Some Practical Aspects of Ray Tracing on
Shared Memory Machine

Vlastimil Havran, Ji ra

CTU, Fac. of Electrical Eng., Dept. of Computer Science
Karlovo nm. 13, 121 35 Praha 2, Czech Republic
havran@sgu. felk.cvut.cz
zara@cs. felk.cvut.cz

Abstract

This paper compares results of selected load balancing techniques for the ray tracing
algorithm implemented on a shared memory machine with eight processors. The aim is
to show how theoretically expected results meet reality in practice when a lot of users
cause heavy load of computing system. Special attention is paid to the question of load
balancing and coherence utilization. A number of measurements were performed both on
Eric Haines’s PDF test scenes and on ordinary scenes obtained from practical applications.

Keywords
computer graphics, rendering, ray tracing, shared memory, load balancing, coherence,
parallel implementation.

1 Introduction

Parallel implementation of sequential algorithms not only brings changes into the
structure of programs, but also forces programmers to move their interest toward
specific hardware platform. Already known ”best sequential” algorithms have to be
sometimes changed so that their efficiency is reduced by additional overhead needed
for synchronization and communication among processes.

Our research team has been interested in parallelisation of the ray tracing al-
gorithm for a several years. We started in 1993, with the implementation on a
massively parallel system of T800 Inmos transputers. Later, the implementation
was moved to loosely coupled network of workstations where the PVM system was
used as a basic environment for programming of the parallel ray tracer. Due to the
connection with other resources and research groups, the parallelisation was based
on the space (scene) subdivision ([7]). Such an approach is a memory saving but
on the other hand, it is coupled with a large communications overhead. A sufficient
efficiency can be thus achieved only on a limited number of computers in a network.
We have left the ”scene subdivision” approach, although some interesting results
on dynamic load balancing were obtained.

Currently, our efforts are oriented toward utilization of shared memory machines.
Parallel ray tracer 1s based on ”image subdivision”. This principle is very well suited
to shared memory machines, when the whole scene is stored in main memory only
once. Parts of image are rendered by processors independently. Theoretically, the
speed up is linear, e.g. the efficiency is slightly below 1. However, the real efficiency
depends on several factors - a global load of shared memory multiprocessor machine,
utilization of coherence, number of processes and the distribution of work among
them.

2 Hardware platform

We have used the AlphaServer 8400 System made by Digital. It is a 64-bit RISC ma-
chine with symmetric multiprocessing (SMP) extendibility. The system is equipped
with eight 64-bit processors Alpha 21164 /300 MHz, 2 GBytes RAM memory,
4 GBytes swap space. The internal bandwidth of the data bus is 1.2 GB/sec and
the processors are provided with a three-level cache. The internal cache on the chip
is 8 KB, write back secondary cache is 96 KB and tertiary on board cache is 4 MB.
Typical benchmarks for one processor are 341.4 SPECint92 and 512.9 SPEC{p92
(7.43 SPECint95 and 12.4 SPECfp95).

From the programmer’s point of view, the SHM library (based on IPC library
from AT&T) was used for the implementation of parallel ray tracer.

3 Implemented techniques

The sequential ray tracer already developed by our team was modified for shared
memory parallel implementation. This ray tracer was also used as a reference for
measuring the speed up and other characteristics of parallel solutions.

Although a very simple and well known approach called ”process farming” was
used for parallelisation, there was still a number of possibilities, how to subdivide
an image and how to distribute the work among processes. To achieve the best
efficiency, one has to pay attention both to load balancing and good utilization of
coherence. The following notes are dedicated to these problems:

Load balancing

To fully utilize all processors available, the work load has to be distributed among
them for the whole computing time. Unfortunately, the characteristics of the ray
tracing algorithm doesn’t allow to determine the complexity or the cost of computa-
tion for certain parts of an image. The amount of computations for each subimage
depends on geometrical and optical features of objects hit by rays, which can be
reflected and refracted into arbitrary directions. If the computation requirements
are practically unforeseeable, the load balancing can be solved either dynamically
(the work is distributed on demand) or statically by image subdivision with very
fine granularity (all processes shall obtain almost the same amount of simple tasks,
thus the loads shall be comparable from the point of view of statistics).

