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Abstract

The goal of this master thesis is to study, compare, and improve existing approaches
for direct ray tracing trimmed NURBS surfaces. In order to be able to study the
topic efficiently, a library for NURBS evaluation has been implemented. The library
is supposed to be easily integrated in any ray tracing application to make it support
direct ray tracing trimmed NURBS surfaces.
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(W203 Interieur 3.wrl model. Model courtesy of DaimlerChrysler AG). . 125

5.20 Comparison of ray tracing trimmed rational Bézier surfaces methods
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Chapter 1
Introduction

1.1 Motivation

Ray tracing has become a popular method for generating realistic images. In order to
produce a realistic image, a rendering program must simulate the physical system that
is involved in making a direct photograph of a real scene. Many realistic effects such
as penumbrae, motion blur, fog, gloss, translucency, and depth of filed can be obtained
using standard recursive ray tracing. Even more realistic effects, such as caustics or
indirect illumination, can be simulated using global illumination algorithms for ray
tracing.

NURBS surfaces are common way to represent surface meshes in computer aided
design. NURBS surfaces have useful geometric properties, which make modeling easy
and effective. Trimming curves are a common method for overcoming the topologically
rectangular limitations of NURBS surfaces. Trimming curves are defined in the param-
eter domain of NURBS surfaces and specify the regions of the surface which must be
cut away. Almost all possible surface shapes can be modeled using trimmed NURBS
surface representation.

Although ray tracing applications generate realistic images, and trimmed NURBS
surface representation is common for computer aided design, they are not usually com-
bined together. NURBS surfaces are not used as basic objects in ray tracing applica-
tions, because finding ray-NURBS surface intersection is complex problem. Therefore,
each NURBS surface is tessellated into triangles before starting the rendering process.
Unfortunately, during the tessellation process some information about the surface shape
may be lost even with the best tessellation techniques, especially in the case of surfaces
with high curvature variance over the surface. Another drawback is the tremendous
number of triangles which must be stored in the case of complex scenes. The direct
ray tracing NURBS surfaces may have worser time performance (because the intersec-
tion routine of a ray with a NURBS surface is much more complicated than the one
with a triangle), but the quality of the result image overcomes the quality of the image
obtained after ray tracing of tessellated scene models.
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2 CHAPTER 1. INTRODUCTION

1.2 Overview

The Master Thesis consists of six chapters, including the introduction and the conclu-
sion parts. Chapter 1 gives an introducation of direct ray tracing trimmed NURBS
surfaces and presents an overview of the Master Thesis.

In Chapter 2 general remarks on curves and surfaces are done. The place of NURBS
and Bézier surfaces besides all other subsets of surfaces are determined, and many
usefull mathematical and geometrical properties are discussed.

In Chapter 3 the basics of ray tracing techniques are briefly explained. It is also
shown how different acceleration data structures can improve the performance of ray
tracing.

In Chapter 4 the history of ray tracing parametric surfaces is described. Two
common methods for direct ray tracing Bézier surfaces are explained, and some im-
provements of these methods are proposed.

In Chapter 5 practical aspects of ray tracing trimmed NURBS surfaces are dis-
cussed in more details. The way of representing a NURBS surface by the number of
Bézier patches is explained. An efficient acceleration data structure for Bézier patches
is described, and an efficient scheme of combining it together with methods of ray trac-
ing Bézier patches is given. An efficient way of performing trimming test and some
suggestions about numerical robustness are proposed. The chapter is concluded by the
section of practically achieved results.

Chapter 6 completes the Master Thesis by conclusions about the done work with
the improvements and modifications of the existing techniques.

Appendix A shows the compatibility of the implemented library for NURBS eval-
uation with VRML97 and X3D specifications. Appendix B presents the framework of
integration the library into a ray tracing system.

All algorithm frameworks presented in the Master Thesis are in the ANSI C++ [39]
standard.
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Chapter 2
Introduction to Curves and Surfaces

2.1 Introduction

One of the main goals of geometric modeling is to represent objects of real world by
mathematical equations in order to operate with these objects in computer. Mathe-
matical representation of an object is not unique, and different approaches are used in
order to represent the same object. We want to have the representation, which does
not require a lot of memory to store information about the object, and gives us efficient
and fast algorithms for different object related computations. The next sections ex-
plain how curves and surfaces can be described mathematically in order to meet these
requirements.

2.2 Fundamental Curves and Surfaces Representation

2.2.1 Introduction

Curves are often defined as the locus of a point moving with one degree of freedom [28].
There is another definition which describes a curve as a one-dimensional connected
point set in a two-dimensional plane or in three-dimensional space. Surfaces are defined
as a locus of a point moving with two degrees of freedom [28]. Another definition
describes a surface as a two-dimensional point set in three-dimensional space. There
are three ways to describe curves and surfaces for geometric modeling. These are explicit
equation, implicit equation, and parametric equation. Each method has it’s advantages
and disadvantages depending on the goal of representation.

2.2.2 Explicit Equation

The explicit equation of a curve lying in the xy plane has the general form

y = f(x) (2.1)
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4 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

where just one value of y corresponds to each value of x. This representation is useful
in many applications, but it cannot adequately represent multiple-valued and closed
curves, and cannot be used where a constraint involves an infinite derivative. Moreover,
this form of the curve representation is axis dependent. Notice that explicit equation
cannot describe a curve in 3D space.

The explicit equation of a surface takes the general form

z = f(x, y) (2.2)

where just one value of z corresponds to each couple of values (x, y). The explicit
surface representation has all disadvantages of explicit curve representation. Hence,
explicit equations in general are little used in computer graphics or computer aided
design.

2.2.3 Implicit Equation

The implicit equation of a curve lying in the xy plane has the general form

f(x, y) = 0 (2.3)

and describes an implicit relationship between the x and y coordinates of the points
lying on the curve. Using implicit representation of a curve it is easy to determine if a
given point is on the curve (f(x, y) = 0), or on one side of it (f(x, y) < 0), or the other
(f(x, y) > 0). Notice that implicit equation as well as explicit one cannot describe a
curve in 3D space. An example of implicitly represented curve is the circle of a unit
radius centered at the origin, specified by the equation f(x, y) = x2 + y2 − 1 = 0.

The implicit equation of a surface takes the general form

f(x, y, z) = 0 (2.4)

By analogy to curves, using implicit representation of a surface it is easy to determine if
a given point is on the surface (f(x, y, z) = 0), or on one side of it (f(x, y, z) < 0), or the
other (f(x, y, z) > 0). An example of implicitly represented surface is the sphere of a
unit radius centered at the origin, specified by the equation f(x, y, z) = x2+y2+z2−1 =
0.

Implicit equation is capable of representing multiple-valued functions but is still
axis dependent. However, it has a variety of uses in computer graphics and computer
aided design. More information about implicit representation can be found in [8].

2.2.4 Parametric Equation

Most modeling applications require that the choice of a coordinate system should not
affect the shape of a curve. For this reason the preferred way to represent shapes
in geometric modeling is with parametric equations. In parametric form, each of the
coordinates of a point on the curve is represented separately as an explicit function of

4



2.2. FUNDAMENTAL CURVES AND SURFACES REPRESENTATION 5

an independent parameter. The parametric equation of a curve lying in the xy plane
has the general form

x = x(t); y = y(t) a ≤ t ≤ b (2.5)

It is instructive to think of parametrically defined function C(t) = (x(t), y(t)) as the
path traced out by a particle as a function of time; t in this case is the time variable
from the time interval [a, b].

Parametric equations avoid many of the problems associated with non parametric
functions. They are axis independent, easily represent multiple-valued functions and
infinite derivatives, and have additional degrees of freedom compared to either explicit
or implicit formulations. The first quadrant of circle of a unit radius centered at the
origin can be defined by the parametric functions

x(t) = cos t

y(t) = sin t 0 ≤ t ≤ π/2 (2.6)

The parametric representation of a curve is not unique. For instance, setting u =
tan(t/2), one can derive alternate representation of the same quadrant of the circle,
expressed as follows:

x(u) =
1 − u2

1 + u2

y(u) =
2u

1 + u2
0 ≤ u ≤ 1 (2.7)

The first and second derivatives of C(t) are the velocity and acceleration of the particle,
respectively. If the magnitude of the velocity vector, C ′(t) is a constant on the interval
[a, b] then it is referred to as a uniform parameterization. It means that the direction
of the particle is changing with time, but its speed is constant.

Opposite to explicit and implicit representations, parametric equations are capable

to represent a curve in 3D using the general form

x = x(t); y = y(t); z = z(t) a ≤ t ≤ b (2.8)

Specifying a surface parametrically requires two parameters. So, the parametric repre-
sentation of a surface has the general form

x = x(u, v); y = y(u, v); z = z(u, v) a ≤ u ≤ b, c ≤ v ≤ d (2.9)

Sphere of unit radius centered at the origin can be defined by parametric equation (not
unique) S(u, v) = (x(u, v), y(u, v), z(u, v)), where

x(u, v) = sin u cos v

y(u, v) = sin u sin v

z(u, v) = cos u 0 ≤ u ≤ π, 0 ≤ v ≤ 2π (2.10)

5



6 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

If one of the parameter values is held constant while the other is varied, an isoparametric
curve is formed on the surface. In the case of sphere, holding u fixed and varying v
generates the latitudinal lines; holding v fixed and varying u generates the longitudinal
lines.

The normal at a point on a surface is given by the cross product of the partial
derivatives at the point. Denote the partial derivatives of S(u, v) by Su(u, v) =
(xu(u, v), yu(u, v), zu(u, v)) and Sv(u, v) = (xv(u, v), yv(u, v), zv(u, v)). Notice, that
these vectors are the velocities along latitudinal and longitudinal lines. If the vec-
tor cross product Su × Sv does not vanish, the unit normal vector N is given by the
following equation:

N =
Su × Sv

|Su × Sv|
(2.11)

The normal vector is a property of the surface independent of the actual form of the
parameterization of the surface. Under parameterization of a sphere given by Equation
(2.10), Sv vanishes at the north and south poles of the sphere, i.e., Sv(0, v) = Sv(π, v) =
0 for all v, 0 ≤ v ≤ 2π. Clearly, normal vectors do exist at the poles, but under this
particular parameterization they cannot be computed by Equation (2.11).

2.3 Polynomial Curves

2.3.1 Introduction

In Section 2.2 it has been shown that representing of curves parametrically has a number
of advantages with respect to explicit and implicit representations. Choosing coordinate
functions x(t), y(t), and z(t) arbitrary one can obtain a great variety of parametrically
defined curves. But for geometric modeling purposes not all of these functions are in
the area of interest. The best choice would be to restrict ourselves to a class of functions
which are, first of all, easily, efficiently and accurately processed in a computer. More
precisely, we need functions which do not require a lot of memory for storage while
giving us a possibility for efficient computation of points and derivatives on the curves.
A widely used class of functions with these properties is the polynomials.

A d-dimensional polynomial curve of degree n is a parameterized curve u 7→ P (u)
of the form

P (u) =

n∑

i=0

ai · ui = anun + · · · + a1u, an, an−1, . . . , a1, a0 ∈ Rd (2.12)

Denote P as the set of all polynomials and Pn as the set of all polynomials of degree less
or equal to n: Pn = {p ∈ P : degree(p) ≤ n}. The set of all d-dimensional polynomial
curves of degree n is denoted by P d

n . Functions ui in Equation (2.12) form a basis for
polynomial curves which is called monomial basis (or power basis). As it was mentioned
in Section 2.2.4, the parametric representation of a curve is not unique. The general

6



2.3. POLYNOMIAL CURVES 7

form of the parametric representation of a curve is

P (u) =

n∑

i=0

pi · Xi,n(u), pi ∈ Rd (2.13)

Functions Xi,n(u) in Equation (2.13) are called basis functions. Coefficients pi ∈ Rd are
used to control the shape of the curve. Special case Xi,n(u) = ui means that monomial
basis is used to represent a curve. In this case curve is called power basis curve. Efficient
point evaluation on a power basis curve is possible using Horner’s method.

Representation of a curve in the power-basis form has the number of disadvantages.
First of all, this representation is not convenient for interactive shape design, because
coefficients {ai} convey very little geometric insight about the shape of the curve.
Moreover, Horner’s method is prone to round-off error if the coefficients vary greatly
in magnitude. Therefore, the power-basis representation is rarely used in computer
aided design. The number of basis functions have been invented in order to achieve
better properties. In the next sections Lagrange polynomials, Bernstein polynomials,
and B-spline basis functions are discussed.

2.3.2 Lagrange Polynomials

For a given n+1 parameter values t0, . . . , tn ∈ R with t0 < t1 < · · · < tn, the polynomial

Ln
i (u) =

n∏

j=0
j 6=i

u − tj
ti − tj

=
(u − t0)(u − t1) · · · (u − tn)

(ti − t0)(ti − t1) · · · (ti − tn)
, i = 0, . . . , n (2.14)

is called the ith Lagrange1 polynomial of degree n. The Lagrange polynomials Ln
0 , Ln

1 , . . . , Ln
n

form a basis of Pn. Curves in the Lagrange polynomial basis can be defined as follows:

P (u) =

n∑

i=0

Ln
i (u) · pi, pi ∈ Rd (2.15)

The nice property of this representation is interpolation of points pi at parameter values
ti. This property comes from the formula:

Ln
i (tj) =

{

1 for i = j,

0 for i 6= j.
⇒ P (tj) = pj, j = 0, · · · , n (2.16)

Notice, that there is only one polynomial of nth degree, that interpolates these n + 1
control points, therefore the Lagrange representation is unique.

1Joseph Louis de Lagrange (1736-1813)
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8 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

Figure 2.1 shows the quadratic Lagrange polynomials with respect to parameter
values t0 = 0, t1 = 1

2 and t2 = 1, which have the following equations:

L2
0(u) =

(u − 1
2)(u − 1)

(0 − 1
2)(0 − 1)

= 2(u − 1

2
)(u − 1)

L2
1(u) =

(u − 0)(u − 1)

(1
2 − 0)(1

2 − 1)
= −4u(u − 1)

L2
2(u) =

(u − 0)(u − 1
2 )

(1 − 0)(1 − 1
2)

= 2u(u − 1

2
) (2.17)
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Figure 2.1: Quadratic Lagrange
polynomials with respect to pa-
rameter values t0 = 0, t1 =
1
2 and t2 = 1.

Figure 2.2: Curve defined in
quadratic Lagrange polynomial ba-
sis using control points p1 =
(1, 1), p2 = (1, 3), p3 = (3, 3).

Figure 2.2 shows a curve defined in quadratic Lagrange polynomials basis using
control points p1 = (1, 1), p2 = (1, 3), p3 = (3, 3) and parameter values t0 = 0, t1 =
1
2 , and t2 = 1. One can easily see the interpolation property of such curve - it goes
through all its control points.

Unfortunately, the interpolation property is the only one useful property of curves
defined in Lagrange polynomial basis. Neither control points nor parameter values give
any other useful information about the shape of the curve. Moreover, point evalua-
tion and derivative computation on such curves is very time consuming. Therefore,
Lagrange polynomials are rarely used in computer aided design for curves and surfaces
representation.

8



2.3. POLYNOMIAL CURVES 9

2.3.3 Bernstein Polynomials & Bézier Curves

Bernstein polynomials2 (or Bézier basis functions) are the set of polynomials defined
as follows:

Bn
i (u) =

(
n

i

)(
u − a

b − a

)i(b − u

b − a

)n−i

=
n!

i!(n − i)!

(
u − a

b − a

)i(b − u

b − a

)n−i

, u ∈ [a, b]

(2.18)
Bernstein polynomials Bn

0 , Bn
1 , . . . , Bn

n form a basis of Pn. Curves represented in the
Bernstein polynomials basis are called Bézier curves and can be defined as follows:

P (u) =

n∑

i=0

Bn
i (u) · bi, bi ∈ Rd (2.19)

Bézier basis functions have the number of nice properties:

1. nonnegativity: Bn
i ≥ 0 for all i, n and a ≤ u ≤ b;

2. partition of unity:
∑n

i=0 Bn
i (u) = 1 for all a ≤ u ≤ b;

3. Bn
0 (a) = Bn

n(b) = 1;

4. Bn
i (u) attains exactly one maximum on the interval [a, b], that is, at u = a +

i
n
(b − a);

5. symmetry: for any n, the set of polynomials {Bn
i (u)} is symmetric with respect

to u = a + 1
2(b − a);

6. recursive definition: Bn
i (u) =

(
b−u
b−a

)

Bn−1
i (u) +

(
u−a
b−a

)

Bn−1
i−1 (u); (with Bn

i (u) ≡
0 if i < 0 or i > n);

7. derivatives: Bn
i
′(u) =

dBn
i (u)
du

= n(Bn−1
i−1 (u)−Bn−1

i (u)); (with Bn−1
−1 (u) ≡ Bn−1

n (u) ≡
0);

Later in this section for simplicity we assume that a = 0, b = 1, i.e., u ∈ [0, 1]. Figure
2.3 shows the quadratic Bernstein polynomials, which have the following equations:

B2
0(u) =

(
2

0

)

u0(1 − u)2−0 = (1 − u)2

B2
1(u) =

(
2

1

)

u1(1 − u)2 − 1 = 2u(1 − u)

B2
2(u) =

(
2

2

)

u2(1 − u)2−2 = u2 (2.20)

Figure 2.4 shows a curve defined in quadratic Bernstein polynomial basis using
control points p1 = (1, 1), p2 = (1, 3), p3 = (3, 3). Notice, that there is no general

2Sergêı N. Bernstein (1880-1968)
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Figure 2.3: Quadratic Bernstein
polynomials.

Figure 2.4: Curve defined in
quadratic Bernstein polynomials
basis using control points p1 =
(1, 1), p2 = (1, 3), p3 = (3, 3).

interpolation property for Bézier curves - they go through the first and the last control
points only.

Recursive definition of the Bernstein polynomial yields an efficient algorithm for
computing values of the Bernstein polynomials at fixed values of u:

Algorithm 2.1 (Computing values of Bernstein polynomials)

ALL BERNSTEIN(n, u, B)

{
/∗ Compute all n-th degree Bernstein polynomials. ∗/
/∗
Input: @n - polynomial degree; @u - parameter value;

Output: @B - array of Bernstein polynomials (B[0],...,B[n]).

∗/

B[0] = 1.0;

u1 = 1.0 - u;

for (j = 1; j <= n; j++)

{
saved = 0.0;

for (k = 0; k < j; k++)

{
temp = B[k];

B[k] = saved + u1 ∗ temp;

saved = u ∗ temp;

}
B[j] = saved;

10



2.3. POLYNOMIAL CURVES 11

}
}

Point evaluation procedure is straightforward and can be implemented using the fol-
lowing algorithm:

Algorithm 2.2 (Point evaluation on a Bézier curve)

POINT ON BEZIER CURVE(P, n, u, C)

{
/∗ Compute point on Bezier curve. ∗/
/∗
Input: @P - array of control points;

@n - polynomial degree; @u - parameter value;

Output: @C - evaluated point.

∗/

ALL BERNSTEIN(n, u, B);

C = 0.0;

for (k = 0; k <= n; k++)

C = C + B[k] ∗ P[k];

}

Both algorithms presented here are taken from [31]. Bézier curves have the number of
very useful properties for computer graphics and computer aided design:

1. convex hull property: the curves are contained in the convex hulls of their defining
control points {bi};

2. affine invariance: rotations, translations, and scalings are applied to the curve by
applying them to the control points;

3. variation diminishing property: no straight line (plane) intersects a curve more
times than it intersects the curve’s control polygon, i.e., a Bézier curve follows its
control polygon rather closely and does not wiggle more than its control polygon;

4. endpoints interpolation: P (0) = b0 and P (1) = bn;

5. the kth derivative at u = 0 (u = 1) depends on the first (last) k+1 control points;
in particular, P ′(0) and P ′(1) are parallel to b1 − b0 and bn − bn−1, respectively.

