
Ray Maps for Global Illumination

Vlastimil Havran∗ Jiřı́ Bittner† Hans-Peter Seidel∗
∗MPI Informatik, Saarbrücken, Germany †VUT, Vienna, Austria

Fast rendering of high quality images with global illumination is
still a challenging task. A popular technique addressing this topic is
photon mapping [Jensen 2001]. Photon mapping uses a global pho-
ton map for indirect illumination and a caustics map for caustics. In
order to achieve visually pleasing results a costly final gathering
step is commonly used with the global photon map since a simpler
direct visualization would produce significant boundary artifacts.
The artifacts are caused by using only photon hits on object sur-
faces: photons passing nearby an object are not accountedfor which
underestimates indirect illumination on the object boundaries (see
Figure 2, right top).

We have developed an efficient technique that eliminates the
boundary artifacts and thus it helps to avoid the final gathering. We
have extended the concept of photon maps to ray maps. Instead
of storing only the photon hits the ray map stores also the pho-
ton paths represented as sequences of rays. The ray map allows
to efficiently answer various ray proximity queries that cannot be
answered using the photon map. For example we can locate also
photons passing in vicinity of an object and use them for density
estimation.

The idea of using photon paths instead of photon hits was pre-
sented recently by Lastra et al. [Lastra et al. 2002]. They use a
tangent plane at the point of illumination and search for rays inter-
secting a disc using a ray cache based on dynamic list of spheres.
However, the ray cache results in a performance decrease up to two
orders of magnitude compared to the direct visualization of photon
maps. Additionally, the ray cache performance highly depends on
the coherence of subsequent intersection queries.

We propose to implement ray maps using lazily built kd-trees.
The interior nodes of the tree are associated with axis aligned split-
ting planes, the leaves store references to rays. The kd-tree is con-
structed lazily in order to adapt to the actual queries on the fly. We
use a caching strategy that allows the user to specify a maximum
memory usage for tree; we keep only the most recently accessed
tree paths and collapse the unused parts. The query performance
is improved using several optimization techniques. For example
we use directional splitting nodes that separate non-feasible rays
by exploiting directional coherence of the queries. For the nearest
neighbor queries we use a priority queue and an efficient N-median
search. The priority queue is reused by the subsequent coherent
queries in order to eliminate repeated tree traversals.

Our implementation of ray maps allows to efficiently compute
ray proximity queries that use different intersection domains and
nearest neighbor distance metrics:

I. Intersection domains
– disc,
– hemisphere,
– axis aligned bounding box,
– sphere.

II. Nearest neighbor distance metrics
– distance to the point of intersection of the ray with a

tangent plane,
– distance to the ray segment,
– distance to the supporting line of the ray.

For example using the distance of point to ray segment results in
a hemispherical neighborhood where the nearest rays are found (see
Figure 1). Our measurements show that the radius of a hemisphere
is approximately 30% smaller than the radius of a disc for the same
number of nearest rays, which allows to reduce the bias of density
estimation. Additionally, the ray map queries can be issued in an

arbitrary point in space: for example we can use the spherical ray
intersection domain for volumetric illumination effects.

12
3

12
3

Figure 1: Three nearest neighbors according to different ray dis-
tance metrics. (left) Euclidean distance between the center of the
query and the intersection of the ray with a tangent plane. (right)
Euclidean distance between the query center and the ray itself.

Another application of ray maps is light path invalidation for
scenes with moving objects. We determine all rays intersecting the
moving objects and reshoot only the affected light paths.

Performance: Our ray map implementation is 3.9 to 5.2 times
slower than the photon map implementation described in [Jensen
2001]. However, the ray map fully eliminates the disturbing bound-
ary artifacts. Additionally, the ray map is from 10 to 51 times faster
than the ray cache described in [Lastra et al. 2002].

Conclusions: We have developed a concept of ray maps allow-
ing efficient computation of ray proximity queries. The ray maps al-
low to eliminate the boundary artifacts of the classical photon map-
ping at a moderate increase of the computational cost. Being able to
efficiently answer various ray proximity queries the ray map opens
new application directions such as using other metrics for density
estimation or new lighting update strategies for scenes with moving
objects.

Figure 2: Rendering without final gathering: (top row) indirect illu-
mination computation by direct visualization of photon maps. (bot-
tom row) indirect illumination computed using ray maps.

References
JENSEN, H. W. 2001. Realistic Image Synthesis using Photon Mapping.

A. K. Peters, Ltd.
LASTRA, M., URENA, C., REVELLES, J., AND MONTES, R. 2002. A

Particle-Path Based Method for Monte Carlo Density Estimation. In
Rendering Techniques 2002 (Poster Papers Proceedings).