The dynamic solution brings some communication overhead, which is needed
for the distribution of work. Also the coherence utilization is not high, because
processes have to work with new data directly obtained from the main control
process, so they cannot use already processed scene data (geometry, textures) which
could be currently available in a cache.

The static load balancing based on the image subdivision into very small areas
(rectangular blocks or rows of pixels) ensures almost regular load for all processes.
The problem is, that high task granularity (e.g. processing one pixel as a one task)
decreases effect of data coherence.

Coherence utilization

There are a number of methods in the ray tracing literature, which were designed
with the aim to fully exploit some kind of coherence. We have not used any spe-
cial method like ray coherency (for antialiasing within one pixel), light buffers (for
shadow rays), ray beams or safety zones (to minimize intersection computations).

However, a data coherence was taken into account. Since each process has to
operate (theoretically) with the whole scene consisting of thousands of objects, there

must be a time difference between processing data taken from the fast but small
cache and the large but slower main memory. Although the data transfer between
cache and main memory is up to a processor, a kind of software optimization can
be also achieved by selection of primary rays to be computed. There is a high
probability that adjacent primary rays will hit the same objects ([1]), thus the
optimal area for rendering has a squared shape ([8]).

Notice, that this kind of data coherence has the larger impact to speed up in case
of large number of simple objects to be tested for intersection. If a geometry of an
object is complex (e.g. spline surfaces), a processor spends all time with arithmetic
instructions on small set of geometrical data. A difference between cache and main
memory is then hidden and a data coherence has very low influence. That is the
reason why our testing scenes have been built mostly from spheres and triangle
patches, which are the simplest shapes for ray tracing.

1111
0
0
12
1 3
2
3
«\|||| [T1
= 0 | 1 0 | 1
V% .
A
0123 2 3 2 3
11
0|1 2|3 ! 2 S - strip P - pixel
3 0 2
R - row B - block
DB - dynamic
block

Figure 1: One dynamic and four static load balancing techniques

3.1 Process mapping

Five methods for image subdivision were tested. The principles are shown on fig. 1,
where only four processes (0, 1, 2 and 3) are used for simplification:

(S) Strip subdivision — the number of image parts is equal to a number of
processes. The best coherence is achieved, but the load balancing is the worst.

(P) Pixel subdivision — the finest granularity gives the best static load balanc-
ing, but doesn’t use any advantage of coherence.

(R) Row subdivision — the compromising solution between static load balancing
and coherence. The number of rows should be much higher than the number
of processes.

(B) Block subdivision — an image is subdivided into the fields, which are further
divided into small blocks. The number of blocks within one field is equal to
the number of processes. Relatively small area of fields ensures approximately
the same scene complexity for all blocks within one field.

(DB) Dynamic block distribution — similar small blocks as in the previous
method are sequentially distributed among processes on demand. A synchro-
nization and communication during rendering is required. A coherence is
exploited within one block, but can be also extended to the adjacent blocks
in some cases as shown on fig. 1 (process No. 2).

Only the last technique provides dynamic load balancing. The others are based
on initial static subdivision and completely independent parallel computations.

4 Measurements

Our aim was to measure rendering times depending on image subdivision methods
(S, P, R, B, DB) as well as on the number of processes.
Let us describe the values that were in our interest:

Real time is the time, which is important for the end user. Tt is a time inter-
val between the beginning and the end of the whole computational process,
regardless of the number of processors involved. Real time depends on the
load of the system, for instance on the number of users in the moment of the
rendering.

User time is bundled with a rendering process. It expresses a time, when the
process is active, i.e. when a processor performs the code of the process. A
user time doesn’t depend on the load of machine.

In case of parallel computation, the set of user times is obtained (one for each
process). The better the load balancing is, the smaller the differences among
user times.

To compare efficiency of parallel implementation in the following text, we have

selected the worst user time from each set of user times from one experiment.

Speed up is done as a fraction T7/T,, where T is sequential time (time for
rendering by one process only) and 7, is the time achieved by n rendering
processes. Optimal speed up is equal to n.

Speed up can be expressed both in terms of real and user times.

4.1 Scene characteristics

There have been five scenes used for testing. Three of them are standard PDF ([2])
ray tracing benchmark data (Balls, Tetra and Shell), next two are taken from user

applications. The scene Room comes from CAAD system, Fluid is the result of
visualization of a fluid dynamics simulation.