Bézier curve P (u) of degree n has one more very useful property - it is obtained as
the linear interpolation of two (n− 1) degree curves. This is demonstrated by a simple
example of a quadratic Bézier curve evaluation at parameter value u:

P (u) =
2∑

i=0

B2
i (u)bi = (1 − u)2b0 + 2u(1 − u)b1 + u2b2

= (1 − u)((1 − u)b0 + ub1
︸ ︷︷ ︸

linear

) + u((1 − u)b1 + ub2
︸ ︷︷ ︸

linear

) (2.21)

11



12 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

Thus, P (u) is obtained as the linear interpolation of two first-degree Bézier curves; in
particular, any point on P (u) of degree two is obtained by three linear interpolations.

Fixing u = u0 and denoting bi by b0,i we get a recursive algorithm for computing
the point P (u0) = bn,0(u0) on a nth degree Bézier curve:

bk,i(u0) = (1 − u0)bk−1,i(u0) + u0bk−1,i+1(u0), for

{

k = 1, . . . , n;

i = 0, . . . , n − k.
(2.22)

Equation (2.22) is called the de Casteljau Algorithm. It is a corner cutting process
which can be implemented using the following algorithm:

Algorithm 2.3 (The de Casteljau Algorithm)

DE CASTELJAU(P, n, u, C)

{
/∗ Compute point on Bezier curve. ∗/
/∗
Input: @P - array of control points;

@n - polynomial degree; @u - parameter value;

Output: @C - evaluated point.

∗/

for (i = 0; i <= n; i++)

Q[i] = P[i];

for (k = 1; k <= n; k++)

for (i = 0; i <= (n - k); i++)

Q[i] = (1.0 - u) ∗ Q[i] + u ∗ Q[i + 1];

C = Q[0];

}

The algorithm presented here is taken from [31]. This algorithm can be thought as
a subdivision technique by geometric construction to find a point on a curve corre-
sponding to a given value of the parameter u0. First, we find the point on each edge
of the control polygon that subdivides it proportionally according the value of u0 and
connect these points to form a set of line segments. We subdivide each of these new line
segments proportionally according to u0 and repeat the subdivision and line segment
construction until we can construct only one line segment. The point that proportion-
ally subdivides this line segment is the point on the curve corresponding to u0. In
general there are n cycles of subdivision.

Actually, this algorithm not only gives the point on the curve but also subdivides
the curve at the parameter value of u0 and constructs two control polygons which
correspond to each new curve segment. Using notation of Equation (2.22), we obtain
two control polygons (one for each part of the curve subdivided at the parameter value
u0) by the following equation:

B1 = {bi,0(u0)};
B2 = {bn−i,i(u0)}, for i = 0, . . . , n; (2.23)

If the initial curve is defined on the parameter interval [0, 1] then two new curves
obtained after subdivision at parameter value u0 ∈ [0, 1] are defined on the parameter

12



2.3. POLYNOMIAL CURVES 13

intervals [0, u0] and [u0, 1] correspondingly. An example of using de Casteljau algorithm
for curve subdivision and point evaluation is shown in Figure 2.5.
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Figure 2.5: Curve subdivision and point evaluation using de Casteljau algorithm.

Notice, that using de Casteljau algorithm it is easy to obtain first derivative at the
given point. As the consequence, the calculation of the normal vector at the given point
is straightforward. Using notation of Equation (2.22), derivative vector at the given
parameter value u0 is computed by the following equation:

~P ′(u0) = n · (~bn−1,1(u0) −~bn,0(u0)) = n · (~bn,0(u0) −~bn−1,0(u0)) (2.24)

Normal vector at the given parameter value can be obtained by normalization of rotated
by π

2 derivative vector. For 2D curves this normal vector is obtained as follows:

~N(u0) = (−1 · P ′
y(u0), P ′

x(u0)) for counterclockwise direction;

~N(u0) = (P ′
y(u0), −1 · P ′

x(u0)) for clockwise direction; (2.25)

Choosing the direction of rotation (clockwise or counterclockwise) depends on the par-
ticular realization. For 3D curves the normal vector is not unique. In particular, each

13



14 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

vector on the normal plane (plane which is perpendicular to the derivative vector) can
be chosen.

2.3.4 B-Spline Basis Functions & NUBS Curves

Curves consisting of just one polynomial segment are often inadequate, because a high
degree is required in order to represent curve through large number of control points.
For instance, (n−1) degrees are needed in order to represent a curve through n control
points. For large n this significantly increases the computation time for evaluation of
such curves. The solution would be to represent these curves by piecewise polynomial
curves, i.e., to represent curves by the number of joint segments with appropriate level of
continuity at the break points. This approach has one drawback - the level of continuity
depends on the coordinates of control points.

If we have two segments of quadratic Bézier curves with control points {b1
0, b

1
1, b

1
2}

and {b2
0, b

2
1, b

2
2} and we want to have the C(1) continuity at the break points b1

2 and b2
0,

then the coordinates of two last control point of the first segment depend on coordinates
of two first control point of the second segment. It is not convenient to manipulate with
such segments during computer modeling.

We want to represent a curve using piecewise polynomial functions which have local
support property - i.e., each of piecewise polynomial function is nonzero only on a
limited number of subintervals, not the entire domain. We also need curves defined
in the basis of these functions to have all nice properties of Bézier curves (see Section
2.3.3). Such functions exist and are called B-spline basis functions.

Let T = {t0, . . . , tm} be a nondecreasing sequence of real numbers, i.e., ti ≤ ti+1, i =
0, . . . ,m − 1. The ti are called knots, and T is the knot vector. The ith B-spline basis
function of p-degree (order p + 1), denoted by Np

i (u), is defined as

N0
i (u) =

{

1 if ti ≤ u < ti+1

0 otherwise

Np
i (u) =

u − ti
ti+p − ti

Np−1
i (u) +

ti+p+1 − u

ti+p+1 − ti+1
Np−1

i+1 (u) (2.26)

Notice, that the half-open interval [ti, ti+1) is called the ith knot span, and can have
zero length, since knots need not be distinct.

Figure 2.6 shows quadratic B-spline basis functions defined on the knot vector
T = {0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 5}.

B-spline basis functions have the number of important properties. For degree p and
a knot vector T = {t0, . . . , tm} they show:

1. local support property: Np
i (u) = 0 if u is outside the interval [ti, ti+p+1);

2. in any given knot span, [tj , tj+1), at most p+1 of the Np
i (u) are nonzero, namely

the functions Np
j−p(u), . . . , Np

j (u);

3. nonnegativity: Np
i (u) ≥ 0 for all i, p and u;

14
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Figure 2.6: The quadratic B-spline basis functions, T = {0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 5}.

4. partition of unity: for an arbitrary knot span, [ti, ti+1),
∑i

j=i−p Np
j (u) = 1 for

all u ∈ [ti, ti+1);

5. at a knot Np
i (u) is p − k times continuously differentiable, where k is the multi-

plicity of the knot. Hence, increasing degree increases continuity, and increasing
knot multiplicity decreases continuity;

6. Np
i (u) attains exactly one maximum value, except for the case p = 0.

7. derivatives: denoting N
(k)
i,p (u) as the kth derivative of Np

i (u) we have

N
(k)
i,p (u) = p

(

N
(k−1)
i,p−1 (u)

ui+p − ui
−

N
(k−1)
i+1,p−1(u)

ui+p+1 − ui+1

)

. (2.27)

Once the degree is fixed the knot vector T completely determines the functions Np
i (u).

There are several types of knot vectors which determine the shape of the curve. The
most used in geometric modeling type is called nonperiodic (or open) knot vector, which
has the form

T = {a, . . . , a
︸ ︷︷ ︸

p+1

, tp+1, . . . , tm−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

} (2.28)

that is, the first and the last knots have multiplicity p+1. For nonperiodic knot vectors
we have additional very important property of the basis functions:

• a knot vector of the form T = {0, . . . , 0
︸ ︷︷ ︸

p+1

, 1, . . . , 1
︸ ︷︷ ︸

p+1

} yields the Bernstein polynomials

of degree p. Hence, Bp
i (u) = Np

i (u) for all i ∈ [0, p], where p is degree.

15



16 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

The procedure of computing B-spline basis functions of degree p for a given u ∈ [ti, ti+1)
consists of two steps. First of all, we have to find the knot span index i for a given u.
It can be done using binary search procedure.

Algorithm 2.4 (Determining the knot span)

int FIND SPAN(m, p, u, T)

{
/∗ Determine the knot span index. ∗/
/∗
Input: @m - index of last knot; @p - degree;

@u - parameter value; @T - knot vector;

Return: the knot span index.

∗/

if (u == T[m - p])

return (m - p - 1);

int low = p;

int hight = m - p;

int mid = (low + hight) / 2;

while ((u < T[mid]) || (u >= T[mid + 1]))

{
if (u < T[mid])

hight = mid;

else
low = mid;

mid = (low + hight) / 2;

}
return mid;

}

On the second step we have to compute only basis functions Np
i−p(u), . . . , Np

i (u), be-
cause all other basis functions are zero.

Algorithm 2.5 (Computing nonzero B-spline basis functions)

B SPLINES(i, u, p, T, N)

{
/∗ Compute the nonvanishing B-spline basis functions. ∗/
/∗
Input: @i - index basis function; @u - parameter value;

@p - degree; @T - knot vector;

Output: @N - nonvanishing B-Spline basis functions of degree p;

∗/

N[0] = 1.0;

for (j = 1; j <= p; j++)

{
left[j] = u - T[i + 1 - j];

right[j] = T[i + j] - u;

saved = 0.0;

for (r = 0; r < j; r++)

{
temp = N[r] / (right[r + 1] + left[j - r]);

N[r] = saved + right[r + 1] ∗ temp;

temp = left[j - r] ∗ temp;

}
N[j]=saved;

}

16



2.3. POLYNOMIAL CURVES 17

}

Curves defined in the basis of the B-spline basis functions are called nonuniform B-
spline curves (NUBS curves). A pth-degree NUBS curve is represented as follows:

P (u) =

n∑

i=0

Np
i (u)pi a ≤ u ≤ b (2.29)

where the {pi} are the control points, and the {Np
i (u)} are the pth-degree B-spline func-

tions defined on the nonperiodic knot vector T = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

}.

In order to compute a point on a B-spline curve at a fixed u value one needs to multiply
the values of nonzero basis functions with the corresponding control points.

Algorithm 2.6 (Point evaluation on a B-spline curve)

BSPLINE CURVE POINT(m, p, T, P, u, C)

{
/∗ Compute point on NUBS curve. ∗/
/∗
Input: @m - index of last knot; @p - degree;

@T - knot vector; @P - point vector;

@u - parameter value;

Output: @C - computed point on B-spline curve;

∗/

span = FIND SPAN(m, p, u, T);

B SPLINES(span, u, p, T, N);

C = 0.0;

for (i = 0; i <= p; i++)

C = C + N[i] ∗ P[span - p + i];

}

All algorithms presented here are taken from [31]. Figure 2.7 shows a quadratic nonuni-
form B-spline curve defined on the knot vector T = {0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 5} using
control points p0 = (1, 3), p1 = (2, 1), p2 = (3, 3), p3 = (4, 1), p4 = (5, 3), p5 =
(6, 1), p6 = (7, 3), p7 = (8, 1).

Nonrational B-spline curves have the number of usefull properties:

1. endpoint interpolation: P (a) = p0 and P (b) = pn;

2. affine invariance: an affine transformation is applied to the curve by applying it
to the control points;

3. strong convex hull property: if u ∈ [ui, ui+1), p ≤ i ≤ m− p− 1, then P (u) is in
the convex hull of the control points pi−p, . . . , pi; as the consequence, the whole
curve is contained in the convex hull of its control polygon;

4. the degree, p, number of control points, n + 1, and number of knots, m + 1, are
related by m = n + p + 1;

17



18 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES
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Figure 2.7: Curve defined in quadratic B-spline polynomial basis, T = {0, 0, 0, 1, 2,
2, 3, 4, 5, 5, 5}.

5. local modification scheme: moving pi changes P (u) only in the interval [ui, ui+p+1);

6. the control polygon represents a piecewise linear approximation to the curve;

7. variation diminishing property: the curve does not oscillate about any line (plane)
more often than its control polygon oscillates about the line (plane);

8. if n = p and T={0, . . . , 0, 1, . . . , 1}, then P (u) is a Bézier curve.

2.4 Rational Curves

2.4.1 Introduction

As was mentioned in Section 2.3, polynomial curves have the number of very usefull
for geometric modeling purposes properties. But unfortunately not every curve can be
represented using linear combination of polynomials. Even such important for geomet-
ric modeling curves as circles, ellipses, hyperbolas can not be represented using any
polynomials. It is known from classical mathematics that all the conic sections can be
represented using rational functions, which are defined as the ratio of two polynomials

x(u) =
X(u)

W (u)
y(u) =

Y (u)

W (u)
z(u) =

Z(u)

W (u)
(2.30)

where X(u), Y (u), Z(u), and W (u) are polynomials, that is, each of the coordinate
functions has the same denominator. Bézier curves and NUBS curves have the corre-
sponding rational form which is discussed in the next sections.

18



2.4. RATIONAL CURVES 19

2.4.2 Rational Bézier Curves

Problem of representing conic sections can be solved if we adjust so called weight values
wi to each control point bi of the control polygon of Bézier curve. This leads us to the
definition of rational Bézier curve. Rational Bézier curve of nth degree is defined as
follows:

P (u) =

∑n
i=0 Bn

i (u)wibi
∑n

i=0 Bn
i (u)wi

i ∈ [a, b] (2.31)

The bi are the control points which form the control polygon, Bn
i (u) is the Bernstein

polynomials as defined in Section 2.3.3, and wi are weights. If we denote Rn
i (u) by the

following equation:

Rn
i (u) =

Bn
i (u)wi

∑n
i=0 Bn

i (u)wi

(2.32)

then we get another representation of rational Bézier curve

P (u) =
n∑

i=0

Rn
i (u)bi i ∈ [a, b] (2.33)

Rn
i (u) in this notation are the rational Bézier basis functions. These functions have all

properties of Bernstein polynomials which were defined in Section 2.3.3. Notice, that
if wi = 1 for all i, then Rn

i (u) = Bn
i (u) for all i, i.e., the Bn

i (u) are the special case of
the Rn

i (u). Rational Bézier curves also have all properties of polynomial Bézier curves
which were defined in Section 2.3.3. The only one drawback of rational Bézier curves is
the time consuming procedure of curve evaluation. The simple de Casteljau algorithm
can not be applied in order to evaluate such curves. Therefore, rational Bézier curves
in d-dimensional space are often represented as a polynomial Bézier curves in (d + 1)-
dimensional space using homogeneous coordinates. Lets consider a rational Bézier curve
in 3D. Each point of such curve have coordinates P = (x, y, z) in Cartesian space. P
can be written as Pw = (wx,wy,wz,w) = (X,Y,Z,W ) in 4D space, w 6= 0. Now P
is obtained from Pw by dividing all coordinates by the fourth coordinate, W . This
process is called mapping Pw from the origin to the hyperplane W = 1. This mapping,
denoted by H, is a perspective map with center at the origin

P = H{Pw} = H{(X,Y,Z,W )} =

{

( X
W

, Y
W

, Z
W

) if W 6= 0

direction (X,Y,Z) if W = 0

If for a given set of control points bi and weights wi we construct the weighted set
of control points bw

i = (wixi, wiyi, wizi, wi), then we can define the polynomial Bézier
curve in 4D space

Pw(u) =
n∑

i=0

Bn
i (u)bw

i (2.34)

Notice, that this curve can be easily evaluated using de Casteljau algorithm for subdi-
vision. If we apply the perspective map H to Pw(u), then we get the corresponding
rational Bézier curve in 3D

H{Pw(u)} = P (u) (2.35)

19



20 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

2.4.3 NURBS Curves

A pth-degree nonuniform rational B-spline curve (NURBS curve) is defined as follows:

P (u) =

∑n
i=0 Np

i (u)wipi
∑n

i=0 Np
i (u)wi

a ≤ u ≤ b (2.36)

where the {pi} are the control points which form a control polygon, the {wi} are the
weights, and the {Np

i (u)} are the pth-degree B-spline basis functions defined on the
nonperiodic knot vector T = {a, . . . , a

︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

}.

If we denote Rp
i (u) by the following equation:

Rp
i (u) =

Np
i (u)wi

∑n
i=0 Np

i (u)wi

(2.37)

then we get another representation of NURBS curve

P (u) =
n∑

i=0

Rn
i (u)pi a ≤ u ≤ b (2.38)

Rp
i (u) are the rational B-spline basis functions which have all properties of nonrational

B-spline basis functions defined in Section 2.3.4. Notice, that if wi = 1 for all i, then
Rp

i (u) = Np
i (u) for all i, i.e., the Np

i (u) are the special case of the Rp
i (u). NURBS

curves also have all properties of NUBS curves which were defined in Section 2.3.4.
Notice, that conic sections can be easily represented by NURBS curves.

As it was mentioned in Section 2.4.2, rational form of curves representation is not
convenient. Therefore, homogeneous coordinates are often used in order to represent
the NURBS curve in d-dimensional space as a NUBS curve in (d + 1)-dimensional
space. By this way all the algorithms for NUBS curve evaluation can be applied in
order to evaluate NURBS curve. If for a given set of control points pi and weights wi

we construct the weighted set of control points pw
i = (wixi, wiyi, wizi, wi), then we can

define the NUBS curve in 4D space as follows:

Pw(u) =

n∑

i=0

Np
i (u)pw

i (2.39)

If we apply the perspective map H to Pw(u), we get the corresponding NURBS curve
in 3D:

H{Pw(u)} = P (u) (2.40)

2.5 Rational Surfaces

2.5.1 Introduction

A surface is a vector-valued function of two parameters, u and v, and represents a
mapping of a region, R, of the uv plane into Euclidian three-dimensional space [31].

20



2.5. RATIONAL SURFACES 21

Many schemes of surface representation have been proposed (see [19]). They differ in
the coordinate functions used and the type of region R. One of the simplest and most
widely used method in geometric modeling applications is the tensor product scheme.

The tensor product method is a bidirectional curve scheme. It uses basis functions
and geometric coefficients. The basis functions are bivariate functions of u and v, which
are constructed as products of univariate basis functions. The geometric coefficients
are geometrically arranged in a bidirectional, n×m net. Tensor product surfaces have
the general form of representation given by the following equation:

S(u, v) = (x(u, v), y(u, v), z(u, v)) =

n∑

i=0

m∑

j=0

fi(u)gj(v)pi,j (2.41)

where pi,j = (xi,j , yi,j, zi,j), a ≤ u ≤ b, and c ≤ v ≤ d.
Two commonly used in geometric modeling tensor product surfaces are Bézier sur-

faces and NUBS surfaces which have excellent geometric properties, but unfortunately
can represent only small subset of polynomial surfaces. Therefore, the more general ra-
tional form if often used in computer aided design. Rational Bézier surfaces and NURBS
surfaces are not tensor product surfaces, but they can be represented by the central
projection of a four dimensional tensor product hypersurfaces into three-dimensional
space. Rational Bézier surfaces and NURBS surfaces are discussed in the next sections.

2.5.2 Rational Bézier Surfaces

Points on a rational Bézier surface are given by the following tensor product:

S(u, v) =

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,jbi,j

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,j

=
n∑

i=0

m∑

j=0

Ri,j(u, v)bi,j

where Ri,j(u, v) =
Bn

i (u)Bm
j (v)wi,j

∑n
r=0

∑m
s=0 Bn

i (u)Bm
j (v)wi,j

, a ≤ u ≤ b, c ≤ v ≤ d (2.42)

where Bn
i (u) and Bm

j (v) are the Bernstein basis functions in the u and v parametric
directions and bi,j are the control points in 3D which form the control mesh of the
surface. In order to simplify definition, rational Bézier surfaces are often represented
by the perspective projection of a four-dimensional polynomial Bézier surfaces (see
[30]).

S(u, v) = H{Sw(u, v)} where Sw(u, v) =

n∑

i=0

m∑

j=0

Bn
i (u)Bm

j (v)bw
i,j (2.43)

Figure 2.8 shows a special case of rational biquadratic (n = m = 2) Bézier surface
(wi,j = 1 for all i, j) together with its control mesh of control points

p0,0 = (1, 1, 1), p0,1 = (1, 1, 3), p0,2 = (3, 1, 3),
p1,0 = (1, 2, 1), p1,1 = (1, 2, 3), p1,2 = (3, 2, 3),
p2,0 = (1, 3, 1), p2,1 = (1, 3, 3), p2,2 = (3, 3, 3).
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22 CHAPTER 2. INTRODUCTION TO CURVES AND SURFACES

Figure 2.8: Special case of biquadratic rational Bézier surface (red) (wi,j = 1 for all
i, j) together with its control mesh (green).

