 0.88 for the BVH, and 0.98 for the
Kd-treey methods. For the BVHR and Kd-treeg, the
correlations are weaker because of the stalls (0.76 and
0.81 respectively).

For kd-trees, where the traversal is immediately
ended on the first hit, speculative building is less
beneficial since less nodes are traversed. For the
San Miguel and Powerplant scenes IILBVI, has the
fastest build, but only at the cost of significant slow-
down in the ray tracing times.

These savings in computation time are significant
for large scenes with viewpoints that do not show the
entire geometry or highly occluded scenes (Sodahall,
House 6x5, and Powerplant). The Kd-trees algorithm
saves 89% of the time to image compared to the
fully built kd-tree for the scene House 6x5 with
primary rays. For smaller scenes with low occlusion,
the proposed on-demand algorithms with speculative

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 8
Scene Timage Tprimary Thuitd Sy

BVH BVHr BVH, HLBVH4|BVH BVHgr BVHA HLBVH4| BVH BVHgr BVHA HLBVH4|BVH BVHRr BVHA

[ms] [%] [%] [%]| [ms] [%] [%] [%]] [ms] [%] [%] [[[1 [%] [%]
Sibenik 17.8 +69 =31 +141| 5.0 +2 +4 +6[12.7 +96 -45 +195| 1.3 -54 -10
Fairy Forest 22.8 +62 -13 +121] 7.1 -1 +0 +25| 156 +92 -18 +165| 2.8 -30 -11
Crytek Sponza | 29.7 +59 -13 +67| 7.8 -4 -1 +0| 21.7 +82 -16 +93| 4.6 -42 -19
Happy Buddha| 73.0 -0 -19 +11) 5.0 +20 +22 +32| 67.9 -2 -22 +10| 18.4 -38 -29
Office House 151.5 -32 -52 27| 159 +11 +14 +53| 135.5 -37 -59 -37| 39.2 -66 -61
Sodahall 156.2 -63 -65 -36/ 3.8 +13 +18 +5| 152.3 -65 -67 -37| 45.0 -73 -69
Hairball 206.6 -16 =31 201 16.5 +18 420 +24| 190.1 -19 -35 24| 54.4 -46 -39
House 3x3 232.3 -55 -59 42| 68 +13 +15 +44| 2254 -57 -61 -44| 66.4 -65 -63
San Miguel 621.1 -45 -53 -58| 17.2 +9 +10 +47| 603.8 -46 -55 -61|181.8 -57 -56
House 6x5 804.5 -69 -71 =55 9.1 +13 +14 +81| 795.4 -70 -71 -57|240.0 -72 -71
MPII subset 817.7 -66 -67 -62| 7.8 +6 +6 +37| 809.8 -66 -68 -63(247.2 -67 -66
Powerplant 1027.3 -58 -59 -66| 16.0 +14 +15 +77|1011.2 -59 -61 -68|310.6 -59 -58
Average 346.7 -18 -44 21 98 +10 +11 +36| 336.8 -13 -48 +6(101.0 -56 -46

TABLE 1: Comparison of four methods for building BVHs. Tj,q4e is the time to image (build time plus time
for tracing 1024x1024 primary rays). Tprimary is the time for tracing primary rays. Ty is the build time

(TL"mage

— Tprimary for on-demand methods) and S; is the number of operations used in geometric primitives

sorting in millions (not reported for HLBVH as it is pointless for this method). Fully built BVH is the reference
method (+0%) presenting measured values. For other methods, the difference as signed percentage is reported.
Averages over the tabled data are given in the last row.

Scene Timage Torimary Touitd Sy
Kd-tree Kd-treegr Kd-treea [Kd-tree Kd-treeg Kd-treea |Kd-tree Kd-treeg Kd-treea |Kd-tree Kd-treer Kd-treea
[ms] [%] [%]] [ms] [%] [%]] [ms] [%] [%] [-] [%e] [%]
Sibenik 229 +41 9 6.7 +1 +10 16.2 +58 -17 2.1 -64 -12
Fairy Forest 36.9 +34 +3 12.0 +8 +8 24.7 +48 +2 4.8 -42 -7
Crytek Sponza 479 +10 -12 9.0 +11 +11 38.8 +10 -17 7.5 -61 -32
Happy Buddha| 183.3 -34 -19 10.1 +19 +21| 173.1 -37 -21 30.1 -54 -34
Office House 231.9 -60 -62 20.4 +1 +0| 211.3 -66 -68 60.0 -76 -71
Sodahall 326.3 -81 -79 5.5 +15 +15| 320.8 -82 -81 71.5 -83 -77
Hairball 582.5 -45 -40 56.8 +2 +1| 525.6 -50 -45| 121.6 -68 -55
House 3x3 650.5 -79 -77 9.5 +18 +16| 641.0 -81 -78| 113.0 -77 -72
San Miguel 1457.2 -64 -68 249 +9 +7| 1432.2 -65 -69| 2721 -70 -67
House 6x5 2594.7 -88 -89 9.6 +16 +15| 2585.0 -89 -89 3973 -82 -81
MPII subset 2167.9 -85 -84 7.9 +10 +6| 2159.8 -86 -84 412.8 -82 -80
Powerplant 2345.6 -78 -80| 185 +6 +4| 2327.0 -79 -81| 503.6 -75 -74
Average 887.3 -44 -51 15.9 +10 +9| 871.3 -43 -54| 166.4 -69 -55