Name | Geometry 7 of elems. | # of light | # of inters. | depth of

sources tests [105] | recursion
Balls spheres 7382 3 193.0 2
Tetra | triangles 4096 1 7.6 2
Shell spheres 5761 1 212.2 2
Room | polyg. meshes 7786 3 114.4 4
Fluid | spheres 2899 2 29.3 5

All scenes were rendered with resolution 512 x 512 pixels, one ray per pixel.
The binary space subdivision (BSP) technique was used for decreasing a number of
intersection tests.

The following table shows real and user times for rendering scenes using one pro-
cess only. All five methods for process mapping were used, although some of them
have no impact in case of sequential processing. Strip, pixel and row subdivision
are here the same, because the image area is rendered by one process. Differences
can be seen on Block and Dynamic block approaches. Block subdivision uses image
fields 64 x 64 pixels, dynamic blocks are even smaller — 32 x 32 pixels.

| method time [s] || Balls Tetra Shell Room Fluid |

Strip real 345.766 28.815 403.032 365.654 97.499
user 345.531 28.775 402.795 365.364 97.418
Pixel real 345.668 29.006 414.852 364.516 98.087
user 345.338 28.967 414.555 364.222 97.999
Row real 345.114 28.830 419.856 366.137 97.759
user 344.862 28.793 419.557 365.772 97.676
Block real 334.902 28.524 371.218 360.178 96.951
user 334.661 28.474 370.949 359.875 96.853
Dynamic real 345.487 28.789 370.725 364.824 97.839
block user 345.274 28.753 370.464 364.522 97.756

As expected, the corresponding S, P and R subdivision computational times
for one scene were almost equal. The best sequential times were achieved for the
method B, when data coherence within one small image block helps to decrease
frequent access to main memory. DB subdivision was a little bit slower due to the
communication between main process and one rendering process (no ”take ahead”
technique was used).

The times from the table above were taken as references values for expression of
appropriate speed up of parallel implementation. It means that using method S for
load balancing, results were compared with the S real and S user times from this
table; using method P in parallel computation, the results were compared with the
P real and P user times from the table, etc.

4.2 Results

The following graphs (fig. 2 and 3) show the times depending on the number of
processes performed in parallel. Although the computing system has been equipped
with eight processors, we have tried to measure more than eight processes in parallel
implementation. That is why the graphs express values up to 16 processes.

Ut

Let us remind, that in the case of dynamic block subdivision, the basic image
subarea distributed among processes was 32x 32 pixels. In case of block subdivision,
the squared field was 64 x 64 pixels and it was further subdivided depending on
the number of processes. For the latter we had to developed a special incremental
algorithm, which is able to cover a field with n areas for n processes. Each area
fulfilled two criteria — its shape was as much squared as possible and the number of
pixels was almost equal for all areas within a field.

4.3 Discussion

Real time speed up depends on the overall load of the computing system. We have
done measurements during many sessions, i.e. the overall load was not constant.
The number of users has been alternated, therefore only the shapes of graphs are
important, not absolute values.

Notice, that the real speed up continuously grows with the number of processes,
although the number of processors are constant - eight. The reason is that the
operating system gives various priorities to processes and doesn’t take into account
any kind of a "global” priority of a user. A newer process has always a higher
priority, which is decreased with the living time of a process. Relatively short
processes with ray tracing algorithm thus have a higher priority comparing with
special applications (chemistry, biology, etc.) computed tens of hours or even longer.

In practice, a user should use the number of processes up to the number of
processors, but not more. Higher number of processes takes time, which should
be given to other users. Of course, this is also a question of operating system, i.e.
rights of users in a multiuser and multitasking computational systems at all.

The graphs with user time speed up (fig. 3) allow to compare all five imple-
mented load balancing techniques regardless of the number of users. Methods R
and P give the best speed up comparing with B and DB approaches. In these
experiments, the load balancing had the main influence to the overall efficiency.
The data coherence has not played so important role. The memory architecture of
AlphaServer 8400 with three levels of caches successfully hides differences between
“near” and ”far” data location.

The results obtained for more than 8 processes are interested mostly from the
theoretical point of view. Since the granularity of image subdivision is fine enough
(pixels, rows), we can expect almost linear user time speed up in case of the higher
number of processors.