The concept of homogeneous coordinates and perspective mapping was discussed in
Section 2.4.2. Rational Bézier surfaces have the number of excellent properties which
are mostly similar to the corresponding properties of rational Bézier curves:

1. S(u, v) is contained in the convex hull of its control mesh;

2. the surface is invariant under an affine transformation;

3. the surface interpolates the four corner control points;

4. the degree of the surface in each parametric direction is one less than the number
of control mesh vertices in that direction;

However, there is no known variation diminishing property for Bézier surfaces (see [32]).
Notice also, that Rij (u, v) ≥ 0 for all i, j, u, v and

∑n
i=0

∑m
j=0 Ri,j(u, v) = 1 for all u

and v.
The deCasteljau algorithm can be easily extended to compute points and derivatives

on a Bézier surface.

22



2.5. RATIONAL SURFACES 23

2.5.3 NURBS Surfaces

Rational B-spline surfaces (NURBS surfaces) are the standard for surface modeling in
much of computer graphics and computer aided design. Many of the typical surface
forms used in computer graphics and computer aided design, such as cylinders, spheres,
ellipsoids of revolution, as well as more complex fully sculptured surfaces, are easily
and accurately represented by NURBS surfaces. Technically, a NURBS surface is a
special case of a general rational B-spline surface that uses a particular form of knot
vector. For a NURBS surface, the knot vector has multiplicity of duplicate knot values
at the ends equal to the order of the corresponding basis function [34].

A Cartesian product B-spline surface in four-dimensional homogeneous coordinate
space of degree p in the u direction and degree q in the v direction is given by

Sw(u, v) =

n∑

i=0

m∑

j=0

Np
i (u)N q

j (v)pw
i,j a ≤ u ≤ b, c ≤ v ≤ d (2.44)

where {pw
i,j} are the four-dimensional homogeneous control vertices, and Np

i (u) and
N q

j (v) are the nonrational B-spline basis functions (see Section 2.3.4) defined on the
knot vectors

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

}

V = {c, . . . , c
︸ ︷︷ ︸

q+1

, vq+1, . . . , vs−q−1, d, . . . , d
︸ ︷︷ ︸

q+1

} (2.45)

where r = n + p + 1 and s = m + q + 1.
Projecting back into three-dimensional space by dividing through by the homoge-

neous coordinate gives the NURBS surface

S(u, v) = H{Sw(u, v)} =

∑n
i=0

∑m
j=0 Nn

i (u)Nm
j (v)wi,jpi,j

∑n
i=0

∑m
j=0 Nn

i (u)Nm
j (v)wi,j

=

n∑

i=0

m∑

j=0

Ri,j(u, v)pi,j

where Ri,j(u, v) =
Nn

i (u)Nm
j (v)wi,j

∑n
r=0

∑m
s=0 Nn

i (u)Nm
j (v)wi,j

, a ≤ u ≤ b, c ≤ v ≤ d (2.46)

Figure 2.9 shows a special case of biquadratic (p = q = 2) NURBS surface (wi,j = 1
for all i, j) together with its control mesh defined on the knot vectors U = {0, 0, 0, 1, 2,
2, 3, 4, 5, 5, 5} and V = {0, 0, 0, 1, 1, 1} using control points

p0,0 = (1, 1, 3), p0,1 = (2, 1, 1), p0,2 = (3, 1, 3), p0,3 = (4, 1, 1),
p0,4 = (5, 1, 3), p0,5 = (6, 1, 1), p0,6 = (7, 1, 3), p0,7 = (8, 1, 1),
p1,0 = (1, 2, 3), p1,1 = (2, 2, 1), p1,2 = (3, 2, 3), p1,3 = (4, 2, 1),
p1,4 = (5, 2, 3), p1,5 = (6, 2, 1), p1,6 = (7, 2, 3), p1,7 = (8, 2, 1),
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Figure 2.9: Special case of biquadratic NURBS surface (red) (wi,j = 1 for all
i, j) together with its control mesh (green) defined on the knot vectors U =
{0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 5}, V = {0, 0, 0, 1, 1, 1}.

p2,0 = (1, 3, 3), p2,1 = (2, 3, 1), p2,2 = (3, 3, 3), p2,3 = (4, 3, 1),
p2,4 = (5, 3, 3), p2,5 = (6, 3, 1), p2,6 = (7, 3, 3), p2,7 = (8, 3, 1).

NURBS surfaces have the following important geometric properties which are mostly
similar to the corresponding properties of rational B-spline curves:

1. corner point interpolation: S(a, c) = p0,0, S(b, c) = pn,0, S(a, d) = p0,m, S(b, d) =
pn,m;

2. affine invariance: an affine transformation is applied to the surface by applying
it to the control points;

3. strong convex hull property: assume wi,j > 0 for all i, j. If (u, v) ∈ [ui0 , ui0+1) ×
[vj0 , vj0+1), then S(u, v) is in the convex hull of the control points pi,j, i0 − p ≤
i ≤ i0 and j0 − q ≤ j ≤ j0; as the consequence, the whole surface is contained in
the convex hull of its control mesh;

4. local modification: if pi,j is moved, or wi,j is changed, it affects the surface shape
only in the rectangle [ui, ui+p+1) × [vj , vj+q+1);

5. differentiability: S(u, v) is p− k times differentiable with respect to u at a u knot
of multiplicity k, and q − k times differentiable with respect to v at a v knot of
multiplicity k;
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2.5. RATIONAL SURFACES 25

6. nonrational Bézier surfaces, rational Bézier surfaces, and nonrational B-spline
surfaces are special cases of NURBS surfaces.

Notice also, that Rij (u, v) ≥ 0 for all i, j, u, v and
∑n

i=0

∑m
j=0 Ri,j(u, v) = 1 for all

u ∈ [a, b] and v ∈ [c, d].
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Chapter 3
Basics of Ray Tracing

3.1 Introduction

Ray tracing is a technique for image synthesis: creating a 2D picture of a 3D world
[16]. A common goal of ray tracing is to give the viewer the impression of looking at a
photograph (or movie) of some 3D scene. In order to understand the principles of ray
tracing we need to understand how a camera records a physical scene onto film, since
this is the action we want to simulate. We also need to know how light can be simulated
and how intersection of the light with different scene objects can be computed. Since
scene can consist of millions of objects we also need to understand how one can create
different accelerated data structures in order to improve speed performance of the ray
tracing. The next sections gives the explanations of these basic ideas behind ray tracing.

3.2 Light Simulation

The models of light used in simulations try to capture the different behaviors of light
that arise from its dual nature (the light is a wave and a stream of particles at the same
time). There are three different models of lights used in simulations:

• quantum optics;

• wave model;

• geometric optics.

Quantum optics can explain behavior of light at the submicroscopic level. However, this
model is generally considered to be too detailed for the purposes of image generation
for typical computer graphics scenes and is not commonly used.

Wave model captures effects such as diffraction, interference, and polarization, that
arise when light interacts with objects of size comparable to the wavelength of light.
However, for purposes of the image generation in computer graphics, the wave nature
of light is also typically ignored.
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The simplest and most commonly used model of light in computer graphics is the
geometric optics model. In this model it is assumed, that the wavelength of light is
much smaller than the scale of the objects that the light interacts with. Such effects
as gravity, or magnetic fields are not taken into account.

The geometric optics assumes that light travels instantaneously through a medium
in rays originated at the light emitters (light sources). When light interacts with objects
it can be reflected, transmitted or absorbed depending on the physical properties of
the object at the hit point.

3.3 Virtual Camera and Virtual Screen

The simplest camera model which can be simulated is the pinhole camera, illustrated in
Figure 3.1. A flat piece of photographic film is placed at the back of a light-proof box.

Figure 3.1: The pinhole camera
model (adapted from [16]).

Figure 3.2: The modified pinhole
camera model as commonly used in
computer graphics (adapted from
[16]).

A pin is used to pierce a single hole in the front of the box, which is then covered with
a piece of opaque tape. When you wish to make a picture, you hold the camera steady
and remove the tape for a while. Light enters the pinhole and strike the film, causing
a chemical change in the emulsion. When you are done with the exposure you replace
the tape over the hole. Despite its simplicity, this pinhole camera is quite practical for
simulation in rendering software [16].

The classical computer graphics version of the pinhole camera moves the plane of
the film out in front of the pinhole, and renames the pinhole as the eye, as shown in
Figure 3.2. It is done for the sake of simulation convenience. The 3D volume that is
visible to the eye, and may thus show up on the screen, is called the viewing frustum.
The walls that form the frustum are called clipping planes. The plane of the screen is
called the image plane. The location of the eye itself is referred to as the eye position.
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3.4 Two Common Approaches in Ray Tracing

In Section 3.2 it has been argued that light is suppose to travel in rays during simulation
process. Therefore, in order to obtain the picture on the image plane we need to consider
all rays originated from light sources which hit the image plane (probably after some
interactions with scene objects). There are two common approaches for simulating such
process: forward ray tracing and backward ray tracing.

Forward ray tracing approach simulates light behavior in the natural way. All rays
are originated at the light source and interact with scene surfaces. Some of them can
intersect the image plane and make contribution to the pixel color at the point of
intersection. This process is shown in Figure 3.3. But there is a problem with such a

Figure 3.3: Forward ray tracing process (adapted from [16]).

direct simulation, and that is the amount of time it would take to produce an image.
Each light source in a scene can generate millions of rays (photons) every second. Many
of these rays hit objects that you would never see at all, even indirectly. Other rays
just pass right out of the scene. Moreover, if the image plane size is small with respect
to the size of the scene, the probability of hitting this image plane by a ray is small.
This process might take years just to make one dim picture.
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The key insight for computational efficiency is to reverse the problem, by following
the rays backwards insted of forwards. This leads to concept of backwards ray tracing.
In this approach we are following rays not forward, from the light source to objects
to the eye, but backward, from the eye to objects to the light source. This is critical
observation because it allows us to restrict our attention to rays that we know are useful
to our image - the ones that enter our eye.

Different techniques have been invented in order to compute realistic images using
backward ray tracing (path tracing). Some techniques use combinations of both ap-
proaches (bidirectional pathtracing, photon mapping). Their description is beyond the
scope of this Master Thesis. The interested reader can refer to [12, 38, 24, 11].

3.5 Ray-Object Intersections

As it has been shown in Section 3.4, rays are used in order to solve the problem of image
generation. The main problem arising here is how to compute the ray-object intersec-
tion. Solution of this problem depends on the mathematical objects representation in
the ray tracing application. There are basically three kinds of objects commonly used
in ray tracing applications, which have fast algorithms to compute intersection with a
ray. These are spheres (see [38]), axis aligned bounding boxes (see [47]) and triangles
(see [42]).

Spheres and axis aligned bounding boxes are usually used for constructing accelera-
tion data structure, whose meaning is explained in the next section. Triangles are used
as basic construction units of scene objects. Usually every object created in modeling
applications tessellated into triangles before passing to the ray tracing application. Dur-
ing such tessellation some information about the shape of the object can be destroyed
and the result image can be wrong.

Modeling applications often operate with NURBS surfaces which were discussed in
Chapter 2. Even though much research has been done in the field of finding good enough
curvature dependent and view dependent tessellation of NURBS surfaces (see [23, 14,
37]), performing direct ray-NURBS surface intersection test would give better result.
There are two problems arising here. First problem is the absence of deterministic
solutions of finding ray-NURBS surface intersection point - some numerical methods or
tricks should be applied in order to solve this problem. As the consequence, the second
problem is the time-consuming procedure of direct ray-NURBS surface intersection
test. The goal of this Master Thesis is to compare existing approaches of finding the
ray-NURBS surface intersection points, and improve them.

3.6 Acceleration Data Structures for Ray Tracing

Complex scenes consist of thousands of objects. In order to find the nearest ray-object
intersection the brute and force approach would be to test the ray against each object
in the scene and choose the nearest intersection from the found ones. Such approach
is time consuming and not practical. For complex shape objects applying ray-object’s
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bounding box intersection test first can slightly increase performance. But for a big
number of objects in the scene the total computation time is still slow.

In order to improve speed performance of ray tracing applications different accel-
eration spatial data structures are used. The commonly used techniques are uniform
grids, octrees, bounding volume hierarchy (BVH) and KD-trees. The reader interested
in acceleration spatial data structures can refer to [17, 10, 4, 40, 18]. Figures 3.4–3.7
show visualization of different acceleration spatial data structures.

Figure 3.4: The
visualization of
BVH (adapted
from [18]).

Figure 3.5: The
visualization of
Octree (adapted
from [18]).

Figure 3.6: The
visualization of
KD-Tree (adapted
from [18]).

Figure 3.7: The
visualization of
Uniform Grid
(adapted from
[18]).

The general idea of every acceleration spatial data structure is to avoid as many
unnecessary ray-object intersection tests as possible, by subdividing the whole scene
either hierarchically or uniformly into cells of appropriate form (mostly axis aligned
bounding boxes) and giving the simple and fast routine for data structure ray travers-
ing. Each cell of the spatial data structure maintains information about the contained
objects. If the given ray intersects a cell which contains objects, the ray-object inter-
section test is applied to each object inside this cell. The ideal case would be to test
the ray with the nearest intersected object only, which is almost impossible in practice.

For complex shape objects like NURBS surfaces (or Bézier surfaces) it is possible to
create acceleration object data structure. The idea is almost the same as for acceleration
spatial data structure and mostly used in order to find the parametric regions of interest
or the initial guess for numerical solvers. This idea is explained in Section 5.3 in more
details.
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Chapter 4
Ray Tracing Parametric Surfaces

4.1 Introduction

Ray tracing is one of the commonly used techniques in realistic image synthesis. In the
heart of each ray tracer lies the ray-environment intersection routine which is able to
test ray against every kind of object in the scene. Intersecting a ray with objects can
be time consuming, and ray tracing is generally considered expensive compared with
simpler methods.

The parametric method of surface representation is convenient for approximation
and design of curved surfaces. In particular, Bézier surfaces and NURBS surfaces are
extensively used in computer graphics and computer aided design. Unfortunately, most
of the algorithms for intersecting rays with parametric surfaces are expensive or have
problems in some special cases. Therefore, most of todays ray tracing applications
tessellate parametric surfaces into triangles during the preprocessing step of image
generation. Such approach significantly increases computation speed, but can compute
wrong images (if tessellation was not good enough) and requires additional memory
for storage of generated triangles. Therefore, the problem of finding fast and robust
algorithms for ray tracing parametric surfaces is still opened research issue.

In Section 4.2 the history of solving ray-parametric surfaces intersection problem
is discussed. In Sections 4.3 and 4.4 two commonly used approaches (Bézier clipping
approach and Newton’s iteration approach) which lie in the heart of the most practical
methods, are explained in more details.

In the remaining of this chapter we assume for simplicity that rational Bézier curves
are defined on the interval [0, 1] and rational Bézier surfaces are defined on the domain
[0, 1] × [0, 1]. Extension of presented algorithms for general intervals and domains is
straightforward.
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4.2 A Bit of History

In far 1980 Whitted [46] described a method for finding ray-parametric surface inter-
section point using recursive surface subdivision. If the boundary volume of a patch is
pierced by the ray, the patch is subdivided and bounding volumes are produced for each
subpatch. The subdivision process is repeated until either no bounding volumes are
intersected (the ray is assumed to not intersect the patch), or the intersected bounding
volume is smaller then a predetermined minimum (the ray is assumed to intersect the
bounded subpatch). Whitted used spheres as bounding volumes. This approach is not
practical because it requires much memory for storing bounding volumes and is time
consuming because many boundary volumes have to be tested against each ray.

In the same year Rubbin and Whitted [36] used basically the same method with
bounding boxes instead of spheres. Some object space coherence proposed to be utilized,
but even this modification did not significantly speed up the computation speed.

In 1982 Kajiya [21] used ideas from algebraic geometry to obtain a numerical pro-
cedure for intersecting a ray with a bicubic surface patch. His method is robust, not
requiring preliminary subdivisions to satisfy some a priori approximation. It proceeds
more quickly for patches of lower degree. The algorithm is simply structured and
does not require memory overhead. But unfortunately the algorithm has many dis-
advantages. It does not significantly utilize coherence. The algorithm computes all
intersections of the given ray with a surface patch, even if just closest intersection need
to be found. And finally the algorithm performs enormous amounts of floating point
operations. Kajiya estimates that 6000 floating point operations may have to be per-
formed in order to find all of the intersections between one ray and one bicubic patch.
In the modern ray tracing applications global illumination algorithms are commonly
used, and million of rays can be tested against one parametric patch. It makes the
proposed algorithm unpractical.

In 1985 Toth [43] proposed an algorithm for finding ray-surface intersections us-
ing multivariate Newton iteration. Toth proposed a method for identifying regions of
parameter space in which the Newton iteration is guaranteed to converge to a unique
solution by utilizing results from interval analysis. Identification of such regions also
provides a good initial guess, and thus Newton iteration converges quickly. The method
can be applied to any kind of surface for which routines are provided that compute
bounds for the surface and partial derivatives over arbitrary regions of parameter space.
The proposed method is robust and can deal correctly with all possible cases. It does
not require any preprocessing of the surface and can favor the intersection closest to
the origin. Less effort is spent on simpler surfaces, than on the more complicated ones.
The efficiency of the method depends strongly upon the efficiency of the computations
of bounds for both the surface and its partial derivatives. These computations may
be performed several times during a single ray-surface intersection calculation. As the
consequence Toth’s method also consumes considerable amounts of computing time.

In 1986 Joy and Bhetanabholta [20] proposed to use the quasi-Newton methods
for finding local minima of a function representing the squared distance of a ray from
points on a parametric surface. Proposed algorithm can find intersections of a ray with
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arbitrary parametric surfaces and also gives a routine for calculation of first derivatives
at each point on the surface. The algorithm utilizes the ray coherence in order to
speed up the convergence of the quasi-Newton method. Values calculated on the final
iteration for the last ray to hit the surface are stored in order to be reused for the next
ray potentially intersecting this surface as the initial guess for quasi-Newton iteration.
However, the proposed algorithm has problems concerning coherence utilization. Naive
approach may cause convergence to incorrect solutions. Object space subdivision and
certain classifications have to be applied in order to avoid this problem. But fine
subdivision leads to excessive memory requirements.

In the same year Sweeney and Bartels [41] described a method for ray tracing
general B-spline surfaces using refinement of the control mesh for each surface. On
top of each refined mesh, a tree of tightly fitting, nested bounding boxes is constructed
from the bottom up. The procedural method of Kajiya [22] for ray tracing fractals is
then applied. This locates points of intersection near enough and gives the initial guess
for Newton’s method. Despite the appealing simplicity of this method there are several
disadvantages, which make it unusable in real-life rendering systems. The method uses
some global parameters whose incorrect settings can significantly increase execution
time. The memory requirements of this method are large. Finally, the mathematical
validity of proposed method is not proved.

Two improvements on the method reported by Sweeney and Bartels [41] have been
proposed in 1987 by Levner [25] and Yang [49]. Levner [25] proposed to create a mesh
of points which lie on the surface instead of refining the control vertex mesh. The
method was originally developed for ray tracing B-spline surfaces, but has been applied
successfully to bicubic surfaces in general. The advantage of this approach is that point
evaluations on the surface allows treatment of general parametric surfaces.

Yang [49] proposed to create an individual octree for each surface by subdividing
its bounding box. Thus, the tree of bounding boxes is constructed top-down rather
than bottom-up. Since surface points are used rather than control points, bounding is
tighter.

In 1990 Lischinski and Gonczarowski [26] proposed the algorithm which combines
numerical techniques described by Toth [43] and subdivision techniques described by
Rubbin and Whitted [36]. Their algorithm allows the utilization of ray coherence and
reduces the average ray-parametric surface intersection time compared to both base
methods. Uniform spatial subdivision is used in order to reduce the number of objects
to be tested against each ray. The Krawczyk’s operator is used in order to ensure the
convergence of Newton method to the correct solution. Information computed while
intersecting each ray is cached, and can later be reused for other rays. To prevent cache
overflow, the LRU (least recently used) replacement strategy is used. Some techniques
to handle reflected, refracted, and shadow rays in a more efficient manner is described.