TABLE 2: Comparison of three methods for building Kd-trees. T}y, q4¢ is the time to image (build time plus time
for tracing 1024 x1024 primary rays). Tpimary is the time for tracing the primary rays. T3yi14 is the build time
(Timage — Tprimary for on-demand methods) and S; is the number of operations used in geometric primitives
sorting in millions. Fully built Kd-tree is the reference method (+0%) presenting measured values. For other
methods, the difference as signed percentage is reported. Averages over data are given in the last row.

unlocking can slightly increase the computation time
(3.3% for the Kd-trees on Fairy Forest with primary
rays). This behavior for smaller scenes is not surpris-
ing as the algorithm is designed for highly occluded
and large scenes.

The build times for kd-trees are much higher than
for the BVHs. This is caused by the dynamic al-
locations of auxiliary arrays containing the lists of
geometric primitives and the duplication of primitives
that leads to higher numbers of operations used in
geometric primitives sorting. Interestingly, in most

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

cases the traversal times are higher as well. We have
measured the traversal statistics for the three fully
built data structures (HLBVH,, BVH, and Kd-tree) as
shown in Table 3. While the number of intersection
tests is lower for the BVH than for the kd-tree on
average, the number of traversal steps is higher for
the BVH. This is due to the speculative BVH traversal
and lower occlusion culling efficiency of the BVH [26].

Table 4 shows the behavior of the methods on the
collision detection rays with HLBVH, as the refer-
ence method. In this test, 100 line segment paths

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 9
Scene Nyt [—] Nis [-] Scene Tave
D D
4‘2‘ & 4‘2’ & Q&* @ Pl o
< 4‘2‘ b&“\' Y 4‘2‘ &\5 A & Q,": QY' o~ & £
S E R ¢ J & L& L J D
¥ § % § & & &
Sibenik 222 278 355 623 56.6 319
. [ms] % % % % % %
Fairy Forest 26.5 27.6 537 61.1 56.4 431 —
Sibenik 363 -67 -65 -80 -59 -63 -66
Crytek Sponza 193 308 459 945 874 404 .
Fairy Forest 392 -61 -72 -77 -32 -69 -68
Happy Buddha 141 123 232 344 31.0 251
. Crytek Sponza | 404 -49 -53 -61 +9 -59 -52
Office House 78.7 90.3 134.8] 1504 129.8 409
Happy Buddha| 715 -5 -48 -51 +147 -42 -34
Sodahall 104 21.7 405 66.7 57.7 31.0 .
) Office House 86.1 +57 -34 -40 +141 -41 -32
Hairball 448 372 1334 99.0 943 627
Sodahall 96.1 +59 -29 -31 +231 -33 -32
House 3x3 20.3 18.1 32.8 449 399 249)
Hairball 1479 +28 -16 -27 +253 29 -21
San Miguel 36.7 427 546 1342 1250 67.0
House 3x3 1278 +77 -20 -25 +400 -24 -23
House 6x5 336 229 279 576 485 28.6 .
San Miguel 236.6 +155 -7 -8 +505 -16 -17
MPII subset 224 245 286 1039 773 29.2
House 6x5 3444 +132 -11 -13 +660 -17 -18
Powerplant 774 60.6 76.4| 146.1 107.8 43.7
MPII subset 304.6 +169 -3 -4 +628 -14 -17
Average 339 347 573 879 76.0 39.0
Powerplant 323.0 +214 -32 -33 +621 28 -32
TABLE 3: Traversal statistics per ray for the three data Average 1545 +59 -32 -38 4292 36 -34

structures. N;; is the number of triangle intersections
and Ny, is the number of traversal steps. The data
are for ray tracing 1024 x1024 primary rays (Tprimary,
Tyuira, and S; are given in Tables 1 and 2). Averages
over the tabled data are given in the last row.

are randomly placed inside the bounding box of the
scene. A hypothetical agent moves along each of the
paths: in each frame 8 rays are shot from the agent’s
position into the sphere around it. For the next frame,
the agent’s position is updated as if the agent has
moved. The collision detection rays are bounded by
the distance between two points on the path and the
closest hit is returned for each ray.

