Evaluation of BSP trees for ray-tracing

Vlastimil Havran

Czech Technical University, Faculty of Electrical Engineering,
Department of Computer Science and Engineering,
Karlovo nam. 13, 121 35 Prague 2, Czech Republic

e-mail: havranQcs.felk.cvut.cz

Keywords: computer graphics, rendering, ray tracing, BSP tree.

Ray tracing is method commonly used for photo realistic rendering now-
days. It is based on simulation of light behaviour by means of geometrical
optics, light beams used are usually called rays. In real world the light
is emmitted from light sources and is reflected or refracted on surfaces of
objects before it reaches the human eye. The ray-tracing is usually based
on reverse process: the rays are cast from eye to the world and refracted
and reflected on the objects. The intersection with closest object for each
ray is calculated. Moreover, additional rays are cast from these intersection
points to the light sources to find out if the intersection point is illuminated
by the light or if it lies in shadow. These rays are called shadow rays. The
result colour for a pixel is calculated by a special lighting model.

The most time consuming part of ray-tracing process is finding out of
the closest objects. The naive method is to test a ray with each objects and
select the closest intersection. Since the number of objects is usually very
big, calculation takes up many. hours. Therefore space partitioning tech-
nique were designed. One of them is Binary Space Partitioning Technique
(abbr. BSP). Let us explain how does it work.

The objects in the scene are bounded by rectangular parallepiped, it
is actually the root node of the tree. The space is recursively subdivided
by a plane perpendicular to one of coordinate axes. The splitting plane is
positioned in a mid-point of the current axis; the axis is changed regularly
in order z, y, and z. The objects laying in the left node are assigned to this
node, similarly the objects in the right node, and the objects straddling
the splitting plane are added to both halfspaces. The splitting is stopped,
when the number of objects in current node is smaller than a constant,
or when the depth of the node reaches maximal depth allowed. There
is a very quick algorithm for traversing the BSP tree by a ray [3]. The
intersection calculation are performed only with objects placed in leaves of
the tree, it accelerates the computation process hundred times, but total
time of computation is far from real-time rendering.

The scientists designed some sophisticated methods [2] improving the
efficiency of BSP tree. The splitting plane is not placed in mid-point and its



orientation is not regularly changed in cyclic order. The trees are smaller
and the execution time can be decreased up to by 80%.

The comparison between scientific papers is normaly given by time con-
sumed by computation. It disables to compare the solution designed by
scientists because of different implementation and measurement conditions
given. The testing is performed on standard scenes proposed in [1]. The
total computation time is composed of two parts, the time devoted to
traversing and the time devoted to intersection testing.

We propose new method for comparing the quality of BSP tree, which
is based on two n-tuples. First one, septet A, includes the characteristics
of binary tree independent on implementation:

A =< Nrg, Rernrs, Napr, Naorrr, Revwyv, Nrprr, Nar > (1)

A covers following parameters: the number of leaves, the ratio of empty
leaves to all leaves, the average number of objects duplication, average
number of objects in all leaves, the average number of objects in full leaves,
the ratio of volumes taken by non-empty leaves to the volume of the whole
scene, the ratio of all intersection tests performed for to minimal number
of intersection, and the average number of traversed nodes per one ray.

The second n-tuple, triplet A, enables to compare the quality of ray-
tracer implementation, the architecture performance, and the quality of
compiler:

AN =<Tep, Trg, Trr/Trr >, (2)

A expresses: the time devoted to construction of BSP tree, total render-
ing time itself, and the ratio of time consumed by traversing to the total
rendering time.

References

[1] E. A. Haines A proposal for standard graphics environments. IEEE CG
& A, 7(11):3-5, Nov. 1987.

[2] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using space
subdivision. In Proceedings of Graphics Interface '89, pages 152-163,
Toronto, Ontario, June 1989.

[8] K. Sung and P. Shirley. Ray tracing with the BSP tree. In Graphics
Gems III, pages 271-27/. Academic Press, San Diego, 1992.