In the same year Nishita [29] described a method for solving ray-rational Bézier
surface intersection problem which he called Bézier clipping. This method can be cate-
gorized as partly a subdivision based algorithm and partly a numerical method. After
representing a ray as the intersection of two planes the problem of finding intersec-
tion can be projected from 4D to 2D space. This reduces the number of arithmetic
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operations necessary to perform de Casteljau subdivision by 50% on each subdivision
iteration. Some hacks to prevent numerical round-off have been proposed. Nishita [29]
noted that the idea of Bézier clipping could be successfully applied in order to solve the
problem of determining trimming regions, which are specified by the rational Bézier
curve equations in parameter space. Later in 1996 Campanga and Slusallek [9] described
problems of Bézier clipping algorithm and proposed efficient schemes for avoiding them.
In 2000 Wang, Shih, and Chang [45] suggested a modification to the original Bézier
clipping algorithm. They showed how one can exploit ray coherence in order to find
the nearest intersection in the case of multiple intersections more efficiently.

One more method for ray tracing parametric surfaces was proposed in 1990 by Biard
[7]. The algorithm he described is based on algebraic implicitization and inversion.
Each surface is associated with numerical matrices in such a way that operations to be
done on surfaces can be translated into operations on the corresponding matrices and
treated by numerical matrix techniques. These matrices are an implicit version of a
given parametric surface and contain all algebraic and topological information about
it. This method is robust but too slow and not practical.

In 1992 Enger [13] proposed a new technique for finding the intersection of a ray
with a parametric surface. He assumed that computer-generated pictures often contain
relatively large uniformly colored sections so that it is unsatisfactory to perform similar
calculations for all pixels on the screen eventhough many adjacent pictures could be
eventually colored together. A method for obtaining these common regions with only
a few arithmetic operations was proposed. The method extends real numbers to real
intervals. Interval analysis methods are used to calculate the set of intersection points
of ray clusters with objects in the scene. Unfortunately the assumption of the fact that
”adjacent pictures could be eventually colored together” is not hold for high dynamic
range realistic images which were obtained using global illumination algorithms. More-
over, the proposed algorithm works rather for ray casting then for ray tracing, and
therefore is not practical.

In 1993 Barth and Stürzlinger [6] proposed an algorithm for efficient ray tracing of
Bézier and B-spline surfaces. The described method proposes to construct a hierarchical
data structure (binary tree) for each surface. Parallelepipeds are chosen as enclosures
(elements of the binary tree), their orientation and the angles between their edges are
chosen in such a way that they enclose the respective part of the surface as tightly as
possible. The leaves of the tree contain small, almost plane parts of the surface. To
intersect a ray with the surface, one needs to test whether the ray hits the parallelepiped
of the root. If it does, we test both subtrees and so on until we reach the leaves. If the
ray misses a parallelepiped of appropriate subtree, the whole subtree is pruned from
father consideration. Finally the search reaches all leaves whose enclosures are hit by
the ray. Each leaf contains the approximating parallelogram, which is used to calculate
the starting point (initial guess) for the Newton’s iteration algorithm. Some problems
which can be caused by wrong initial guess values have been noted with proposals how
one can avoid them.

In 1994 Fournier and Buchanan [15] demonstrated how one can use Chebyshev poly-
nomials to speed up the computation of the intersections between rays and parametric
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curves and surfaces. They exploit the minmax property of Chebyshev polynomials in
order to obtain tight bounding boxes for enclosed surface patches. Conversion matrices
from power basis and Bézier basis into Chebyshev basis as well as subdivision matrices
were derived for cubic curves and surfaces. Later in 1996 Campanga and Slusallek [9]
proposed some extensions of Chebyshev boxing in order to improve the general perfor-
mance. Extending Chebyshev boxing to arbitrary degree is straightforward, but the
basis conversion and subdivisions are more time consuming for higher degree. Cheby-
shev representation strategy has one drawback - there is no way for computing tight
bounding volumes based on Chebyshev representation of a rational patch.

In the same year Brath, Lieger, and Schindler [5] showed how the general parametric
surface can be adaptively subdivided into small parts in order to construct a binary tree
of bounding volumes which are calculated using interval arithmetic for each of these
surface patches. From linear approximations and intervals for the partial derivatives
it is possible to construct parallelepipeds that adapt the origination and shape of the
surface parts well and form tight enclosures. The proposed algorithm is similar to
that used with Bézier and B-spline surfaces (see [6]), where the bounding volumes are
derived from the convex hull property.

In 1996 Qin, Gong, and Tong [33] used polynomial extrapolation in order to accel-
erate the convergence of the Newton’s method. Ray is defined to be the intersection
of two planes. Parallelepipeds are used to enclose the respective patches as tightly as
possible.

In the same year Campanga and Slusallek [9] compared Bézier clipping and Cheby-
shev boxing methods for solving ray-Bézier surface intersection problem. Some modifi-
cations of the original methods were proposed. One also was shown how these methods
can be combined in order to achieve the correct result more quickly than using each
method separately.

In 2000 Martin, Cohen, Fish, and Shirley [27] proposed a method for ray tracing
trimmed NURBS surfaces. The used refinement of the knot vectors to generate the
bounding volume hierarchy, which results in a lower tree depth than other subdivision-
based methods. The idea was to refine the knot vectors in such a way, that after the
transformation of a NURBS surfaces into Bézier patches, these patches are flat enough
and yield tighter bounding boxes. Bézier patches are not stored in memory and used
only for bounding box hierarchy construction. Two schemes for knot vectors refinement
have been proposed: an adaptive subdivision and a curvature-based refinement. The
advantage of this approach is that the flat patches yield a good initial guess for Newton’s
method. Schemes for NURBS surface evaluation based on the knot vectors refinement
have been proposed. Unfortunately the NURBS surfaces have the slower algorithms for
surface evaluation than Bézier surfaces. Newton’s method need to evaluate the point
and two partail derivatives on each iteration in order to have quadratic convergence.
It is always better to subdivide the initial NURBS surface into Bézier patches during
the preprocessing step. This requires the additional amount of memory for storing all
patches separately, but it can significantly speed up the computations.

In the same year Wand, Chung, and Chang [45] proposed an efficient algorithm for
enhancing the performance of both numerical and subdivision methods. In order to
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improve the Barth and Stürzlinger’s algorithm (see [6]), they proposed to use regular
grids instead of binary trees in order to find initial guess for Newton’s method. The
proposed modification also allows to utilize the ray coherence in an efficient way. One
was also suggested how the ray coherence can be utilized in order to obtain the nearest
intersection using Bézier clipping algorithm (see [29]) efficiently if multiple intersections
exist.

In 2001 Wand, Shin, and Chang [44] proposed an algorithm which combines Bézier
clipping algorithm and Newton’s iteration algorithm in an efficient way which utilizes
ray coherence. First intersection point of the given ray with a Bézier surface is found
using Bézier clipping algorithm. All subsequent intersection points along the same
scanline are found using Newton’s iteration algorithm. Last found intersection point is
used as the initial guess for the subsequent one. The obstruction detecting technique is
then used to verify whether an intersection point found by using Newton’s method is
the closest one.When Newton’s method fails to achieve convergence, Bézier clipping is
used as the substitution to find the intersection points.

4.3 Bézier Clipping Approach

4.3.1 Introduction

Bézier clipping approach was first introduced by Nishita [29]. Proposed algorithm was
referred to as new algorithm for computing the points at which a ray intersects a rational
Bézier surface patch, and also an algorithm for determining if an intersection point lies
within a region trimmed by piecewise Bézier curves.

Although Nishita’s algorithm was proposed to solve problems of finding ray-rational
Bézier patch intersection and determining trimming regions in parametric space of the
rational Bézier surfaces, it can be also applied to solve general ray-rational Bézier curve
in 2D intersection problem.

In order to give good explanation of Bézier clipping approach, the more simple ray-
rational Bézier curve in 2D intersection is explained first in Section 4.3.2. In Section
4.3.3 Bézier clipping approach is applied in order to solve more complex ray-rational
Bézier surface intersection problem. In Section 4.3.4 detected problems of Bézier clip-
ping algorithm is discussed with the proposals how to solve them. Some improvement
ideas which are completely new is described in Section 4.3.5.

4.3.2 Ray-rational Bézier Curve in 2D Intersection Problem

Figure 4.1 shows an example of rational Bézier curve P (u) and the ray R(t) which
intersects the curve. Rational Bézier curve is defined by its parametric equation (see
Section 2.4.2):

P (u) =

∑n
i=0 piwiB

n
i (u)

∑n
i=0 wiBn

i (u)
, u ∈ [0, 1] (4.1)

Ray is also defined by its parametric equation using ray origin ~o and direction ~d:
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Figure 4.1: Bézier curve-ray inter-
section (adapted from [29]).

Figure 4.2: Explicit Bézier curve
(adapted from [29]).

R(t) = ~o + t~d (4.2)

First we define line L which contains the ray R by the implicit equation via given point
~o on the line and given normal vector ~n = (a, b):

ax + by + (−aox − boy)
︸ ︷︷ ︸

c

= 0 (4.3)

Normal vector ~n of the line L can be obtained by the rotation of the ray direction
vector ~d by π

2 in the counterclockwise direction:

(a, b) = (−dy, dx) (4.4)

Using Equation (4.4) coefficient c of the Equation (4.3) can be computed

c = dyox − dxoy (4.5)

The intersection of the line L and the rational Bézier curve P (u) can be found by
substituting Equation (4.1) into Equation (4.3):

d(u) =
n∑

i=0

diB
n
i (u) = 0, di = wi(apxi

+ bpyi
+ c) (4.6)

Note that d(u) = 0 for all values of u at which P (u) intersects L. Also, di is the
weighted distance from corresponding control point pi to L as shown in Figure 4.1.
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Since
∑n

i=0
i
n
Bn

i (u) ≡ u[(1 − u) + u]n ≡ u and the function d(u) in Equation (4.6)
is a polynomial in Bernstein form, it can be represented as an ”explicit” Bézier curve
as follows:

D(u) =

(
u

d(u)

)

=

n∑

i=0

(
i/n

di

)

Bn
i (u) (4.7)

Notice that horizontal coordinate of any point D(u) is in fact equal to the parameter
value u. Figure 4.2 shows the ”explicit” Bézier curve D(u) which corresponds to the
Bézier curve P (u) in Figure 4.1.

Since D(u) crosses the u-axis at the same u values at which P (u) intersects L, we
can apply the convex hull property of Bézier curves (see Section 2.3.3) to identify ranges
of u for which P (u) does not intersect L.

If convex hull of the D(u) does not intersect the u axis then initial rational Bézier
curve is not intersected by the line L (by the ray R(t)). Referring again to Figure 4.2,
the convex hull of the D(u) intersects the u axis at the points u = umin and u = umax.
This means that the initial Bézier curve does not intersect the line L in the parameter
ranges 0 ≤ u ≤ umin

⋃
umax ≤ u ≤ 1. Bézier clipping is completed by subdividing

P (u) into three segments using de Casteljau algorithm (see Section 2.3.3). Segment 1
is defined over 0 ≤ u ≤ umin, segment 2 over umin ≤ u ≤ umax, and segment 3 over
umax ≤ u ≤ 1.

From this point we consider the second segment as the initial rational Bézier patch
defined over the interval [umin, vmin] and repeat the algorithm until either of two cases
occurs:

• convex hull of the D(u) does not intersect the u axis, and no intersection reported;

• parameter interval [umin, umax] is small enough (related to ε) and intersection is
assumed to exist at uint = umin+umax

2 ;

The only problem occurs if the initial ray R(t) intersects the given rational Bézier
curve more than once. In this case the proposed scheme can go into the infinite loop.
In order to prevent it, we subdivide the ”explicit” Bézier curve in half and repeat the
proposed algorithm recursively if on the current iteration Bézier clip fails to reduce
the parameter interval width by at least 20%, i.e., if (umax − umin) > 0.8. So, the
Bézier clipping approach can find multiple intersections if they exist. One can store
intersections in the sorted list to be able to obtain the nearest one quickly. Notice
that this approach gives just approximate value of intersection which is represented
by the value uint in parameter u domain of the initial rational Bézier curve. In ray
tracing applications we are often interested in the corresponding value t of the ray in
Equation (4.2). Notice that this value is the distance from the ray origin to the point
of intersection on the curve. We can obtain this value by projection of vector from ray
origin to the evaluated intersection point on the curve to the ray direction vector:

t = ~d · (~P (uint) − ~o) (4.8)

Notice that the value of t can be less than 0. In this case ray is assumed to not intersect
the curve (the curve in behind the ray).
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4.3.3 Ray-rational Bézier Surface Intersection Problem

Bézier clipping algorithm for finding ray-rational Bézier curve in 2D intersection can
be successfully applied in order to solve more general problem of finding ray-rational
Bézier surface intersection. Bézier clipping concept is used to iteratively clip away
regions of the surface which do not intersect the ray.

The most costly single operation in any subdivision based ray-Bézier surface inter-
section algorithm is de Casteljau subdivision. Typically, subdivision is performed in R3

for non-rational surfaces, and in R4 for rational surfaces. Woodward [48] shows how the
problem can be projected to R2. This means that the number of arithmetic operations
to subdivide a surface is reduced by 33% and 50% for nonrational and rational surfaces
respectively.

Suppose that we have a rational Bézier surface S(u, v) (see Section 2.5.2) given by
equation

S(u, v) =

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,jpi,j

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,j

, 0 ≤ u, v ≤ 1 (4.9)

and a ray R(t) defined by its parametric equation

R(t) = ~o + t~d (4.10)

where ~o is the ray origin and ~d is the ray direction. In order to find intersection of the
given surface with the given ray, we have to change ray representation. We want to
represent the ray as an intersection of two planes as shown in Figure 4.3. Although we

x

y

P20
P21

P22

P02
P12

P11P00
P01

P10

Figure 4.3: Bézier clipping: ray as
an intersection of two planes.

Figure 4.4: Bézier clipping: pro-
jected surface P (u, v).

can choose the planes arbitrary it is better to consider two orthogonal planes further
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denoted by P1 and P2. In order to define these planes, we need to define their normal
vectors first. Suppose, ~n1 = (a1, b1, c1) and ~n2 = (a2, b2, c2) are normal vectors of the
first and the second planes respectively. Then we can choose normal vectors that are
perpendicular to ray direction ~q:

~n1 = (a1, b1, c1) = (−dy, dx, 0)

~n2 = (a2, b2, c2) = (0,−dz , dy) (4.11)

Now we can represent ray as an intersection of two planes given by their implicit
equations

P1 : a1x + b1y + c1z + (−a1ox − b1oy − c1oz)
︸ ︷︷ ︸

d1

= 0

P2 : a2x + b2y + c2z + (−a2ox − b2oy − c2oz)
︸ ︷︷ ︸

d2

= 0 (4.12)

The intersection of plane k and the surface can be represented by substituting Equation
(4.9) into Equation (4.12) and clearing the denominator

dk(u, v) =

n∑

i=0

m∑

j=0

Bn
i (u)Bm

j (v)dk
ij = 0

where dk
ij = wij(akpxij

+ bkpyij
+ ckpzij

+ dk), k = [1, 2] (4.13)

Note that S(u, v) lies on the plane k iff dk(u, v) = 0. Note also that dk
ij is the weighted

distance from control point pij to plane k. We can now project the surface to a two
dimensional (x, y) coordinate system by taking the projected point coordinates to be

Pij = (xij , yij) = (d1
ij , d

2
ij) (4.14)

The projected surface is defined by equation

P (u, v) =

n∑

i=0

m∑

j=0

Bn
i (u)Bm

j (v)Pij (4.15)

In this projection, plane P1 becomes the y axis, plane P2 becomes the x axis, and the
ray projects to the coordinate system origin. Figure 4.4 shows an example of projected
surface P (u, v). The ray-patch intersection problem now becomes one of finding

{(u, v)|P (u, v) = 0; 0 ≤ u, v ≤ 1} (4.16)

This means that de Casteljau algorithm for surface subdivision can be performed now
in 2D for projected Bézier surface P (u, v) rather than in 4D for rational Bézier surface
S(u, v). Bézier clipping algorithm now can be easily extended in order to find ray-
rational Bézier surface intersection.
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First we need to determine two vectors Lu and Lv in the (x, y) space. This two
vectors are alternatively used on each iteration of Bézier clipping algorithm. The best
choice for these vectors is

~Lu =
1

2

[

(~P20 − ~P00) + (~P22 − ~P02)
]

~Lv =
1

2

[

(~P02 − ~P00) + (~P22 − ~P20)
]

(4.17)

i.e., the direction of Lu should be approximately perpendicular to u direction, and
the direction of Lv should be approximately perpendicular to v direction as shown in
Figure 4.5. In this case the Bézier clipping algorithm converges to the right solution
more quickly.

If some corner points of the projected surface are coincide then Equation (4.17) can
compute zero length vectors. We can avoid this problem in the following way:

• if just one of two vectors is of zero length, it is recomputed as rotated by 90
degrees second vector;

• if both vectors are of zero length, the bounding box of the projected surface patch
is used in order to compute these vectors (we can use either diagonals or edges
for this purpose);

Now, in order to solve equation P (u, v) = 0, we need to alternate the directions Lu and
Lv and iterate on the following steps:

Step 1. We need to determine the signed distances dij of the projected control
points (xij , yij) to Lu (Lv). This gives a Bézier representation of the ”distance-to Lu”
(”distance-to Lv”) function that can be used to determine the distance of an arbitrary
point to Lu (Lv)

d(u, v) =

n∑

i=0

m∑

j=0

dijB
n
i (u)Bm

j (v) (4.18)

The function d(u, v) can be represented, in an (u, v, d) coordinate system, as an explicit
surface, whose control points Dij = (uij , vij , d(uij , vij)) are evenly spaced in u and v:
uij = i

n
, vij = j

m
. A point on such surface has coordinates

D(u, v) =

n∑

i=0

m∑

j=0

DijB
n
i (u)Bm

j (v) (4.19)

Step 2. On the Lu-iteration we plot the values
(

i
n
, dij

)
in a 2D (u, d) diagram. On

the Lv-iteration we plot the values
(

j
m

, dij

)

in a 2D (v, d) diagram. This is shown in

Figure 4.6.
Step 3. Now we determine the convex hull of the points in this diagram and

intersect it with the u-axis (v-axis). This gives an interval [umin, umax] ([vmin, vmax]).
We conclude that d(u, v) 6= 0, and therefore P (u, v) 6= 0, for u < umin and u > umax

(v < vmin and v > vmax).
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Figure 4.5: Bézier clipping: deter-
mining Lu and Lv.

Figure 4.6: Bézier clipping: step in
u-dimension.

Step 4. The de Casteljau subdivision algorithm is applied to clip away those re-
gions, leaving the 2D patch which is corresponded to the interval [umin, umax] ([vmin, vmax]).
This is referred to as the Bézier clipping in u (v).

Nishita [29] proposed to precompute the lines Lu and Lv just once before iteration
process. But for some surfaces (especially for ones of complex shape) recomputation of
Lu and Lv on each iteration using the obtaining clipped patch can give the better speed
performance. Moreover, if Lu and Lv are computed just once before iterations and not
recomputed on each iteration, Bézier clipping algorithm can experience convergence
problems. Therefore, it is recommended to always recompute the lines Lu and Lv on
each iteration of Bézier clipping algorithm.

Note that [umin, umax] and [vmin, vmax] are the regions of interest in the domain
[0, 1] in u and v directions respectively, i.e., are normalized. In order to calculate
the corresponding regions in the domain of the patch, we need to apply the following
transformation

umin,d = umin,o + (umax,o − umin,o) · umin

umax,d = umin,o + (umax,o − umin,o) · umax (4.20)

where [umin,o, umax,o] is the parameter domain of the patch in u direction and [umin,d, umax,d]
is the region of interest in the domain of the patch. The v parameter direction is handled
analogously.