Only a fraction of the scene is needed for the
traversal of collision detection rays in each frame
because of their number and length. In such scenario,
the on-demand methods are more efficient and are
always faster even than the fast HLBVH, method.
Interestingly, the performance of the on-demand BVH
and on-demand kd-tree methods is similar to each
other in this test. This is likely caused by the ability
of kd-tree traversal to terminate upon the first hit.

The ability of the on-demand methods to efficiently
cull the hidden geometry is clearly shown in Fig-
ure 5. For this test, an increasing number of copies
of the House model were put in a row in front of
the camera. For more than two copies, the added
geometry did not influence the final image. This is
shown in the graphs for the number of nodes. While
the number of nodes grows linearly for the methods
that fully build the tree, it stays constant for the on-
demand methods. The same behavior is shown in
the graph for reference ratio (number of geometric

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TABLE 4: Comparison of all the methods on collision
detection rays. Ty ¢ is the average time per frame for
an animation long 20 frames. In each frame, the data
structure is built from scratch and collision detection
rays are traced (8 rays for each of the 100 agents) for
the current agent’s position. Averages over the tabled
data are given in the last row.

primitive references divided by the number of geo-
metric primitives). This ratio quickly drops near zero
for the on-demand methods, since the same number
of references is needed regardless of the increase in
the number of geometric primitives. The number of
operations used in sorting geometric primitives grows
linearly for all methods but at different rates. For
the on-demand methods, this is caused by processing
more geometric primitives near the root while for the
fully built hierarchies, more geometric primitives are
processed at each level.

While increasing the amount of hidden geometry
has only a small impact on the on-demand methods,
increasing the amount of visible geometry has a direct
influence. To capture this behavior, we have varied
the number of diffuse samples used for rendering the
image. Figure 6 shows the typical behavior of the
methods on more complex scenes. When the number
of diffuse samples is low, the on-demand methods
can save a significant amount of the build time by
skipping the geometry that is not visible. For such
scenarios, they often outperform even the fast HLBVH
build. As the number of diffuse samples and thus the
visible part of the scene increases, the performance
of the on-demand methods gradually degrades to
the performance of the full build. Eventually, the
full build prevails because of its faster traversal as

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 10

30 450

400

350

300 -

250 -

200

Mrays/s [-]

150 -

100

Number of operations used in sorting [-] x 10°

Nodes [-] x 10°

5 10

120% T T T T T 4.5

#oopies [

15 20 25 30 5 10 15 20 25 30
#oopies [

- e - R,

100%

80% 3

60% I

Reference ratio [-]

40% 151

Percentage of nodes to BVH or Kd-tree [-]

1penee B
20%
05

Full build
BVH - -+ -
HLBVH, - o -

Kd-tree

On-demand build
BVHR ——
BVH, —=—

Kd-treeg —o—

Kd-tree,

5 10 15 20 25 30 5 10
#copies [-]

15 20 25 30

#copies [-]

Fig. 5: The influence of increasing the amount of hidden geometry when tracing primary rays. Varying number
of copies of the scene “House” are arranged in a row such that most of the view is taken by the front house
(bottom-right image). The graphs show in the reading order: the performance of the methods (computed from
Timage In Mrays/s), number of operations used in geometric primitives sorting in millions, number of nodes
in millions, percentage of the number of nodes to the fully built reference hierarchy, and the reference ratio
(number of geometric primitive references divided by the number of geometric primitives). For graphs with
ratio or percentage, BVH method is the reference for BVHs and Kd-tree method is the reference for kd-trees.

elaborated in the following section. The cross-over
points of the on-demand and full build methods are
different for BVHs and kd-trees. This is caused by
the longer build time of kd-trees and their ability to
terminate traversal on the first hit without checking
the nodes on the traversal stack as for BVHs.

We have also measured the performance of the
compared methods for animated datasets. For each
frame the data structure is completely rebuilt to show
the performance that can be expected in the presence
of arbitrary animations. Table 5 shows the average per
frame time for the primary, ambient occlusion and
diffuse rays. Since the efficiency of the on-demand
methods is dependent on the occlusion present in the
rendered scene, we use 3x3 instances of the same
dataset of the animated models. While the on-demand
methods perform rather poorly on the Fairy Forest
scene, where almost the entire scene is built, for the
3x3 instances they perform very well even for the
incoherent diffuse rays. This is caused by the large
occluding wall in the Fairy Forest scene.