An interesting phenomenon can be seen on fig. 3 for the Shell scene. When
16 processes were started, the user times went down more than 16 times. Of
course, the global real time stayed below real time for 8 processes. The ”exciting”
user time speed up better than linear has simple explanation — two processes were
mapped onto one processor. Both processes rendered couples of adjacent rows, so
data coherence caused better results. This special case cannot occur when real 16
processors are used. This is also an example how the results of the simulation can
be imprecise due to the cache system.

5 Conclusion

There has been set of measurements done on shared memory machine with eight
processors. The results obtained from five different scenes are comparable.

The load balancing has had bigger influence to the computational time than
utilization of data coherence. Pixel (P) and Row (R) image subdivision approaches
are quite satisfactory from the point of view of efficiency and overall speed up.
However, the other two methods — block (B) and dynamic block (DB) subdivision

have given also comparable results. The worst approach was to subdivide an image
into strips.

Another observation was done in terms of number of processes versus number of
processors. Although the speed up cannot overcome the limit done by the number of
processors, a real time can be still decreased using more processes than processors.
The extendibility of this solution is not high, but the curve of efficiency continuously
grows at least up to twice processes more than processors. Of course, this portion
of speed up is paid by other users working on the system.

6 Future work

We are going to pay further attention to the processing of textures. In case of large
2D images used as mapped textures, data coherence plays important role. The
adjacent points on a 3D surface are often mapped onto points in texture space, which
are in different memory locations. In such cases, the data coherence 1s achieved
for ray traced objects only, but not for the texture data. Our aim is to test the
hierarchical image description and its influence to a speed up of rendering in a
parallel environment.

Acknowledgment

We would like to thank to Jan Buridnek who has been the programmer of the
sequential ray tracer and who has helped us to adapt the software into parallel en-
vironment, and to Ale Holeek who spent his time with discussions on load balancing
techniques.

References

[1] Green, S.: Parallel Processing for Computer Graphics. Research Monographs
in Parallel and Distributed Computing, Pitman Publishing, London 1991.

[2] Haines, E.: A Proposal for Standard Graphics Environments. IEEE Comp.
Graph. & Apps., Vol. 7 (11), pp. 3-5, 1987.

[3] Havran, V.:Simulation of Real Camera for Rendering. Master Thesis, Faculty
of Electroengineering, CTU Prague, 1996.

[4] Horiguchi, S., Masayuki, K.:Parallel Processing of Incremental Ray Tracing
on a Shared Memory Multiprocessor. The Visual Computer, Volume 9, pp.
371-380, Springer-Verlag, 1993.

[5] Jansen, F., Chalmers, A.:Realism in Real Time? Invited presentation on 4th
EG Workshop on Rendering, Paris, pp. 27-46, June 1993.

[6] Keates M.J, Hubbold R.J.:Interactive Ray Tracing on a Virtual Shared-
Memory Parallel Computer. Computer Graphics Forum, Volume 14, number

4, pp. 189-202, 1995.

[7] Menzel K. et all.: Distributed Rendering Techniques using Virtual Walls. Pro-
ceedings of First European PVM Users Group Meeting, Roma, Italy, October
9-11, 1994.

[8] Voorhies, D.: Space-Filling Curves and a Measure of Coherence. in Graphics
Gems II, Academic Press, UK, pp. 26-30, 1991.

Balls L7 Tetra
3
6
:
5
4
s W
2
4 6 8 10 12 14 18 2 4 6 8 10 12 14 16
8
Shell 7t Room
6 W
5
4
/\/J 3
\/\/ 2
=
4 8 8 10 12 14 18 2 4 B 8 10 12 14 16
! ! i ! ! ! 8
Fluid . «—— optimal speed up
B o — Strip
=
f 5 E <= Pixel
(=N
2] o—o—o0 ROW
4
Block
3 +«—— Dynamic block
2
number of processes
4 6 8 10 12 14 1B 2 4 B 8 10 12 14 16

Figure 2: Speed up based on the real times

14 Tetra

14t Room

16
, optimal speed u; —
Fluid 14 p P p
12 —— Strip
10 % x—— Pixel
9
o —o—s Row
8 &
Block
6 .
+«—e— Dynamic
4 block
2 number of processes
2 ¢ 10 12 14 18 2 4 6 8 10 12 14 16

Figure 3: Speed up based on the user times