Now we need to switch directions (Lu → Lv → Lu → · · · ) and repeat steps 1 to 4.
The parameter values of the intersection point (if intersection exists) must be within
the box [umin,d, umax,d]× [vmin,d, vmax,d]. Figure 4.7 shows the projected surface P (u, v)
after two clipping iterations. The algorithm terminates in two cases:
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1. the convex hull on the corresponding iteration does not intersect with the axis –
this indicates that there is no intersection of S(u, v) with the ray R(t);

2. the size of the box in each dimension is smaller than a threshold value ε – in this
case the intersection [uint, vint] is assumed to exist in the center of the box:

uint =
1

2
(umin,d + umax,d)

vint =
1

2
(vmin,d + vmax,d) (4.21)

Note that if the size of the box in one dimension is smaller than ε, this dimension
is not considered any more, i.e., only the second direction is proceeded iteratively
without alternation. Note also that in this case it is not absolutely necessary to
apply Bézier clipping in this direction, and the second direction may be considered
either with the same patch segment or with the clipped one.

In order to obtain the distance t from the ray origin to the point of intersection, one
needs to apply the following projection

t = ~d · (~S(uint, vint) − ~o) (4.22)

If the value of t is less than 0, the intersection is assumed to exist behind the ray, i.e.,
the ray is assumed to not intersect the surface.

If there are multiple intersections, Bézier clipping does not converge to a single
value. Therefore, if a Bézier clip fails to reduce the parameter interval width by at
least 20%, we have to split the projected surface P (u, v) in half in the dimension of
current iteration. The case of multiple intersections is illustrated in Figure 4.8. First,
Bézier clipping in u discards regions 1. In attempting to clip in v, it turns out that
vmax − vmin > 0.8. Therefore, the remaining domain is subdivided in half at v = 0.5.
Two subpatches can be proceed iteratively. The regions 2 of the first subpatch are
discarded after one more iteration in u domain. Without further subdivision we can
compute the intersection which lies between regions 3 within tolerance. Two more
iterations are needed to proceed the second subpatch. After clipping away the regions
4 and 5 one more intersection which lies between regions 6 within tolerance can be
computed without further subdivision.

4.3.4 Detected Problems and Proposed Modifications

Sometimes the original Bézier clipping algorithm can converge to wrong intersections.
Campanga and Slusallek [9] reported this problem and proposed necessary modifica-
tions of the original algorithm in order to make it robust. Figure 4.9 shows an example
of such wrong intersections, which are visible as dots near the object. Figure 4.10 shows
a closeup view of the wrong intersections. These wrong intersections are not caused by
numerical problems, but are a principal problem of the original algorithm, which can
be demonstrated by a simple example. Suppose that after projecting the initial surface
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Figure 4.7: Bézier clipping: after
two clipping iterations.

Figure 4.8: Bézier clipping: multi-
ple intersections example.

control mesh in 2D, we obtain the projected control mesh which is shown in Figure
4.11. One of the control points lies slightly above the line Lu and the others, below.

On the first iteration we consider the u parameter domain. Side view of the distances
of the control points to the line Lu together with their convex hull and the region of
interest (indicated by two closely spaced dotted lines) is shown in Figure 4.12. Note
that the region of interest is within tolerance ε. This means that the value uint of
probable intersection is computed, and we have to consider iteratively the v parameter
domain only. This can be done in two ways:

1. with preliminary Bézier clipping in u parameter direction;

2. without preliminary Bézier clipping in u parameter direction.

The first case is shown in Figure 4.13. The corresponding side view of the distances of
the control points to the line Lv together with their convex hull and region of interest
is shown in Figure 4.14. The second case is shown in Figure 4.15. The corresponding
side view of the distances of the control points to the line Lv together with their convex
hull and region of interest is shown in Figure 4.16. In both cases, the region of interest
for v parameter direction is within tolerance ε, too, and the value of intersection vint

can be computed in v parameter direction. Thus, the intersection point is assumed
to have coordinates (uint, vint) in parameter domain of the surface. However, neither
the original surface nor its control polyhedron contain the origin and thus are not

intersected by the ray. Therefore, a wrong intersection is reported.

The reason for the wrong intersections is in the fact, that both lines Lu and Lv

may intersect the projected surface itself, but these intersections need not contain the

46
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Figure 4.9: Mango with wrongly
reported intersection (adapted
from [9]).

Figure 4.10: Closeup view of
the wrongly reported interection
(adapted from [9]).

origin, and thus there is no intersection of the ray with the surface.

Campanga and Slusallek [9] proposed to solve the problem of wrong intersections
by requiring in addition to the stopping criterion ε, that the line Lu separates the
two boundary curves in v direction of the patch. This can be checked by testing
that all distances d00, . . . , d0m (see Section 4.3.3) have the same sign s0, all distances
dn0, . . . , dnm have the same sign sn, and that s0 6= sn. This ensures that the current
patch has an intersection with Lu for every valid v parameter. In an obviously similar
manner, we can apply this modification for v parameter direction. As the result, only
real intersections of the ray with the surface are reported.

Another solution of the problem is to appropriately enlarge the region of interest,
which may force additional iterations. Nishita [29] proposes the following correction of
the region of interest before transforming it into the parameter domain of the patch,
in order to avoid numerical round-off:

u′
min = 0.99 · umin

u′
max = 0.99 · umax + 0.01 (4.23)

with [umin, umax] being the region of interest in the domain [0, 1]. The v parameter
direction is handled analogously.

Campanga and Slusallek [9] mentioned that enlarging the region of interest is a
sensitive point of the algorithm affecting the performance. They propose the following
subtle modification of the region of interest already in the domain of the patch instead
of the Nishita’s [29] modification:

u′
min,d = umin,d − (umin,d − umin,o) · f · ε

u′
max,d = umax,d + (umax,o − umax,d) · f · ε (4.24)
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Figure 4.11: The control mesh of the
surface after reduction (adapted from
[9]).

Figure 4.12: Side view of the dis-
tances to the line Lu (adapted from
[9]).
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Figure 4.13: Case 1: the control
mesh of the patch after the first itera-
tion (adapted from [9]).

Figure 4.14: Case 1: side view of the
distances to the line Lv (adapted from
[9]).
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Figure 4.15: Case 2: the control
mesh of the patch after the first itera-
tion (adapted from [9]).

Figure 4.16: Case 2: side view of the
distances to the line Lv (adapted from
[9])
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where [umin,o, umax,o] is the parameter domain for the u direction of the patch segment
just considered, and [umin,d, umax,d] is the region of interest in this domain. This
modification makes the enlarging of the region of interest depending on the size of the
parameter domain and ε value. This leads to smaller enlargements, and it significantly
reduces the number of iterations. Modifications for the v parameter direction are
analogous.

4.3.5 Multiple Equivalent Intersections Problem

The Bézier clipping algorithm has a problem which was not detected by any of re-
searchers so far. It is a problem of multiple the same intersections: sometimes the
algorithm can result in thousands of intersections which are in fact equivalent. Let us
consider an example in Figure 4.17.

Figure 4.17: Ray-sphere patch intersection.

Suppose that a ray is being tested against a sphere patch which is represented by a
rational Bézier patch and has the following mesh of control points and weights:

p00 = (0, 0, 0), p01 = (0, 0, 1), p02 = (0, 1, 1); w00 = 1, w01 =

√
2

2
, w02 = 1;

p10 = (0, 0, 0), p11 = (1, 0, 1), p12 = (1, 1, 1); w10 = 1, w11 =

√
2

2
, w12 = 1;

p20 = (0, 0, 0), p21 = (1, 0, 0), p22 = (1, 1, 0); w20 = 1, w21 =

√
2

2
, w22 = 1; (4.25)

The ray is represented as an intersection of two planes which is also shown in Figure
4.17. After projecting this problem in 2D we obtain a projection which is shown
in Figure 4.18. Suppose that the initial rational Bézier surface was defined on the
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Figure 4.18: The control mesh of the
sphere patch after reduction.

Figure 4.19: Side view of the dis-
tances to the line Lu.
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Figure 4.21: Subdivision of the re-
duced sphere patch by half in v direc-
tion.
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Figure 4.22: Side view of the dis-
tances to the line Lv for the first sub-
patch.

Figure 4.23: Side view of the dis-
tances to the line Lv for the second
subpatch.
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interval [0, 1] × [0, 1]. Then after determining distances from control points to line Lu

we obtain the convex hull which is shown in Figure 4.19. Apparently the area of interest
(intersection with the u-axis) is less than ε. This means that we stop to consider the u
direction and continue to consider iteratively the v direction only. If we now subdivide
the initial Bézier patch in u direction at uint = ε, we obtain a patch that is too small
(actually it is almost one point). So, it would be good idea to stop the algorithm at this
point and report the intersection because the obtained patch is already negligible with
respect to the scene 3D space. But the algorithm does not have any stopping criteria
like this and the next iteration is executed.

Notice that next iterations causes the multiple the same intersections problem.
Suppose for simplicity that after obtaining uint = ε we do not subdivide the initial
Bézier patch and consider the same one in the v direction. If we subdivide the patch, the
the scale of figures is much smaller, but the problem is not resolved. After constructing
the convex hull in v direction (see Figure 4.20) we see, that the size of the v axis span
is almost equal to 1. So, the multiple intersections are supposed to exist and the initial
patch is subdivided by half in v direction as shown in Figure 4.21. One subpatch is
now defined on the v interval

[
0, 1

2

]
and the another one is defined on the v interval

[
1
2 , 1
]

After the subdivision each half of the patch is considered separately in v direction
only. But Figures 4.22 and 4.23 show that after the convex hulls construction the
problem remains. So, the both halves of the patch are assumed to have multiple
intersections too and are subdivided once more by half in v direction. This gives us
four subpatches to be considered which are defined on v intervals

[
0, 1

4

]
,
[

1
4 , 1

2

]
,
[
1
2 , 3

4

]
,

and
[

3
4 , 1
]
.

This process of subdivision continues many times until the size of the parametric v
direction of each subpatch is too small (less than ε). As the result many intersections
are reported which are actually the same intersection.

This shows that after termination of the Bézier algorithm one needs to filter the
obtained intersection list and delete those intersections which duplicate another ones.
In order to do it efficiently, we can store the intersections in a sorted list (which is sorted
by distances to the ray origin). When a new intersection is found, we locate a position
in the sorted list where it has to be inserted and compare the new intersection with
two (at most) neighbor intersections. If the difference in distances is less than ε value,
the new intersection is rejected. If the difference in distances is greater then ε value,
the new intersection is inserted in the sorted list. This approach can be implemented
using the following framework:

Algorithm 4.1 (Processing a new intersection)

void PROCESS INTS(ints list, ints)

{
/∗ Process new intersection ∗/
/∗
Input: @ints list - the list of all found intersections;

@ints - a new intersection to be processed;

Output: modified (is necessary) @ints list;

∗/
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pos = ints list.Locate(ints);

if (pos > 0)

if (abs(ints - ints list[pos - 1]) < EPSILON)

return;
if (pos < ints list.size())

if (abs(ints - ints list[pos]) < EPSILON)

return;
ints list.Insert(pos, ints);

}

We have found out that the problem of multiple equivalent intersections occurs often
in practice and has been experienced on many different scene models. Notice that
depending on ε value one may compute thousands of unnecessary intersections. It can
significantly increase the computation time.

Although the problem of unnecessary multiple intersections can not be avoided in
general, using termination criteria which depends on 3D coordinates of a patch can
highly decrease the number of such intersections.

4.3.6 Efficient Choice for Termination Criteria ε

Using 3D space related ε value for termination criteria can optimize the performance
of the algorithm and speed up the computations. This idea is explained briefly by a
simple example in Figure 4.24. Suppose we are given two objects: object A and object

object A

virtual camera

ray

ray

virtual screen

pixel 15

pixel 00

pixel 01

pixel 02

pixel 03

pixel 04

pixel 05
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pixel 07
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object B

virtual camera

object’s bounding box

object
ray

pixel 02
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virtual screen

FOV
t

≈ ε
α

Figure 4.24: Difference in necessary
precision of computations.

Figure 4.25: An efficient ε computa-
tion.

B of the same shape (represented by Bézier patches). It is easy to see that the object A
covers just one pixel on the screen (namely pixel 06), and object B covers three pixels
on the screen (namely pixel 09 – pixel 11). It is obviously that the intersection of a
ray with the object A can be calculated with three times less precision than the same
intersection with the object B. Concerning the object A we can take any intersection
because all of them are projected on the same pixel of the virtual screen.

This shows that in order to optimize the performance of the Bézier clipping algo-
rithm, the termination criteria ε should be dependent on the 3D coordinates of objects,
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position of camera, and the size of screen pixels. The termination of the algorithm de-
pendent on threshold value in parametric domain can overestimate or underestimate
the precision.

An efficient strategy of determining 3D space related ε value as the termination
criteria is explained in more details. Figure 4.25 shows the idea of the efficient ε
computation. Suppose t is the distance from the ray origin to the point of intersection
with the object’s bounding box, FOV is the camera field of view parameter, and x
and y are the image width and height respectively. Let us compute approximate angle
between the ray which goes through the center of a pixel and the ray which goes through
the pixel’s border by equation

α = FOV/(2 · max{x, y}) (4.26)

Then the ε value can be computed by equation

ε = k · t · sin α (4.27)

Notice that the coefficient sin α can be precomputed on the preprocessing step. The
coefficient k is used to control the exact accuracy and can be set to value from the
interval (0, 1]. When antialiasing techniques are not involved then this value can be set
to 0.5. If antialiasing techniques are involved, the value of k should be set relatively
to the number of rays which are shooted through one pixel. One can use the following
equation:

k = 0.5/n, (4.28)

where n is the number of rays which are shooted through one pixel.

This approach works well if we consider non rational Bézier patches (ones which
have all control points weights equal to 1). Termination criteria ε for Bézier clipping
algorithm must correspond to projected patch where all distances are weighted by
control points weight values. If we do not take these values into account, we can again
oversestimate or underestimate the precision. To avoid this problem we must multiply
the epsilon value calculated by Equation (4.27) by the factor of the minimal weight
value of the control mesh of a patch:

ε = k · t · sin α · min{wij} (4.29)

The proposed approach make the ε value more intelligent and optimizes the termination
criteria of Bézier clipping algorithm. The problem of multiple the same intersections
still exists but the number of such intersections is significantly reduced.

The value of ε can be also chosen efficiently when solving a ray-rational Bézier
curve in 2D intersection problem. Actually we are not interested in general form of this
problem within the contex of this Master Thesis. We are interested in the intersections
with curves which determine trimming regions in parametric space of NURBS surfaces
because the determination of the trimming regions is based on the ray-curve intersection
tests.
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Figure 4.26: Trimming region in pa-
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Figure 4.27: Trimmed NURBS sur-
face.

Figure 4.26 shows the parametric domain of a NURBS surface with a trimming
region, which is defined by a rational Bézier curve. Figure 4.27 shows the corresponding
trimmed NURBS surface. If Bézier clipping is applied in order to solve ray-rational
Bézier curve intersection problem, the threshold value ε can be calculated using the
following equation

ε = 10−k · min{(umax − umin), (vmax − vmin)} · min{wi}, (4.30)

where k is the precision parameter. During experiments we have found out that k = 4
is a good choice. Minimum weight value of the control polygon points of a curve is
taken into account to avoid problems of wrong precision which were mentioned above.
Problem of determining trimmed regions in parametric space of NURBS surfaces are
explained in more details in Section 5.5.

The original Bézier clipping algorithm must be improved in order to work properly
with the efficient 3D space oriented ε value. In order to improve the original Bézier
clipping algorithm, we have to make the following modifications:

• on each iteration after constructing a convex hull we determine minimum and
maximum distances dmin and dmax from the convex hull points to lines Lu or Lv

depending on the current iteration as shown in Figure 4.28.

• we stop to consider the corresponding direction if the size of the distance span in
this direction is less than ε value:

(dmax − dmin) < ε (4.31)
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Figure 4.29: Final test.

In this case we do not perform the Bézier clipping and consider the second di-
rection with the same subpatch (or report the intersection if the second direction
consideration has already been stopped). Otherwise we perform the Bézier clip-
ping and continue the algorithm execution.

• notice that problems detected by Campanga and Slusallek [9] which were de-
scribed in Section 4.3.5 can not happen with the modified version of Bézier clip-
ping algorithm, because the algorithm is terminated depending on the size of the
distance span for both lines Lu and Lv. Notice also that these lines are not or-
thogonal and can be of any directions. For some patches they can even coincide.
It may cause reporting of wrong intersections because obtained subpatch can lie
far away from the point of origin. In order to prevent this problem, we need to
execute a final test: if ε criteria is held for both u and v directions, we construct
the bounding box of the current subpatch and test whether the point of origin
(0, 0) is inside this bounding box. If it is not inside, we report no intersections.
This idea is shown in Figure 4.29. It can also happen that the origin point is in-
side the bounding box, but the initial ray misses the enclosed patch. Even in this
case we report intersection because the size of the box is negligible (with respect
to ε value). Notice that the final test can be performed without any arithmetic
operations and is therefore fast.

Analogous modifications can be easily applied in order to solve ray-rational Bézier curve
in 2D intersection problem. Notice that the termination criteria for curves must be
slightly different. One can not just compare the distance span and ε because it might
give wrong intersections when long curve has too small distance span with respect to
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the ray. One can use the diagonal of the bounding box of the current curve segment
instead of the distance span. If the diagonal is smaller that ε, the termination criteria
holds.

All described improvements make the Bézier clipping algorithm one of the most
practical, fast, and robust algorithms for solving ray-rational Bézier surface intersection
problem. Interested reader can refer for more details to [29, 9].

4.4 Newton’s Iteration Approach

4.4.1 Introduction

If the exact value of the root of a function can not be computed deterministically then
Newton’s iteration method is one of the best choices to find the approximate value of
the root. More general application of this method is solving a system of equations.
Newton’s iteration method has quadratic convergence and can be easily apply to the
problem of finding ray-surface intersection.

In Section 4.4.2 basic ideas behind the method are explained. In Section 4.4.3
Newton’s iteration method is applied in order to solve ray-rational Bézier curve in
2D intersection problem. Section 4.4.4 shows how one can apply Newton’s iteration
method in order to solve more general ray-rational Bézier surface intersection problem.

4.4.2 Basics Behind

Suppose we have explicitly given function y = f(x) and we are looking for the roots of
such function, i.e., we are solving the equation f(x) = 0. If it is a quadratic polynomial
function y = ax2 + bx + c, roots are easy to determine using the quadratic formula. In
fact, it turns out that there are formulas similar to the quadratic formula for finding
roots of third and fourth degree polynomials, however, these formulas are rarely used in
practice because they are quite complicated. For fifth and higher degree polynomials
a general formula for finding roots of equations does not exist. Some methods of
approximating roots of equations have to be applied to such functions.

Let us consider a real-valued function f(x) of a single variable whose roots can not
be found deterministically. Let us assume for simplicity that this function has only one
root x∗ and we have some guess about the interval where this root can be. Parallel-
chord method consists of taking so called guess value x0 from the guess interval and
replacing f(x) at this value by some linear function:

l(x) = α(x − x0) + f(x0) (4.32)

Notice that l(x) is a line which goes through the point (x0, f(x0)) and has the slope
α 6= 0. Now, if we solve the equation l(x) = 0, we obtain a value x1 at which the line
intersects the x-axis:

x1 = x0 −
1

α
f(x0) (4.33)
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If the slope α is chosen appropriately, the obtained value x1 is closer to the root than
the initial x0 value. It turns out that the optimal choice for the slope α is the first
derivative of f(x), i.e., f ′(x). Actually this means that l(x) is the tangent-line of f(x)
at the point x0. The value x1 in this case is equal to

x1 = x0 − f ′(x0)
−1f(x0) (4.34)

If we now repeat this process iteratively, then we obtain the general equation

xi = xi−1 − f ′(x0)
−1f(xi−1) (4.35)
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Figure 4.30: Parallel-chord
method.

Figure 4.31: Newton’s iteration
method.

The idea of this method is shown in Figure 4.30. If each new xi is closer to the root
than the value on the previous iteration xi−1 (if |f(xi)| < |f(xi−1|), this process leads
to the approximate value of the root xk on the kth iteration, which lies near the real
root x∗ within tolerance ε.

|f(xk)| < ε < |f(xk−1)| < · · · < |f(x1)| < |f(x0)| (4.36)

Notice that this process has linear convergence and guaranties to find the approximate
value of the root only if the initial guess x0 was good enough.