For the Dragon Bunny scene on-demand methods
are less beneficial because there is almost no occlusion
present after the dragon explodes. The situation is
similar for the Break Lion scene. The on-demand
methods based on the kd-tree are, however, better
suited for exploiting the occlusion still present in
the rubble after the lion has collapsed leading to a

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

higher speedup. On average the on-demand methods
are more beneficial for coherent primary rays and
ambient occlusion rays with limited length because
fewer of the data structure nodes are traversed and
thus built for these ray distributions.

The entire course of the selected animations can be
seen in Figure 7. For the Fairy Forest 3x3 scene the
performance stays almost constant because the other
instances are effectively culled away for every frame.
For the Dragon Bunny 3x3 scene a steady decline of
the performance of the on-demand methods can be
seen as the dragon explodes.

We also compare the performance of our GPU kd-
tree builder with the state-of-the-art method of Roccia
et al. [16] (referred to as Roccia’s method) in Table 6.
The results from the table are not directly compara-
ble since they were measured on two different GPU
models. Given our kernels are memory-limited, we
can estimate the performance difference from memory
bandwidths. GeForce GTX 680 has 25% or 50% higher
memory bandwidth than GTX 560 (depending on
the version of the GTX 560). Even after taking these
ratios into account, the build times for our method
are still significantly smaller than for the Roccia’s
method. The traversal performance on the other hand
is roughly the same since both the CPU and the GPU
are used for ray tracing in the Roccia’s method. On
the Sodahall scene, the traversal performance of our

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015

18 45

11

45

“w0p

35

30 -

25

Mrays/s [-]
Mrays/s [-]

20 -

/
<

Mrays/s [-]

1 10
#samples [

Office House

100 1 10
#samples [

House 6x5

100 1 10
#samples [-]

MPII subset

100

Full build
BVH - -~ HLBVH, - o -

Kd-tree

n-demand build
—%— BVH, ——
Kd-treeg —e— Kd-tree,

Fig. 6: The influence of increasing the number of diffuse samples on the rendering performance (computed
from Tj,qge in Mrays/s) when tracing diffuse rays. The results are shown for fully and on-demand built

hierarchies on three test scenes with higher occlusion.

Scene |Ray Tava
type
oo 3 & o7
S £ L &
S FEFE SIS
¥R R X I ~
[ms] % % Y% [ms] Y% %o
P 225 +69 -4 +120 349 +61 +12
Fairy
Forest |[AO| 564 +49 +12 +55 96.7 +42 +19
D | 1686 +14 +2 +22 3792 +25 +19
Fairy 1256 -52 -59 -24 2020 -63 -69
Forest |AO| 190.8 -27 -31 +2 3034 -33 -38
3x3 D |3279 -16 -20 +24 5572 -8 11
Dragon P 1643 -26 -29 -38 2588 -16 -25
Bunny |[AO| 1920 -9 -17 -30 3035 +9 -9
3x3 D | 2121 +62 +14 22 3628 +112 +21
Break | [11046 -41 -49 -6011099.1 -88 -93
Lion |AO (11919 -28 -40 -5511303.6 -81 -91
3x3 12945 +82 -2 -4512079.1 -23 -83
P 3543 -13 -35 -1 2898.7 27 -44
Avg |AO| 4078 -4 -19 -7 3001.8 -15 -30
D | 5008 +35 -2 -5 33446 +27 -14

TABLE 5: Comparison of all seven methods for ani-
mated data. T4y is the average time to image per
frame for a 100 frame long animation. In each frame,
the data structure is built from scratch. Results for
primary (P), ambient occlusion (AO) and diffuse (D)
rays are shown in separate rows for each scene (8
samples were used for ambient occlusion and diffuse
rays). Fully built BVH and Kd-tree are the reference
methods (+0%) presenting measured values. For other
methods, the difference as signed percentage is re-
ported. Averages over the tabled data are given at the
bottom of the table.

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

method is significantly higher, which may indicate a
scaling problem in the Roccia’s method.

Finally, we briefly compare our method to the
state-of-the-art commercial ray tracers on both the
CPUs (Embree) and GPUs (OptiX). The Embree [27]
achieves similar rendering performance for primary
rays on two Sandy Bridge CPUs (234 Mrays/s) on
the Asian Dragon model as our full BVH builder
when optimized for maximal rendering performance
(220.7 Mrays/s) on the GTX TITAN Black. The build
performances are also comparable, start times of 0.7s
- 1.5s compared to just the build time of 0.29s for
our BVH builder. The OptiX framework features the
method of Karras and Aila [11] and achieves build
30 to 60% faster than our full BVH builder, but about
40% slower than our on-demand BVH 4 builder when
using primary rays. The rendering performance is
higher for OptiX, which is probably due to exploiting
L1 cache and constructing BVH for maximum ray
tracing performance.

5.3 Discussion

Time complexity analysis. Here, we analyze the
properties of the ray tracing algorithms with build-
ing hierarchies in on-demand fashion using the cost
model. The standard method fully building a data
structure over n geometric primitives and tracing
R rays will need total computation time Ty,; =
cg.n.logyn + cr.R.log, n, where cp is the cost for a
single build step and c7 is the cost for a traversal step.
The on-demand algorithm results in different time
Tondemand = cg-n' . 10go 1 +n' .Cowiten+ . R. logy n. We
assume here that the constant cp is the same for both
solutions and that the actively visited parts of the data
structure are built in the same way, therefore visiting
the same number of nodes (factor R.log,n). In on-
demand building, the number of nodes built will only
be n’ (n’ <n and for highly occluded scenes n’ < n).

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 12
Scene Thuila [ms] Puiffuse [Mrays/s]
Roccia Roccia Roccia NoDup(16) DupClip(16) DupClip(8)|Roccia NoDup(16) DupClip(16) DupClip(8)
CPU* GPU* hybrid GPU® GPU® GPU®|hybrid GPU® GPU® GPU®
Dragon 770.0 2670.0 430.0 137.5 155.4 265.5| 108.5 72.3 106.4 111.4
Happy Buddha| 920.0 2880.0 500.0 173.2 199.3 348.7| 1123 68.3 104.2 105.5
Sodahall 2680.0 2240.0 1030.0 314.6 355.5 4439 56.0 72.7 101.5 112.7

TABLE 6: Comparison of six methods for building kd-trees. Three methods of Roccia et al. [16], fully built kd-
tree without duplicating primitives (NoDup(16)), fully built kd-tree with primitive duplication and triangle
clipping during partition (DupClip(16), DupClip(8)). The numbers in brackets give maximum number of
triangles per leaf. Thyi1q is the build time in milliseconds and Pgiguse is the performance in Mrays/s for tracing
four diffuse rays per pixel. CPU# is Intel Core i7 920, GPU# is GeForce GTX 560, hybrid is combination of

both, and GPU® is GeForce GTX 680.

40

Mrays/s [-]

[o] éO 4‘0 éO éO 100
#frame [-]
Fairy Forest 3x3 (diffuse rays)

80

Mrays/s [-]

0 20 40 60 80 100
#frame [-]

Dragon Bunny 3x3 (AO rays)

Full build On-demand build
BVH - -+ - HLBVH, - o - BVH, —s— —
Kd-tree Kd-treeg —e— Kd-tree,

Fig. 7: The performance of the methods (computed
from Tjnage in Mrays/s) during the 100 frame long
animation.

The on-demand traversal algorithm has some over-
head as it contains more conditions to be evaluated,
therefore ¢/, > cr. The constant csyicn, represents
the overhead of switching between the traversal and
building in the on-demand algorithm. Assuming the
Cswiten can be neglected for higher number of rays,
we can compare T, and Tyndemand and provide the
following analysis: (a) with number of rays R going

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

to infinity the fully built data structure is faster, (b) for
highly occluded scene or detailed views of the scenes
with n’ < n the on-demand algorithm is faster, (c) for
n’ = n and R not large both algorithms will result in
a similar performance. This behavior is shown in the
measurements.

On-demand algorithm utility. From the results
measured on complex scenes (Figures 5 and 6), we can
observe that the BVH, on-demand method provides
the most stable performance across a wide range of
the number of cast rays. For a small number of rays
the BVH, is usually close to the fast build HLBVH,
method, while when the number of rays is large, it
is close to the high quality BVH method. Although
there is a variable size interval of the number of
cast rays in which the BVHA method achieves the
highest performance, overall, it is the best method in
the comparisons when considering both smaller and
higher numbers of cast rays. This is advantageous
when the number of rays is not known in advance.

Hardware limitations. When comparing the per-
formance of on-demand methods with methods fully
building the acceleration data structure, there are
several hardware limitations that must be considered.
We have already pointed out the incoherence of L1
caches on current generations of the NVIDIA GPUs.
Disabling L1 caching using a compiler switch (but
identical source code) produces about 20% slower
traversal code. If we could enable L1 cache, the on-
demand methods could have faster traversal than
the full build methods because the computations are
more localized and thus should have a higher L1 hit
ratio. This problem is not inherent to the parallel on-
demand methods but it is hardware dependent.