If the slope of the line l(x) is changed accordingly to the value of xi on each iteration,
the above process has quadratic convergence and the general equation takes the form

xi = xi−1 − f ′(xi−1)
−1f(xi−1) (4.37)

This process is shown in Figure 4.31 and is known as Newton’s iteration method. New-
ton’s iteration method is easy to extend to n-dimensional function F : Rn → Rn.
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Suppose we are given a set Y = F (~x) of n equations in n variables x1, . . . , xn, written
explicitly as

Y ≡








f1(~x)
f2(~x)

...
fn(~x)








(4.38)

or more explicitly as 





y1 = f1(x1, . . . , xn)
...

yn = fn(x1, . . . , xn)

(4.39)

Then the solution of this system of equations can be approximately computed using
Newton’s iteration method

~xi = ~xi−1 − J(~xi−1)
−1F (~xi−1) (4.40)

where J is the Jacobian matrix which is defined by

J(~x) =






∂y1

∂x1
· · · ∂y1

∂xn

...
. . .

...
∂yn

∂x1
· · · ∂yn

∂xn




 (4.41)

This process also has quadratic convergence and guaranties to find the approximate
solution to the system of equations only if the initial guess vector ~x0 is good enough.
Notice that on each iteration of the Equation (4.40) we need to find and invert the
Jacobian matrix. Matrix inversion is relatively costly operation. If linear convergence
is enough for solving the problem, the Equation (4.40) can be rewritten by analogy
with real-valued functions:

~xi = ~xi−1 − J(~x0)
−1F (~xi−1) (4.42)

Now the Jacobian matrix has to be computed and inverted only on the first iteration.
On all other iterations it is treated as constant.

4.4.3 Ray-rational Bézier Curve in 2D Intersection Problem

The basic idea of solving ray-rational Bézier curve intersection problem is the same as
was discussed in Section 4.3.2. Rational Bézier curve is defined by equation

P (u) =

∑n
i=0 piwiB

n
i (u)

∑n
i=0 wiBn

i (u)
, u ∈ [0, 1] (4.43)

The ray R(t) is represented by its origin ~o and direction ~d

R(t) = ~o + t~d (4.44)
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We define a line which contains the ray by its implicit equation.

ax + by + c = 0 (4.45)

Coefficients a, b, and c can be easily obtained from the ray origin and direction (see
Section 4.3.2). In order to find intersection of the given ray R(t) with the given rational
Bézier curve P (u), one needs to substitute Equation (4.43) into Equation (4.45). After
the substitution our problem of finding ray-curve intersection becomes one to solve the
following equation

d(u) =

n∑

i=0

diB
n
i (u) = 0, di = wi(apxi

+ bpyi
+ c) (4.46)

Assume that we have some initial guess value u0 which is somewhere in the vicinity
of the root. Then we can easily apply Newton’s iteration method in order to find
approximate value of the root

ui = ui−1 − d′(ui−1)
−1d(ui−1) (4.47)

Note that we assume that Equation (4.46) has just one root, i.e., the ray R(t) has just
one intersection with the given curve P (u).

First derivative d′(u) can be computed using de Casteljau algorithm for subdivi-
sion (see Section 2.3.3). Although d(u) in Equation (4.46) is not a curve (because
control coefficients di are real number and not vectors), de Casteljau algorithm for
subdivision can be easily applied for evaluation of this function. After performing de
Casteljau subdivision at the parameter value ui−1 we obtain two sets of control coeffi-
cients {d1

0, d
1
1, d

1
2, . . . , d

1
n−1, d

1
n =} and {d2

0, d
2
1, d

2
2, . . . , d

2
n−1, d

2
n =} where d1

n = d2
0. The

first derivative can be then computed using equation

d′(ui−1) = n · (d1
n − d1

n−1) = n · (d2
1 − d2

0) (4.48)

Equation (4.47) has the quadratic convergence. This means that only few iterations
are already enough in order to find the approximate value of the root whose deviation
from the real root is within tolerance ε.

In order to find intersection of the given ray R(t) with the given rational Bézier
curve P (u), we apply Equation (4.47) iteratively starting with the initial guess value
u0 until one of four cases occurs:

1. |d(ui)| > |d(ui−1)|, i.e., the new estimate ui takes us farther from the root than
the previous one – in this case no intersection reported (square distances can be
compared in order to avoid costly square root operations);

2. ui /∈ [0, 1], i.e., current iteration takes us outside the parameter interval of the
curve – notes are given below;

3. i > max, where max is the maximum number of iterations allowed – in this case
no intersection reported;
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4. |d(ui)| < ε – in this case intersection is assumed to exist at uint = ui;

Martin, Cohen, Fish and Shirley [27] propose to report no intersection if the iteration
takes us outside the parametric domain (in the 2nd case). But although we suppose
the curve to be defined on the interval [0, 1], mathematically it also exists outside
this interval. It can happen that on the ith iteration the value of ui is outside the
interval, but intersection exists and is found in few more iterations. Therefore, if the
1st condition does not hold and ui /∈ [0, 1], we must just execute the next iteration.
Notice that obtained intersection can lie outside the parameter interval [0, 1], i.e., so
called virtual intersection can be reported. So, one needs always check whether the
obtained intersection lies inside the parameter interval of the Bézier curve.

Maximum number of iterations max can be set around 7, but the average number
of iterations needed to produce convergence is 2 or 3 in practice.

During the iteration process it can happen that we get d′(ui−1) < ε on the ith

iteration. It can occur if a segment of the curve is parallel to the ray or if the curve is
not regular. In this case we perform a jittered perturbation of the parametric evaluation
point1 (see [27])

ui = ui−1 + 0.1 · (drand48() · (u0 − ui−1)) (4.49)

and initiate the next iteration. Notice that if d′(u0) < ε, we go into an infinite loop, so
one needs to take the initial guess value u0 carefully.

In order to obtain the distance t from the ray origin to the point of intersection, we
apply the following projection

t = ~d · (~P (uint) − ~o) (4.50)

If the value of t is less than 0, the intersection is assumed to exist behind the ray, i.e.,
the ray is assumed to not intersect the curve.

The proposed algorithm uses ε value which is related to 2D coordinates of a curve
as the termination criteria. In Section 4.3.5 it is shown how ε can be chosen efficiently
when solving a problem of determining trimming regions in parametric space of NURBS
surfaces.

Note that our solution of the ray-rational Bézier curve intersection problem is based
on two assumptions. The first assumption is that there are no multiple intersections
of the ray with the curve. The second assumption is that the initial guess value u0 is
taken carefully from the vicinity of the real root. In practice these two assumptions
are not hold and one have to involve a technique to handle multiple intersections and
to obtain good enough initial guess value u0.

If multiple intersections exist then Newton’s iteration method may converge to any
of them depending on the initial guess value u0. It can also happen that it does not
converge. In practical ray tracing applications we are mostly interested in the nearest
intersection point, because all other intersection points can be computed by moving
the origin of the ray to the obtained nearest intersection point and repeating nearest
intersection search again. This means that everything what we need is the initial guess

1C++ function drand48() returns uniformly distributed random real number from the interval [0, 1)
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value u0 which guarantees the convergence of the Newton’s iteration method to the
nearest intersection point. The algorithm for determining such initial guess value is
proposed in Section 5.4.3 for more complex ray-rational Bézier surface intersection
problem. Its application in 2D is straightforward.

4.4.4 Ray-rational Bézier Surface Intersection Problem

The basic idea of solving ray-rational Bézier surface intersection problem is the same
as was discussed in Section 4.4.3. Rational Bézier surface is defined by equation

S(u, v) =

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,jpi,j

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,j

, 0 ≤ u, v ≤ 1 (4.51)

and a ray R(t) defined by its parametric equation

R(t) = ~o + t~d (4.52)

where ~o is the ray origin and ~d is the ray direction. We change the representation of
the ray and represent it as an intersection of two planes given by equations

a1x + b1y + c1z + d1 = 0

a2x + b2y + c2z + d2 = 0 (4.53)

where coefficients a1, b1, c1, d1, a2, b2, c2, and d2 can be computed using the ray origin
~o and the ray direction ~d vectors. After substituting Equation (4.51) into Equation
(4.53) the intersection of the planes with the surface can be represented by equation

dk(u, v) =
n∑

i=0

m∑

j=0

Bn
i (u)Bm

j (v)dk
ij = 0

where dk
ij = wij(akpxij

+ bkpyij
+ ckpzij

), k = [1, 2] (4.54)

Now the problem of finding the intersection of the ray with the surface becomes one of
finding the roots of the function D(u, v): R2 → R2:

D(u, v) =

[
d1(u, v)
d2(u, v)

]

(4.55)

Assume that we have some initial guess vector (u0, v0) which is somewhere in the
vicinity of the root. Multidimensional version of Newton’s iteration method can be
then applied in order to find approximate solution of this problem:

(
ui

vi

)

=

(
ui−1

vi−1

)

− J(ui−1, vi−1)
−1D(ui−1, vi−1) (4.56)

where Jacobian matrix J is defined by

J =

[
J11 J12

J21 J22

]

=

[
∂d1

∂u
∂d1

∂v
∂d2

∂u
∂d2

∂v

]

(4.57)
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The inverse of the Jacobian matrix is calculated using a result from linear algebra

J−1 =
adj(J)

det(J)
(4.58)

The adjoint adj(J) is equal to the transpose of the cofactor matrix

adj(J) = CT =

[
C11 C12

C21 C22

]T

(4.59)

where Cij = (−1)i+j · det(Ĵij) and Ĵij is the submatrix of J which remains when the
ith row and jth column are removed. Finally we have

adj(J) =

[
J22 −J12

−J21 J11

]

, det(J) = J11J22 − J21J12 (4.60)

Notice that point D(u, v) and two partial derivatives Du(u, v) and Dv(u, v) are eval-
uated simultaneously using de Casteljau algorithm for subdivision. Notice also that
inversion of 2 × 2 Jacobian matrix can be done by perturbation of its elements with
only few additional multiplications and additions operations. It makes a single New-
ton’s iteration fast.

In order to find intersection of the given ray R(t) with the given rational Bézier
surface S(u, v), we apply Equation (4.56) iteratively starting with the initial guess
vector (u0, v0) until one of the four cases occurs:

1. ‖D(ui, vi)‖ > ‖D(ui−1, vi−1)‖, i.e., the new estimate (ui, vi) takes us farther from
the root than the previous one – in this case no intersection reported (square
distances can be compared in order to avoid costly square root operations);

2. ui /∈ [0, 1] or vi /∈ [0, 1], i.e., current iteration takes us outside the parametric
domain of the surface – notes are given below;

3. i > max, where max is the maximum number of iterations allowed – in this case
no intersection reported;

4. ‖D(ui, vi)‖ < ε – in this case intersection is assumed to exist at
(
uint

vint

)
=
(
ui

vi

)
;

Martin, Cohen, Fish, and Shirley [27] propose to report no intersection if ui /∈ [0, 1] or
vi /∈ [0, 1] (in the 2nd case). But although we suppose the surface to be defined on the
domain [0, 1] × [0, 1], mathematically it exists outside this domain too. It can happen
that on the ith iteration the value of ui or vi is outside the domain but intersection
exists and may be found in few more iterations. Therefore, if the first condition does
not hold and ui /∈ [0, 1] or vi /∈ [0, 1], we have to execute the next iteration. Notice that
obtained intersection can lie outside the parameter domain interval [0, 1] × [0, 1], i.e.,
so called virtual intersection can be reported. So, one needs always check whether the
obtained intersection lies inside the parametric domain of the rational Bézier surface.

The problem which arises here is in the following fact. Sometimes virtual intersec-
tion (which lies outside the parameter domain of the surface) can be reported, although
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the real intersection is not virtual (lies inside the parameter domain). It happens often
near the borders of the surface and can cause cracks along the borders of adjacent sur-
face patches. This problem happens because the termination criteria ε can terminate
the algorithm execution earlier than it converges to the real root tightly. This problem
can be solved as follows. If the obtained intersection lies outside the parameter interval
of the surface, we mirror it in order to place it inside the parameter domain:

umir =

{

−ui if ui < 0

2 − ui if ui > 1

v direction is handled analogously. Now, if ‖D(umir, vmir)‖ < ε, we report (umir, vmir)
as the found intersection. Otherwise the obtained intersection is really the virtual one.

In order to avoid costly square root operation when determining ‖D(ui, vi)‖ =
√

D2
x(ui, vi) + D2

y(ui, vi), we can compute approximate length instead of exact one

using equation:
‖D(ui, vi)‖ ≈ |Dx(ui, vi)| + |Dy(ui, vi)| (4.61)

Computed in such a way approximate length is always greater than the exact one,
therefore the precision of calculation is not affected.

Maximum number of iterations max can be set around 7, but the average number
of iterations needed to produce convergence is 2 or 3 in practice.

During the iteration process it can happen that we get |det(J)| < ε on the ith itera-
tion. It can occur if either the surface is not regular (Su(ui−1, vi−1)×Sv(ui−1, vi−1) = 0)
or the ray is parallel to a silhouette ray at the point S(ui−1, vi−1). In this case we per-
form a jittered perturbation of the parametric evaluation point2 (see [27])

(
ui

vi

)

=

(
ui−1

vi−1

)

− 0.1 ·
(

drand48() · (u0 − ui−1)

drand48() · (v0 − vi−1)

)

(4.62)

and initiate the next iteration. Notice that if |det(J)| < ε on the first iteration, we go
into an infinite loop, so one needs to take the initial guess vector (u0, v0) carefully.

In order to obtain the distance t from the ray origin to the point of intersection, we
apply the following projection

t = ~d · (~S(uint, vint) − ~o) (4.63)

If the value of t if less than 0, the intersection is assumed to exist behind the ray, i.e.,
the ray is assumed to not intersect the surface.

The proposed algorithm uses ε value which is related to a surface 3D coordinates
as the termination criteria. In Section 4.3.5 it is shown how ε can be chosen efficiently
depending on the 3D coordinates of objects, camera position, and the size of virtual
screen.

As in the case of ray-rational Bézier curve intersection problem our solution of the
ray-surface intersection is based on two assumptions: there are no multiple intersections

2C++ function drand48() returns uniformly distributed random real number from the interval [0, 1)
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and the initial guess vector is good enough. The problem of determining good enough
initial guess vector (which guarantees the convergence of Newton’s iteration method
to the nearest intersection) is opened. The algorithm of determining such initial guess
vector is given in Section 5.4.3.
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Chapter 5
Practical Ray Tracing Trimmed NURBS

Surfaces

5.1 Introduction

Useful geometric properties and a compact representation have made NURBS surfaces
widely used in Computer Aided Design. Though the NURBS surface representation
is convenient for modeling, a direct ray tracing of NURBS surfaces is time consuming
because of the slow NURBS evaluation procedures. It is known, that any NURBS
surface can be represented by the number of rational Bézier patches without loosing
of accuracy. Section 5.2 outlines basic ideas behind the NURBS to rational Bézier
convertion.

The performance of both algorithms for ray tracing Bézier patches presented in
Chapter 4 can be improved by associating an object oriented acceleration data structure
with each Bézier patch. Section 5.3 describes an acceleration data structure which can
be utilized for this purpose.

Section 5.4 shows how the acceleration data structure and algorithms for ray tracing
Bézier patches can be combined together in order to yield better performance.

In order to achieve more flexibility in modeling, NURBS surfaces are often assigned
with a set of trimming contours which lie in the parameter space of the parent surface
and determine regions on the surface which must be cut away. As far as the trimming
contours are often defined by NURBS curves and the number of such curves may reach
thousands, trimming contours must be organized in a special hierarchical data structure
in order to yield better performance. The ideas behind the trimming hierarchy and an
efficient trimming test are described in Section 5.5.

Section 5.6 shows how adaptive construction of the acceleration data structure,
described in Section 5.3.3 must be updated to deal with trimmed surfaces.

Section 5.7 gives suggestions about the numerical robustness for the algorithms
presented in the Master Thesis.

Section 5.8 presents the comparison of approaches for the ray tracing NURBS sur-
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faces described throughout the Master Thesis and summarizes the achieved results.
In Section 5.9 some images rendered with high resolution are presented.

5.2 From NURBS to Rational Bézier Representation

NURBS curves are used to specify trimming regions in parametric space of NURBS
surfaces. This approach has become standard in computer aided design because it
allows to create surfaces of complex shape. When ray-NURBS surface intersection
point is found and the corresponding coordinates in parameter uv space of the NURBS
surface are obtained one needs to test whether the obtained point is inside or outside
trimming regions. This problem is described in Section 5.5 in more details. What
is important now – it is the fact that determining of trimming regions is based on
ray-NURBS curve intersection problem.

In Chapter 4 two algorithms for ray tracing1 rational Bézier curves and surfaces
were described in details, namely Bézier clipping method and Newton’s iteration method.
Bézier clipping method is based on subdivision and the convex hull property, and New-
ton’s iteration method is based on point and derivatives evaluation. Although NURBS
curves (surfaces) also have the convex hull property and can be subdivided using de
Boor algorithm or knot insertion, these algorithms work much slower than simple de
Casteljau algorithm for Bézier curves (surfaces) subdivision. Point and derivatives
evaluation on NURBS curves (surfaces) can be done using different methods (de Boor
method, knot insertion, or direct evaluation) but all these methods are slow with re-
spect to the methods of Bézier curves (surfaces) evaluation. Therefore, neither Bézier
clipping method nor Newton’s iteration method is applied directly to solve ray-NURBS
curve (surface) intersection problem.

NURBS representation is generalization of Bézier representation and each NURBS
curve (surface) can be represented by a number of joint rational Bézier splines (patches).
So, in order to improve performance of ray tracing, it is better to subdivide each
NURBS curve (surface) into rational Bézier splines (patches) during preprocessing step
and operate with rational Bézier splines (patches) as basic units.

Each NURBS curve (surface) can be subdivided into rational Bézier splines (patches)
using multiple knot insertion (knot refinement) procedure. Let us consider transforma-
tion of NURBS curves into Bézier splines first as simpler example with respect to sur-
faces transformation. Suppose we have a NURBS curve of degree p in three dimensional
homogeneous coordinate space given by equation

Pw(u) =

n∑

i=0

Np
i (u)pw

i a ≤ u ≤ b (5.1)

The curve is defined on a knot vector

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

} (5.2)

1Although the ray tracing term is related to surfaces only it is also used within this Master Thesis
in the context of 2D curves.
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where r = n + p + 1. Notice that the control polygon is formed by n + 1 control points.
Let us refine knot vector in such a way that each knot has multiplicity p + 1:

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1 = · · · = u2p+1
︸ ︷︷ ︸

p+1

, . . . , ur′−2p−1 = · · · = ur′−p−1
︸ ︷︷ ︸

p+1

, b, . . . , b
︸ ︷︷ ︸

p+1

}

where r′ = n′ + p + 1. Notice that after the knot refinement the number of control
points increases proportionally to the number of inserted knots. Suppose that (n′ + 1)
is the number of control points after the knot refinement and p̂w

i is the new control
polygon. Then each interval span [uk, uk+1] of not coinciding subsequent knots uk and
uk+1 represents a rational Bézier spline of the form

Pw(u) =

p
∑

i=0

Bp
i (u)bi

where bi = p̂w
k−(p−i), u ∈ [uk, uk+1] (5.3)

Figure 5.1 shows an example of a NURBS curve together with its control polygon.
Figure 5.2 shows the corresponding rational Bézier splines and their control polygons
obtained after the transformation.
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Figure 5.1: Initial NURBS curve. Figure 5.2: Obtained Bézier splines
after transformation.

Now let us consider more complex NURBS surface transformation. Suppose we
have a NURBS surface of degree p in u direction and degree q in v direction which is
represented in four dimensional homogeneous coordinate space by equation

Sw(u, v) =

n∑

i=0

m∑

j=0

Np
i (u)N q

j (v)pw
i,j a ≤ u ≤ b, c ≤ v ≤ d (5.4)
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The surface is defined on knot vectors

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

}

V = {c, . . . , c
︸ ︷︷ ︸

q+1

, vq+1, . . . , vs−q−1, d, . . . , d
︸ ︷︷ ︸

q+1

} (5.5)

where r = n + p + 1 and s = m + q + 1. Notice that the control mesh is formed by
(n + 1) × (m + 1) control points.