Combining build and traversal codes into one ker-
nel leads to a longer code, often demanding more
resources for that kernel than for the separate kernels.
In our kernels, this leads to registers spilling to local
memory. This problem may be mitigated by a more
optimized implementation. Moreover, launching the
on-demand kernel just for traversing rays using al-
ready built data structure has higher launch overhead
than launching a specialized traversal kernel. This is
the reason why the on-demand traversal is slower

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 13

than traversing fully built hierarchy.

BVH vs kd-tree. The space subdivision property of
kd-tree is beneficial for on-demand build. As nodes on
the traversal stack at the time of the first intersection
need not be traversed, they neither need to be built.
Compared to the BVH, this saves building nodes that
do not contribute to the final image. Given our BVH
traversal codes employ speculative traversal [23], the
reduction in the built nodes is further amplified.

We have observed an interesting behavior in the on-
demand kd-trees that the speedup in the build time
compared to the full kd-tree can be higher than the
ratios of number of operations used in sorting geo-
metric primitives. This is likely caused by requesting
fewer dynamic memory allocations, which is also a
major cost in the kd-tree build.

Ray distributions. The performance of the on-
demand methods depends on the ray distribution
in space. When majority of the scene geometry is
accessed, there is little potential benefit of the on-
demand methods. On the other hand, when only a
fraction of the scene geometry is intersected by shot
rays, for example when a close-up view is taken, large
parts of the hierarchy may be left unbuilt. For large
scenes, the number of operations used in sorting was
40 to 60% smaller than for the full build, indicating the
method’s potential for rendering massive data sets.
The on-demand methods can also take advantage of
the ray length, as commonly defined in shadow or
ambient occlusion rays.

We have measured our results on primary, ambi-
ent occlusion, diffuse and collision detection rays to
study the dependence of the on-demand methods on
ray distribution. The correlation coefficient between
the number of operations used in sorting geomet-
ric primitives and build times stayed similar for all
distributions. On-demand methods performed best
on primary and collision detection rays where the
coherency of the rays or their number and length
caused large parts of the scenes not to be traversed.

There is also an interesting relation between ambi-
ent occlusion rays and diffuse rays which differ only
in the ray length. This accounts for an average saving
of 25% in the build time for the bounded ambient
occlusion rays. For small scenes and diffuse rays,
the entire scene or its majority was often traversed
rendering the on-demand methods useless.

Memory. For the on-demand builders, less memory
is consumed by the acceleration data structure since
some parts of the tree are not traversed and built.
Moreover, if geometric primitives are converted to
some efficient traversal format such as Woop rep-
resentation [28], savings in triangle data are also
possible. For large scenes less than 5% of nodes
and references to geometric primitives are created
(see Figure 5). Currently, all GPU memory has to be
preallocated from the CPU side including the heap
for the dynamic memory allocator. Thus, the same

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

amount of preallocated memory for node and triangle
arrays has to be used as in the full BVH or kd-
tree build, regardless of the actual size of the output.
However, with GPU hardware steadily progressing
towards more programmability, the ability to save
memory through dynamic allocation can become a
major advantage of the on-demand methods.

6 CONCLUSIONS

We have proposed, implemented and tested a novel
proof-of-concept algorithm for the simultaneous ray
tracing and on-demand BVH/kd-tree construction on
the GPUs. This algorithm solves the computational
dependencies and load balancing between building
the data structure and tracing the rays. We have also
presented a SAH kd-tree builder, that outperforms the
previous state-of-the-art approach.

Considering primary rays, the speculative on-
demand algorithms (BVH, or Kd-treep) can save up
to 89% of the time to image compared to the fully built
tree on large scenes with high occlusion. On average
50% reduction in rendering time is achieved over the
twelve tested scenes. We expect that the time to image
savings will become even higher for the future cache-
coherent GPU architectures.

The proposed algorithm can also save memory
needed by the acceleration data structure as only a
small portion of the scene is processed during the
traversal. In highly occluded scenes, the memory
requirements decrease from 100% for the fully built
data structure to less than 5% for the one built on-
demand.

In future work, we plan to extend the method for
building hierarchies with potentially higher quality,
but slower build times such as the general BSP-trees.
Combining the method with an out-of-core geometry
loading capability would be another interesting av-
enue for research. This would allow rendering mas-
sive scenes while fitting only their visible subset into
the GPU memory.