Let us refine knot vectors in such a way that each knot has multiplicity p + 1 in U
knot vector and multiplicity q + 1 in V knot vector:

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1 = · · · = u2p+1
︸ ︷︷ ︸

p+1

, . . . , ur′−2p−1 = · · · = ur′−p−1
︸ ︷︷ ︸

p+1

, b, . . . , b
︸ ︷︷ ︸

p+1

}

V = {c, . . . , c
︸ ︷︷ ︸

q+1

, vq+1 = · · · = v2q+1
︸ ︷︷ ︸

q+1

, . . . , vs′−2q−1 = · · · = vs′−q−1
︸ ︷︷ ︸

q+1

, d, . . . , d
︸ ︷︷ ︸

q+1

} (5.6)

where r′ = n′ + p + 1 and s′ = m′ + q + 1. Notice that after the knot refinement the
number of control points in u and v directions increases proportionally to the number
of inserted knots. After the knot refinement (n′+1) is the number of control points in u
direction and (m′ +1) is the number of control points in v direction. Denote new mesh
of refined control points by p̂w

ij. Then each domain span [uk, uk+1] × [vt, vt+1] of not
coinciding subsequent knots uk and uk+1 in u direction and vt and vt+1 in v direction
represents a rational Bézier patch of the form

Sw(u, v) =

p
∑

i=0

q
∑

j=0

Bp
i (u)Bq

j (v)bij

where bij = p̂w
k−(p−i),t−(q−j), u ∈ [uk, uk+1], v ∈ [vt, vt+1] (5.7)

Figure 5.3 shows an example of a NURBS surface. The corresponding rational Bézier
patches obtained after the transformation are shown in Figure 5.4.

Notice that each individual rational Bézier spline (patch) is defined on its own
parameter interval (domain). It is very important to understand especially when im-
plementing Bézier clipping method and Newton’s iteration method. It is obviously that
the total number of obtained rational Bézier splines (patches) is equal to the number
of individual interval (domain) spans.

Efficient algorithms of knot insertion and knot vector refinement for curves and
surfaces can be found in [31].

After subdividing NURBS surfaces into Bézier patches we need to construct an
accelerating data structure for every patch. The reason for that and an efficient way
how to do that are described in the next section.
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Figure 5.3: Initial NURBS surface. Figure 5.4: Obtained Bézier patches
after transformation.

5.3 Acceleration Data Structure (ADS)

5.3.1 Introduction

In order to find the nearest object which is intersected by a ray, the brute force approach
would be to test the ray with every object in a scene and select the nearest intersected
one. Thousands of rays are shot through the virtual screen in order to compute an
image. Each ray can recursively generate shadow, reflected, and refracted rays. If
global illumination techniques are involved, the number of rays can reach millions. If
the scene consists of many objects, it could take us days for computing the image, even if
none of the scene objects is caught by the virtual camera. Therefore, in order to improve
the performance of ray tracing, different acceleration spatial data structures are used.
Some of them were mentioned in Section 3.6. Details of these techniques are beyond the
scope of this Master Thesis (we refer the interested reader to [10, 17]). But the general
idea of all these techniques is to avoid as many unnecessary ray-object intersection
tests as possible. Unfortunately it is not possible to avoid all of them in practice.
Therefore, during ray traversing of accelerating spatial data structure a number of
unnecessary intersection tests with scene objects are often executed. For objects those
ray intersection test is time consuming it can highly increase the computation time.

Ray-rational Bézier surface intersection test is costly. In order to save the com-
putation time, one needs to use some kind of object space oriented acceleration data
structure. The simplest solution is to construct for each Bézier patch a bounding vol-
ume which completely contains the given Bézier patch and has fast intersection test
with a ray. Ray-bounding volume intersection test is then performed first. If the ray
does not intersect the bounding volume of a Bézier patch, it supposed to miss the patch
itself. This approach can save much unnecessary computation time and its performance
depends on the kind of the boundary volume and the shape of a Bézier patch. The
more tightly the bounding volume encloses the Bézier patch – the more unnecessary
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ray-rational Bézier patch intersection tests are avoided. But tighter bounding volumes
usually have more complex intersection test with a ray. So, there is a tradeoff between
tightness of enclosure and the speed of ray-bounding volume intersection test.

The most commonly used bounding volumes are spheres, axis aligned bounding
boxes, oriented bounding boxes, parallelepipeds, trapezoid prisms etc. In the context of
this Master Thesis a modification of axis aligned bounding boxes, namely hierarchical
axis aligned bounding boxes are used. Rules for their construction and an efficient
algorithm for intersection test is given in the next sections.

5.3.2 ADS Construction

Construction of hierarchical axis aligned bounding boxes is based on de Casteljau sub-
division and the convex hull property of Bézier patches (see Section 2.3.3). If we
construct a bounding box for Bézier patch using its control mesh points, we obtain
the bounding box which is not tight enough. But if we subdivide the patch by half
(in u or v direction) and construct children bounding boxes for each patch separately,
the union of these bounding boxes gives us a bounding box for initial patch which is
tighter. If we repeat this process recursively until appropriate level of recursion depth
(alternating the direction of subdivision on each level), we obtain tight bounding box
for initial patch. Additionally we store all intermediate bounding boxes together with
pointers to their children bounding boxes. We obtain hierarchical data structure which
is called hierarchical axis aligned bounding boxes.

All leaf boxes of this hierarchy does not have children and must store information
about parametric domain of enclosed subpatch. This information is used in order
to obtain initial clipping for Bézier clipping method and initial guess for Newton’s
iteration method for finding ray-rational Bézier patch intersection more efficiently. This
is explained in more details in Section 5.4.
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Figure 5.5: Bounding vol-
ume before subdivision step.

Figure 5.6: Bounding vol-
ume after subdivision step.

Figure 5.7: Bounding vol-
ume hierarchy.

Let us consider an example in Figure 5.5. It shows a Bézier curve defined on interval
[0, 1] together with its bounding box which is not tight enough. Figure 5.6 shows the
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same Bézier curve after de Casteljau subdivision at the midpoint in parameter interval.
Each obtained subcurve has its own control polygon and bounding box. Left subcurve
is defined on interval [0, 1

2 ] and the right curve is defined on interval [12 , 1]. One can see
that the union of children bounding boxes gives us a tighter root bounding box. In this
particular example children bounding boxes are not overlapped bat they can overlap
each other in general. The corresponding hierarchical data structure is shown in Figure
5.7. Root bounding box maintains two pointers to children bounding boxes. Children
bounding boxes maintain information about the parameter domain of enclosed part of
the curve.

Every hierarchical axis aligned bounding box for a rational Bézier surface requires
12 · 4 bytes = 48 bytes of memory:

• 6 floats for coordinates (min and max points in 3D);

• 2 integers for storing two pointers to children;

• 4 floats for storing parameter domain (umin, umax, vmin, and vmax) of enclosed
part of the surface (for leaf boxes only).

In order to store data efficiently, we can separate data which are stored for each bound-
ing box from data which are stored for leaf bounding boxes only. It can be done using
the following data structures

Algorithm 5.1 (ADS-specific data structures)

//Structure for representing Axis Aligned Bounding Box in 3D

struct BBox

{
Vec3f min; //minimum point of bounding box

Vec3f max; //maximum point of bounding box

//methods

...

};

//Structure for representing Leaf Specific Data

struct HLeaf

{
float umin, umax, vmin, vmax; //parameter domain of enclosed patch

//methods

...

};

//Structure for representing Hierarchical ADS

struct HBox

{
BBox bbox; //bounding box of the current node

HBox ∗left, ∗right; //left and right children of the current node

HLeaf ∗leaf; //leaf specific data for leaf nodes only

//methods

...

};
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This requires to store additionally a pointer to leaf specific data for each bounding
box (4 bytes), but the amount of saved memory is much higher, because we store leaf
specific data for leaves only. Finally we need:

• 36 bytes for non-leaf nodes;

• 52 bytes for leaf nodes;

The amount of memory which is necessary to store l-level ADS can be calculated using
the following equation:

M = 2l · 52 + (2l − 1) · 36 = 2l+3 · 11 − 36 (5.8)

An efficient algorithm for construction of hierarchical axis aligned bounding boxes is
given below.

Algorithm 5.2 (Efficient algorithm for ADS construction)

HBox∗ HIERARCHY(const BSurface &s, int level, bool plane = true)
{

/∗ Build hierarchical axis aligned bounding box for a given surface ∗/
/∗
Input: @s - Bezier surface;

@level - necessary depth level;

@plane - auxiliary variable for alternating clipping direction

Output: hierarchical data structure;

∗/

HBox ∗hbox = new HBox();

if (level != 0)

{
BSurface a, b;

if (plane)

s.SplitU(a, b);

else
s.SplitV(a, b);

hbox->leaf = NULL;

hbox->left = HIERARCHY(a, (level - 1), !plane);

hbox->right = HIERARCHY(b, (level - 1), !plane);

hbox->bbox = hbox->left->bbox + hbox->right->bbox;

return hbox;

}

hbox->bbox = s.GetBoundingBox();

hbox->left = NULL;

hbox->right = NULL;

hbox->leaf = new HLeaf();

hbox->leaf->umin = s.umin;

hbox->leaf->umax = s.umax;

hbox->leaf->vmin = s.vmin;

hbox->leaf->vmax = s.vmax;

return hbox;

}

Notice that absolutely the same approach can be applied for handling rational Bézier
curves. We need fast ray-rational Bézier curve intersection test in order to determine
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trimming regions in parameter space of NURBS surfaces (see Section 5.5). It can be
done efficiently if we use accelerating data structure for curves too. A term bounding
box must be replaced with term bounding rectangle. Algorithm for construction of
hierarchical axis aligned bounding rectangles is analogous. We just do not want to
alternate the clipping direction because it does not make sense for the rational Bézier
curves in 2D.

The only one problem is how to choose the depth level of hierarchy efficiently. The
good idea would be to set the level of depth in such a way that each leaf box (rectangle)
encloses almost flat part of a surface (straight segment of a curve). Even more efficient
would be to terminate the recursion depending of the flatness of the enclosed part of
the surface (curve), i.e., to create not a balanced tree. In this section each rational
Bézier patch is assumed to have a ADS tree of constant level 6 which is enough at least
for low degree rational Bézier patches (curves). The next section shows how curvature
based subdivision can be utilized in order to create efficient non redundant ADS trees.

5.3.3 Improvements of ADS

Sometimes alternation of the clipping directions one by one during the ADS construc-
tion can give inefficient ADS trees. It might happen in the case of stretched surface
patches. In this case the alternation of clipping directions one by one results in stretched
leaves of ADS tree which overlap each other much. It can significantly slow down the
traverse of such tree. In order to improve the performance of ADS traverse, we have
to modify the ADS construction algorithm in the following way. On each iteration we
have to subdivide the surface patch in that direction which gives two subpatches those
bounding boxes have smaller aggregate area. This idea is shown in Figures 5.8 and 5.9.
Figure 5.8 shows wrongly chosen clipping direction because it results in more stretched
boxes than the initial one. Figure 5.9 shows rightly chosen clipping direction. Notice
that the area of a bounding box can be calculated as a sum of areas of all its faces.

20

6

Initial Bounding Box

Clipping Plane

Aggregate Area = 2 · (20 + 3 + 20 + 3) = 92

20

6

Initial Bounding Box

Clipping Plane

Aggregate Area = 2 · (10 + 6 + 10 + 6) = 64

Figure 5.8: Wrongly chosen clipping
plane.

Figure 5.9: Rightly chosen clipping
plane.

Even more efficiently would be to determine by this way not only directions of
subdivision but also the subdivision coefficient (instead of taking the middle of each
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parameter direction). Appropriate number of samples can be taken in order to de-
termine the best clipping direction and clipping coefficient. Notice that in this case
taking into account just aggregate area is not enough, because samples near the bor-
der of parameter domain can give boxes of small aggregate area, but their sizes differ
significantly (one of them is be much greater than another one). It is better to have
boxes of almost equal size. So, in order to create good ADS trees, we need to minimize
the difference of box areas as well. If sl

i and sr
i are surface areas of the left and right

bounding boxes for the ith sample, we have to choose that sample (see [17]) which gives
us

min{sl
i + sr

i + |sl
i − sr

i |} (5.9)

The algorithm of ADS construction which was proposed in the previous section has to
be modified in the following way in order to create good ADS trees.

Algorithm 5.3 (The best clipping plane for the ADS construction)

HBox∗ HIERARCHY(const BSurface &s, int level)

{
/∗ Build hierarchical axis aligned bounding box for a given surface ∗/
/∗
Input: ...

Output: hierarchical data structure;

∗/

...

if (level != 0)

{
BSurface a, b, c, d;

float S1 = 0.0, S2 = 0.0;

for (int i = 0; i < 2; i++) //loop over parameter directions

for (int j = 0; j < samples; j++) //loop over samples in chosen direction

{
if ((i == 0) && (j == 0)) //for the first time

{
//split the surface using the specified parameters

s.Split(i, j, samples, a, b);

S1 = a.GetBoundingBox().GetArea() + b.GetBoundingBox().GetArea() +

fabsf(a.GetBoundingBox().GetArea() - b.GetBoundingBox().GetArea());

continue;
}
//split the surface using the specified parameters

s.Split(i, j, samples, c, d);

S2 = c.GetBoundingBox().GetArea() + d.GetBoundingBox().GetArea() +

fabsf(c.GetBoundingBox().GetArea() - d.GetBoundingBox().GetArea());

if (S1 > S2) //if better clipping point and direction are found

{
a = c;

b = d;

S1 = S2;

}
}

...

}
...

}
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Constant level trees might be redundant for surfaces of a simple shape. For almost flat
patches we do not need deep trees, because probability of double intersection with a
ray is low for such patches. Notice that problem of double ray-Bézier patch intersection
is critical for Newton’s iteration method, which is described in Section 5.4.3. Even for
a surface which is partially flat we do not need to enclose its flat regions in leaves of too
high depth. This section shows how the termination criteria of the algorithm proposed
is Section 5.3.2 can be modified in order to create non redundant trees taking surface
curvature into account.

Suppose we construct an ADS tree for a rational Bézier surface. Suppose also that
the root bounding box for the surface is constructed and has diameter D. In order
to decide whether to subdivide surface and increase the depth level of the ADS tree,
we have to consider the maximum surface curvature with respect to the diameter of
the root bounding box. Suppose that the maximum curvature is known and is equal
to Cmax. Then the termination criteria for the ADS tree construction is given by the
following equation:

D ≤ α · 1

Cmax
(5.10)

where α is the coefficient to control flatness. If we approximate a surface in the vicin-
ity of the maximum curvature point by a sphere with the same curvature value, the
coefficient 1

Cmax
is the radius of this sphere.

Let us consider a 2D example in Figure 5.10. One can see that the radius of the
approximating sphere is smaller than the diameter of the bounding box. This means
that we have to continue the subdivision process recursively.

Another example in Figure 5.11 shows the case when the diameter of the bounding
box is smaller than radius of the approximating sphere. In this case we do not have
to subdivide the enclosed surface patch and can already terminate the construction of
current branch of the ADS tree.

Approximating Circle

Bounding Box

Curve
1

Cmax

D

Boundng Box

Approximating CircleCurve

D

1
Cmax

Figure 5.10: Termination criteria
fails.

Figure 5.11: Termination criteria
holds.
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The flatness coefficient α in Equation (5.10) is used to control the flatness of enclosed
patches. Notice that if it is too small, the ADS tree might be of too high depth.
Therefore, a maximum constant level can still be used as an additional termination
criteria for ADS construction. If current branch of ADS tree already has predetermined
maximal allowed depth, its construction is terminated.

Axis aligned bounding boxes are not tight enclosures for surface patches and even
too flat patch can have not tight axis aligned bounding box. Flatness of enclosed patches
is used as termination criteria for building of ADS trees only because Bézier clipping
method and Newton’s iteration method for finding ray-rational Bézier patch intersec-
tion converge more quickly with flat patches. Moreover, flatness of a patch decreases
the probability of its double intersection with a ray (which is critical for Newton’s itera-
tion method). Both methods for finding ray-rational Bézier patch intersection utilizing
ADS structure is described in Section 5.4.

In order to compute maximum surface curvature Cmax, the constant number of uni-
formly distributed samples can be used (each sample contains the maximum curvature
Kmax at the specific surface point). Surface curvature Kmax on a rational Bézier patch
at the point (0, 0) is equal to the maximum of absolute values of principal curvatures
K1,2:

Kmax = max{|K1|, |K2|} (5.11)

where

K1,2 = KM ±
√

K2
M − KG (5.12)

Mean curvature KM can be computed using equation

KM =
1

2

LG − 2MF + NE

EG − F 2
(5.13)

Gaussian curvature KG can be computed using equation

KG =
LN − M2

EG − F 2
(5.14)

where E, F , and G are the coefficients of the first fundamental form:

E = ~ru · ~ru, F = ~ru · ~rv, G = ~rv · ~rv (5.15)

L, M , and N are the coefficients of the second fundamental form:

L = ~ruu · ~n, M = ~ruv · ~n, N = ~rvv · ~n (5.16)

~ru and ~rv are the first partial derivatives at the point (0, 0), ~ruu, ~ruv, and ~rvv are the
second partial derivatives at the point (0, 0), and ~n is the normal vector at the point
(0, 0):

~n =
~ru × ~rv

||~ru × ~rv||
(5.17)
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Efficient way for computation of the first and the second fundamental form coefficients
for rational Bézier patches via control mesh points and related weights can be found in
[50].

One of the ways of ADS trees construction is to create trees from the bottom to
the top recursively, because backward order guarantees tightness of bounding boxes on
each level. Modified version of the ADS construction algorithm (which was presented
in Section 5.3.2) shows how the top-bottom curvature based subdivision described in
this section can be implemented efficiently in the bottom-top manner.

Algorithm 5.4 (Adaptive termination of the ADS construction)

HBox∗ HIERARCHY(const BSurface &s, int level, const float alpha,

float &Cmax)

{
/∗ Build hierarchical axis aligned bounding box for a given surface ∗/
/∗
Input: ...

@alpha - coefficient to control the flatness;

@Cmax - auxiliary variable for propagating maximum curvature value

between levels of the tree.

Output: hierarchical data structure;

∗/

...

static float D = 0.0; //diagonal of bounding box

if (level != 0)

{
...

float Cleft = 0.0, Cright = 0.0;

hbox->left = HIERARCHY(a, level-1, alpha, Cleft);

hbox->right = HIERARCHY(b, level-1, alpha, Cright);

Cmax = (Cleft > Cright) ? Cleft : Cright;

hbox->bbox = hbox->left->bbox + hbox->right->bbox;

D = hbox->bbox->GetDiagonalLength();

if (D > alpha / Cmax)

return hbox;

delete hbox->left;

delete hbox->right;

}
else
{

hbox->bbox = s.GetBoundingBox();

Cmax = s.GetMaxCurvature();

}

hbox->left = NULL;

hbox->right = NULL;

...

}

Figure 5.12 shows a visualization of constant level 9 ADS tree leaf boxes for a surface
represented by four rational Bézier patches. Figure 5.13 shows a visualization of max-
imum level 9 ADS tree leaf boxes for the same surface obtained after reduction. The
number of leaf boxes in the reduced ADS tree is much smaller than the number of leaf
boxes in the ADS tree of constant level.

So, taking surface curvature into account one can create non redundant ADS trees
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Figure 5.12: Leaves of not re-
duced ADS tree (complete tree with
depth=9).

Figure 5.13: Leaves of reduced ADS
tree (adaptive curvature-based con-
struction).

which require less amount of memory for storage and still provide good enclosures for
surface patches.

Now, in order to minimize the number of unnecessary ray-rational Bézier surface
intersection tests, we need to traverse the ray through the hierarchical data structure
and find all leaf boxes which are intersected by the ray. If we need the nearest inter-
section only, the data structure traverse must be implemented efficiently. Notice that
bounding boxes can overlap each other. The efficient traverse scheme is given in the
next section.