ACKNOWLEDGMENTS

We would like to thank Marko Dabrovic for Sibenik
model, DAZ3D (www.daz3d.com) for Fairy Forest
model, Frank Meinl at Crytek for the Crytek Sponza
model, Prof. C. Séquin for Sodahall model, Samuli
Laine and Tero Karras for Hairball model, Guillermo
M. Leal Llaguno for San Miguel model, the UNC for
Powerplant model, project [29] for MPII model, and
Stanford repository for other 3D models.

We would also like to thank Tero Karras, Timo
Aila, and Samuli Laine for releasing their GPU
ray tracing framework. Our research was partially
supported by the Czech Science Foundation un-
der research programs P202/11/1883 (Argie) and
P202/12/2413 (Opalis) and the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS13/214/0OHK3/3T/13.

Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record isavailable at http://dx.doi.org/10.1109/TV CG.2015.2465898

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, SUBMISSION, JULY 2015 14
REFERENCES [22] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
Parallel Programming with CUDA,” Queue, vol. 6, no. 2, pp.

[1] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and 40-53, Mar. 2008.

D. Manocha, “Fast BVH Construction on GPUs,” Cumputer [23] T. Aila and S. Laine, ”Understanding the Efﬁciency of Ray
Graphics Forum, vol. 28, no. 2, pp. 375-384, 2009. Traversal on GPUs,” in Proceedings of HPG 2009. New Orleans,

[2]]. Pantaleoni and D. Luebke, “HLBVH: Hierarchical LBVH Louisiana: ACM SIGGRAPH/Eurographics, 2009, pp. 145-149.
Construction for Real-Time Ray Tracing of Dynamic Geom- [24] M. Vinkler and V Havran, }”Register Efficient Memory Allo-
etry,” in Proceedings of HPG 2010. Saarbrucken, Germany: cator for GPUs,” m.P(oceedmgs of HPG 2014. Lyon, France:
ACM SIGGRAPH/Eurographics, 2010, pp. 87-95. Eurographics Assoc1.at10n, 2014, pp. 19—‘27.

[3] K. Garanzha, J. Pantaleoni, and D. McAllister, “Simpler and [25] V. Hayran and J. Bittner, “On Improving KD-Trees for Ray
Faster HLBVH with Work Queues,” in Proceedings of HPG Shooting,” Journal of WSCG, vol. 10, no. 1, pp. 209-216, Febru-
2011. Vancouver, British Columbia, Canada: ACM SIG- ary 2902- .

GRAPH /Eurographics, 2011, pp. 59-64. [26] M. Vinkler, V. Havran, and J. Bittner, “Bounding Volume

[4] T. Karras, “Maximizing Parallelism in the Construction of Hllerarchlesﬂvtlersus Kd-trees on Contemporary Many-Core Ar-
BVHs, Octrees, and k-d Trees,” in Proceedings of HPG 2012. chitectures,” in Proceedings of the 30th Spring Conference on
Paris, France: ACM SIGGRAPH/Eurographics, June 2012, pp. Computer Graphics, ser. SCCG "14. New York, NY, USA: ACM,
33-37. 2014, pp. 61-68.

[5] K. Garanzha, S. Premoze, A. Bely, and V. Galaktionov, “Grid- [27] I Wald, S. Woop, C. Benthin, G. S. Iohnsqn; and M. Ernst,
based SAH BVH construction on a GPU,” The Visual Computer, Em,bre?f A Kernel Framework for Efficient CPU Ray
vol. 27, pp. 697-706, Jun. 2011. Tracing,” ACM Trans. Gn}ph., vol. 33, no. 4, pp. 143:1-14338,

[6] 1. Wald, “Fast Construction of SAH BVHs on the Intel Many Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/
Integrated Core (MIC) Architecture,” IEEE Transactions on 2601097'2§01199 . . .
Visualization and Computer Graphics, vol. 18, no. 1, pp. 47-57, [28] S. WOOP/ A Ra}f Tracing Hardware Architecture for Dynamic
January 2012. %:enes, MI\Zstelk:l 52 5182513, Saarland University, Saarbruecken,

" . ermany, Marc .
[71 M.]. Doyle, C. Fowler, and M. Manzke, “A Hardware Unit for [29] V. Havran, J. Zajac, J. Drahokoupil, and H.-P. Seidel, “MPI

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Fast SAH-optimised BVH Construction,” ACM Transactions on
Graphics, vol. 32, no. 4, pp. 139:1-139:10, Jul. 2013.

D. Kopta, T. Ize,]J. Spjut, E. Brunvand, A. Davis, and
A. Kensler, “Fast, effective BVH updates for animated scenes,”
in Proceedings of the 13D conference. New York, NY, USA: ACM,
2012, pp. 197-204.

Y. Gu, Y. He, K. Fatahalian, and G. Blelloch, “Efficient BVH
Construction via Approximate Agglomerative Clustering,” in
Proceedings of HPG 2013. New York, NY, USA: ACM SIG-
GRAPH /Eurographics, July 2013, pp. 81-88.

J. Bittner, M. Hapala, and V. Havran, “Fast Insertion-Based
Optimization of Bounding Volume Hierarchies,” Computer
Graphics Forum, vol. 32, no. 1, pp. 85-100, 2013.

T. Karras and T. Aila, “Fast Parallel Construction of High-
Quality Bounding Volume Hierarchies,” in Proceedings of HPG
2013. New York, NY, USA: ACM SIGGRAPH/Eurographics,
July 2013, pp. 89-99.

K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time KD-
tree Construction on Graphics Hardware,” in SIGGRAPH Asia
2008. New York, NY, USA: ACM, 2008, pp. 126:1-126:11.

P. Danilewski, S. Popov, and P. Slusallek, “Binned SAH Kd-
Tree Construction on a GPU,” Computer Graphics Group,
Saarland University, Tech. Rep., June 2010.

Z. Wu, F. Zhao, and X. Liu, “SAH KD-tree Construction on
GPU,” in Proceedings of HPG 2011. New York, NY, USA: ACM
SIGGRAPH/Eurographics, 2011, pp. 71-78.

1. Wald and V. Havran, “On building fast kd-Trees for Ray
Tracing, and on doing that in O(N log N),” in Proceedings of the
IEEE/Eurographics Symposium on Interactive Ray Tracing 2006.
Washington, DC, USA: IEEE Computer Society, sep. 2006, pp.
61-69.

J.-P. Roccia, M. Paulin, and C. Coustet, “Hybrid CPU/GPU
KD-Tree Construction for Versatile Ray Tracing,” in Eurograph-
ics (Short Papers). Eurographics Association, 2012, pp. 13-16.
D. Hook and K. Forward, “Using KD-trees to Guide Bounding
Volume Hierarchies for Ray Tracing,” Australian Computer
Journal, vol. 27, no. 3, pp. 103-108, Aug. 1995.

S. Ar, G. Montag, and A. Tal, “Deferred, Self-Organizing BSP
Trees,” Computer Graphics Forum (Proceedings of Eurographics
2002), vol. 21, no. 3, pp. 269-278, 2002.

C. Waechter and A. Keller, “Instant Ray Tracing: The Bounding
Interval Hierarchy,” in Proceedings of EGSR 2006. Nicosia,
Cyprus: Eurographics, 2006, pp. 139-149.

M. Steinberger, B. Kainz, B. Kerbl, S. Hauswiesner, M. Kenzel,
and D. Schmalstieg, “Softshell: dynamic scheduling on GPUs,”
ACM Transactions on Graphics, vol. 31, no. 6, pp. 161:1-161:11,
Nov. 2012.

M. Vinkler, J. Bittner, V. Havran, and M. Hapala, “Massively
Parallel Hierarchical Scene Processing with Applications in
Rendering,” Computer Graphics Forum, vol. 32, no. 8, pp. 13-25,
2013.

Informatics Building Model as Data for Your Research,” MPI
Informatik, Saarbruecken, Germany, Research Report MPI-I-
2009-4-004, Dec 2009.

Marek Vinkler received his Ph.D. degree
from the Masaryk University in Czech Re-
public. He is currently a a postdoctoral re-
search associate at the Max Planck Insti-
tute for Informatics, Germany. His primary
research interests are high-performance ray
tracing, data structure build and parallel pro-
gramming on many-core processors.

Vlastimil Havran received his Ph.D. de-
gree from the Czech Technical University in
Prague. After his Ph.D., he was a postdoc-
toral research associate at the Max Planck
Institute for Informatics in Saarbruecken,
Germany. Currently he works as an asso-
ciate professor at the Czech Technical Uni-
versity in Prague. His research interests ren-
dering topics focused on data structures and
geometric range searching.

Jifi Bittner received his Ph.D. degree from
the Czech Technical University in Prague.
Then he worked as post-doctoral associate
at the Vienna University of Technology. Cur-
rently he works as an associate professor
at the Czech Technical University in Prague.
His research interests include data structures
for ray tracing and visibility calculations.

Jifi Sochor received his Ph.D. in digital com-
puters from the Czech Technical University
in Prague. Currently he works as an asso-
ciate professor at the Masaryk University in
Czech Republic where he leads the Human
Computer Interaction research group. His re-
search interests include computer graphics,
virtual reality and human-computer interac-
tion.