5.3.4 Ray Traversal Through ADS

In order to traverse hierarchical data structure, we need some kind of recursive algo-
rithm. An efficient one is described in this section.

Figure 5.14 shows an example of two-levels hierarchical data structure which was
described in Section 5.3.2. Suppose we have a root axis aligned bounding box which
has two children. A ray is tested against this structure in order to obtain the nearest
intersection with an enclosed rational Bézier patch. In order to do it efficiently, we
need to go through the following steps:

1. Determine whether the ray intersects the root bounding box.

2. Determine a distance Lmin to the entrance point and a distance Lmax to the exit
point of the left child box. If the left box is not intersected by the ray, we set
Lmin = ∞ and Lmax = −∞.
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Figure 5.14: Ray traverse of hierarchical axis aligned bounding boxes.

3. Determine a distance Rmin to the entrance point and a distance Rmax to the exit
point of the right child box. If the right box is not intersected by the ray, we set
Rmin = ∞ and Rmax = −∞.

4. If both children boxes are missed by the ray, we report no intersection.

5. Select the first intersected child box – i.e., the one which has the smallest entrance
distance, and try to find an intersection within this box recursively.

6. Perform one of the following steps (depending on conditions):

(a) If the box with farthest entrance distance (sibling box) was not intersected
by the ray (steps 2 or 3), we report the result of step 5.

(b) If the intersection was not found on step 5, we try to find an intersection
within the sibling box and report the result.

(c) If intersection was found on the step 5, we traverse the sibling box only

if the distance to the found intersection is greater then the distance to the
sibling box entrance point, i.e., outside the save region (see Figure 5.14). In
this case more near intersection may exist within the sibling box.

The key point of this algorithm is: once intersection point was found in child box
we check its sibling box only if the distance to this intersection point is greater than
distance to the sibling box entrance point. Otherwise the found intersection point is
within the save region (see Figure 5.14) and we can already report the intersection.
Notice that once the leaf box is reached (the one which does not have children) then
we apply intersection test with enclosed rational Bézier patch. Information about the
parameter domain of the patch which is enclosed within the leaf box is used in order to
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do it efficiently (see Section 5.4). The framework of the proposed algorithm is presented
below.

Algorithm 5.5 (Computing the nearest ray-patch intersection)

bool NEAREST INT(const BSurface &s, HitPoint &p, Ray &r, HBox ∗hbox=NULL)
{

/∗ Obtain the nearest intersection with a Bezier surface

utilizing ADS ∗/
/∗
Input: @s - Bezier surface;

@p - nearest intersection point information to be found;

@r - traverse ray;

@hbox - auxiliary variable for recursive traverse

Output: true/false if intersection was/was not found;

∗/

if (hbox == NULL)

{
hbox = s.hbox;

if (!hbox->bbox.Intersect(r))

return false;
}

if (hbox->left == NULL)

return s.FindIntersection(p, r, hbox);

float Lmin = Infinity, Lmax = -Infinity;

float Rmin = Infinity, Rmax = -Infinity;

bool Lint = false, Rint = false;
if (hbox->left->bbox.Intersect(r, Lmin, Lmax))

Lint = true;
if (hbox->right->bbox.Intersect(r, Rmin, Rmax))

Rint = true;

if (!(Lint || Rint))

return false;

bool result = false;
if (Lmin < Rmin)

{
result = NEAREST INT(s, p, r, hbox->left);

if (!result & Rint)

result = NEAREST INT(s, point, ray, hbox->right);

else
if (result & Rint & (ray.t > Rmin))

NEAREST INT(s, point, ray, hbox->right);

}
else
{

result = NEAREST INT(s, p, r, hbox->right);

if (!result & Lint)

result = NEAREST INT(s, point, ray, hbox->left);

else
if (result & Lint & (ray.t > Lmin))

NEAREST INT(s, point, ray, hbox->left);

}
return result;

}

Notice that almost the same algorithm can be applied in order to solve ray-rational
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Bézier patch intersection problem. One just need to change the term surface by the
term curve and the term bounding box by the term bounding rectangle.

When a ray reaches a leaf box of hierarchical data structure then it is tested
against the enclosed rational Bézier patch. Bézier clipping method or Newton’s it-
eration method described in Chapter 4 can be applied in order to solve this problem.
The next section describes how it can be done efficiently utilizing the hierarchical axis
aligned bounding boxes structure.

5.3.5 Leaves Only Versus Trees

If acceleration spatial data structure (see Chapter 3) is used in order to improve per-
formance of ray tracing system, the leaves of ADS tree can be used as basic objects for
that system. The ADS trees are created during the preprocessing step and destroyed
after their leaves are loaded in the ray tracing system. Each leaf in this case addi-
tionally stores only a pointer to the parent surface and not the enclosed patch itself.
Therefore, memory is not affected. The total amount of memory is approximately two
times smaller because all interior nodes of the trees are destroyed.

The speed performance of such approach depends on the used acceleration data
structure and its settings. Section 5.8 shows the comparison of both approaches (with
and without ADS trees) for two different methods for ray tracing rational Bézier
patches.

5.4 Finding Nearest Ray-Bézier Patch Intersection

5.4.1 Introduction

After a leaf box of the ADS described in Section 5.3 is reached by a ray, it is necessary
to test whether the ray intersects an enclosed rational Bézier patch within this leaf box.
Methods for finding ray-rational Bézier patch intersection were described in Chapter
4. This section shows how the ADS can improve the performance of these methods.
Notice that all modifications which presented in this section can be also applied for
solving ray-rational Bézier curve in 2D intersection problem in analogous way.

5.4.2 Using Bézier Clipping Method

The Bézier clipping method and its improvements were described in Section 4.3. This
method is based on the de Casteljau subdivision. When a ray intersects a leaf bounding
box then the parameter domain of enclosed part of the surface is known (see Section
5.3.2). This means that in order to save much computation time we can perform an
initial clipping and cut out parts of the surface which do not belong to the leaf bounding
box. This requires two subdivisions in u direction of the patch and two subdivisions in v
direction of the patch. Notice that the initial clipping must be applied to the projected
patch and not to the surface itself. In this case we apply de Casteljau subdivision in
2D rather than in homogeneous 4D. This can save up to 50% of computation time.
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After applying the initial clipping we obtain initial patch which is used as a starting
point of the Bézier clipping algorithm. If multiple intersections exist within the leaf
box, Bézier clipping algorithm finds them all. We just need to select the nearest one
(the first one in the sorted list which was described in Section 4.3.5).

5.4.3 Using Newton’s Iteration Method

The Newton’s iteration method was described in Section 4.4. This method is based on
the initial guess which must lie in the basin of a root. Notice that the initial guess must
be specified in the surface parameter space. The problem which arises here is multiple
intersections problem. If multiple intersections exist within one leaf box, Newton’s
iteration method can converge to any of them depending on the initial guess. So, one
needs to take such initial guess which forces the Newthon’s method to converge to the
nearest intersection.

Leaf Bounding Box

Ray Origin
Curve

Moved Ray Origin

Leaf Bounding Box

Distance 1

Initial Guess

Curve

Distance 2

Ray Origin

Intersection

Figure 5.15: Multiple intersections
problem.

Figure 5.16: Robust approach for
finding the nearest intersection.

A leaf bounding box of the ADS described in Section 5.3 can give us information
about the parameter domain of the enclosed patch of the surface. We could take the
middle of this domain as the initial guess but in this case there is no guarantee that the
Newton’s iteration method converges to the nearest intersection if multiple intersections
exist within one leaf box. Even if we suppose that the enclosed patch of the surface
within one leaf box is flat enough, we still can have multiple intersections when the ray
is nearly tangential to the part of the surface (see Figure 5.15). Barth and Stürzlinger
[6] proposed a solution of this problem, for the case when parallelepipeds are used as
enclosures of the surface. But unfortunately the proposed solution does not work for
the case of axis aligned bounding boxes because the faces of the bounding boxes do not
have any relation with the parameter domain of the enclosed surface.

In order to have robust Newton’s iteration method, we propose to make the following
modifications of the ADS. Each leaf box must additionally store:
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• precomputed value of its doubled diagonal (MD value);

• four corner points of the enclosed patch of the surface.

From the property of Bézier surfaces (see Section 2.5.2) we know that the corner points
of a patch correspond to the corners of the parameter domain of this patch. The
modification of the ADS for the surface version of Newton’s iteration method requires
to store additionally 4 corners × 3 coordinates × 4 bytes + 1 diagonal × 4 bytes = 52
bytes of information for each leaf box. Now each leaf box requires 48 + 52 = 100
bytes of memory. Notice that we store the corner points in 3D space rather than in
homogeneous 4D space.

The structure of ADS leaf node specific data presented in Section 5.3.2 must be
modified in the following way

Algorithm 5.6 (Newton’s iteration modification of the ADS data)

//Structure for representing Leaf Specific Data

struct HLeaf

{
...

float md; //value of doubled diagonal of bounding box

Vec3f p00, p01, p10, p11; //four corner points of enclosed patch

...

};

After modification we need the following amount of memory which is necessary to store
ADS nodes:

• 36 bytes for interior nodes;

• 104 bytes for leaf nodes;

The amount of memory which is necessary to store l-level ADS can be now calculated
using the following equation:

M ′ = 2l · 104 + (2l − 1) · 36 = 2l+2 · 35 − 36 (5.18)

The algorithm of non redundant ADS trees construction presented in Section 5.3.3 must
be modified in the following way

Algorithm 5.7 (Newton’s iteration modification of the ADS construction)

HBox∗ HIERARCHY(const BSurface &s, int level, const float alpha,

float &Cmax)

{
/∗ Build hierarchical axis aligned bounding box for a given surface ∗/
/∗
Input: ...

Output: hierarchical data structure;

∗/

...
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if (level != 0)

{
...

hbox->leaf->md = 2 ∗ D;

}
else
{

...

hbox->leaf->md = 2 ∗ hbox->bbox->GetDiagonalLength()

}

...

hbox->leaf->p00 = s.GetMeshPoint(0, 0);

hbox->leaf->p01 = s.GetMeshPoint(s.degree u, 0);

hbox->leaf->p10 = s.GetMeshPoint(0, s.degree v);

hbox->leaf->p11 = s.GetMeshPoint(s.degree u, s.degree v);

}

The same modification of the ADS structure can be applied in order to solve ray-
rational Bézier curve in 2D problem in analogous way. Each leaf bounding rectangle
must store additionally two corner points of enclosed curve and doubled precomputed
value of its diagonal.

When a ray intersects a leaf bounding box then we move temporary the origin of
the ray by the MD value along the opposite ray direction. Then we determine the
square distances (to avoid costly square root operations) from new ray origin to each of
the corner points of the patch and select the nearest one. The corresponding corner in
the parameter space is then taken as the initial guess for Newton’s iteration method.
After that we move the ray origin back to its initial position. 2D example of this idea
is shown in Figure 5.16.
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Figure 5.17: Example of virtual
curves.

Figure 5.18: Example of virtual in-
tersection.

In order to avoid numerical round off errors during Newton’s iterations, one needs
to take not exactly the corner of the parameter domain but a point which is near the
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corner. We propose to do it as follows:

uguess = up,min + (up,max − up,min) ∗ k1

vguess = vp,min + (vp,max − vp,min) ∗ k2 (5.19)

where [up,min, up,max] × [vp,min, vp,max] is the parameter domain of enclosed patch and
k1, and k2 are variables which can take values 0.1 or 0.9 depending on the corner.
This modification moves the corner points slightly towards the center of the parameter
domain.

Moving of the ray origin along the opposite ray direction by the MD value is nec-
essary in order to avoid a report of wrong intersections when the origin of the ray is
inside the leaf box or near the faces of the leaf box (in this case a wrong initial guess
value may be chosen).

Selected in such a way initial guess value forces the Newton’s iteration method to
converge to the nearest intersection. But there are two cases which must be handled
carefully.
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Figure 5.19: Intersection behind a
ray.

Figure 5.20: Problem with patches
with high surface curvature.

The fist special case is based on the following fact: although a Bézier surface
is defined on parameter domain [umin, umax] × [vmin, vmax], mathematically it exists
outside this domain too (see 2D example in Figure 5.17). Let us call the patch of the
surface which defined outside the parameter domain as virtual surface. If ray intersects
the virtual surface and initial guess lies in the basin of a virtual intersection, Newton’s
iteration method converges to the virtual intersetion (see Figure 5.18). If it happens,
we take the opposite corner of the parameter domain as the initial guess and try to
find the nearest intersection once more again.

The second special case occurs when the obtained intersection lies behind the
ray origin. It can happen if the origin of the ray is inside the leaf bounding box (see
Figure 5.19). If it happens, we take the opposite corner of the parameter domain as
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the initial guess and try to find the nearest intersection once more again. If we obtain
the same intersection or one which is behind the ray too, we report no intersections.

Notice that it can happen that the obtained intersection does not lie inside the
considered leaf bounding box. It can lie in the neighbor leaf bounding box as well (and
still belong to the same surface). We do not handle this case as the special one, because
it does not change the logic of the proposed algorithm.

Notice that the proposed approach works only under assumption that the enclosed
patch of the rational Bézier surface is almost flat. If it is not the case, this approach
may give wrong results (see Figure 5.20).

Unfortunately the proposed algorithm doubles the number of memory which is
required in order to store on leaf bounding box. Additional time is necessary in order
to compute square distances to corner points of enclosed patch of the surface. And
finally it works only under the assumption that the enclosed in every leaf bounding
box patch of the surface has at most two intersections with any ray. This makes the
Newton’s iteration method not robust in general for ray tracing of NURBS surfaces
when using axis aligned bounding boxes as accelerating data structure, because it can
not guaranty 100% correct result.

5.5 Performing Trimming Test

5.5.1 Introduction

Trimming curves are a common method for overcoming the topologically rectangular
limitations of NURBS surfaces. Trimming curves are defined in the parameter domain
of NURBS surfaces and specify the regions of the surface which must be cut away.
This fact is convenient for ray tracing. Once the intersection point of a ray with a
NURBS surface is obtained, the coordinates of intersection in the parameter space of
the NURBS surface are known. One just need to test whether this point lies in the
trimmed region or not, i.e., a trimming test has to be executed. This section explains
an effective algorithm for trimming test.

5.5.2 Trimming contours classification

A trimming curve is the curve which lies in the parameter domain of NURBS surface.
For our purposes we restrict ourself to two subsets of trimming curves: polylines and
NURBS curves. Each polyline is given by its vertices, and each NURBS curve is given
by its knot vector, degree, control points and weights (see Section 2.4.3). In order to
speed up the trimming test, NURBS curves have to be transformed into rational Bézier
curves on the preprocessing step (see Section 5.2). Each rational Bézier curve is given
by its degree, control points and weights (see Section 2.4.2).

Trimming curves form trimming contours. Trimming contour must be closed (its
first point and last point are coincide) and has its own orientation (clockwise or counter-
clockwise). The orientation of a trimming contour determines which region of the
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NURBS surface to be kept. Let us use the convention (according to VRML‘97 specifi-
cation) that the part of the surface to be removed is on the right side of the curve (as
you walk in the direction of its orientation).

Trimming contours are not allowed to cross and have conflict orientations (see Fig-
ures 5.21 and 5.22). Trimming contours can contain trimming contours of opposite
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Figure 5.21: Trimming contours are
not allowed to cross.

Figure 5.22: Trimming contours are
not allowed to have conflict orienta-
tions.

orientation (see Figure 5.23) and share vertices and edges (see Figure 5.24).

Areas inscribed by counter-clockwise trimming contours are often termed regions,
while those inscribed by clockwise contours are termed holes. The orientation of a
trimming contour can be calculated using the method of Rokne ([35]) for computing
the area of a polygon. Given contour points {pi = (ui, vi)}, p0 = pn, i = 0, . . . , n, the
signed area can be computed by

A =
1

2
·

n∑

i=0

ui · v(i+1) mod (n+1) + u(i+1) mod (n+1) · vi (5.20)

If A is negative, the contour has a clockwise orientation. Otherwise, the orientation is
counter-clockwise.

Notice that trimming contours consist of polylines and rational Bézier curves. In
order to determine orientation of trimming contours, vertices of polylines and control
points of rational Bézier curves should be used. Using of Bézier curves control points
overestimates the area but the orientation is not affected.
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Figure 5.23: Trimming contours can
contain trimming contours of opposite
orientation.

Figure 5.24: Trimming contours can
share vertices and edges.

5.5.3 Building Trimming Hierarchy

In order to implement trimming test efficiently, one needs to create a trimming hierarchy
(a tree of trimming contours based on containment). Since the contours are not allowed
to cross, there are only three possible relationship between two contours a and b:

• a contains b;

• b contains a;

• a and b do not have common regions.

Each node in the hierarchy is represented by a trimming contour and can refer to yet
another list of nodes (those contours fall inside of its contour). Each list of nodes
preserves the value of its level of depth in the hierarchy (0 for top level trimming list)
and precomputed orientation of the parent trimming contour. In order to accelerate
trimming test, each node can also store a precomputed axis aligned bounding box of
its trimming contour.

Algorithm 5.8 (Trimming hierarchy-specific data structures)

//structure for representing a node of the trimming hierarchy

struct Trim

{
//the closed trimming contour

TContour contour;

//precomputed axis aligned bounding box of the trimming contour
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TBox bbox;

//children nodes (represented by trimming contours

//which are contained in the current one)

TrimmingList children;

};

//structure for representing a list of trimming contours

struct TrimmingList

{
//the precomputed orientation of the parent trimming contour

//(not defined for the top level list)

bool clockwise;

//the level of depth of the list (0 for top level list)

int level;

//elements of the list (might be empty)

vector<Trim> nodes;

};

Figure 5.25 shows an example of trimming contours, and Figure 5.26 shows the corre-
sponding trimming hierarchy.
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Figure 5.25: Example of trimming
contours.

Figure 5.26: The trimming hierarchy.

Building the trimming hierarchy is depicted in the following algorithm

Algorithm 5.9 (Building the trimming hierarchy)

void InsertTrim(TrimmingList &tlist, Trim trim)

{
/∗ Inserts a trimming contour in a trimming list ∗/
/∗
Input: @tlist - trimming list;

@trim - trimming contour to be proceed.

∗/
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//loop over trimming contours in the current list

for (int i = (tlist.Size() - 1); i >= 0 ; i--)

{
//Check whether containment is possible at all

if (trim.bbox.Overlap(tlist[i].bbox))

{
if (trim.bbox.GetArea() > tlist[i].bbox.GetArea())

{
//trim more probably contains tlist[i]

if (trim.Contains(tlist[i]))

{
InsertTrim(trim.tlist, tlist[i]);

tlist.Remove(tlist[i]);

continue;
}
if (tlist.Contains(trim))

{
InsertTrim(tlist[i].tlist, trim);

return;
}

}
else
{

//tlist[i] more probably contains trim

if (tlist.Contains(trim))

{
InsertTrim(tlist[i].tlist, trim);

return;
}
if (trim.Contains(tlist[i]))

{
InsertTrim(trim.tlist, tlist[i]);

tlist.Remove(tlist[i]);

continue;
}

}
}

}
//set the level of depth

trim.tlist.SetDepthLevel(tlist.GetDepthLevel() + 1);

tlist.Add(trim); //Add trimming contour in the current list

}

Since trimming contours can share edges and vertices, special kind of containment test
has to be applied. In order to determine whether contour a contains contour b, one needs
to execute contour a inside/outside trimming test (see the next section) on the sample
points of segment b. Sample points of contour b can be obtained by taking midpoints
of each polyline segment and uniformly spaced sample points on each rational Bézier
segment. One can take n sample points on each n-degree rational Bézier segment. If

and only if one of the sample points of contour b falls inside contour a then contour b is
judged to be contained in contour a. The case when contour a is tested on containment
in contour b is treated analogous. Figure 5.27 shows an example of the containment
test.

In order to avoid numerical round-off error (in the case of sample points on shared
edges), the inside/outside test has to be performed with regard to some ε. If either
horizontal or vertical scanline, which goes through a sample point pi of contour b,
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Figure 5.27: The containment test
via sample points.

Figure 5.28: Sample points in the
case of shared edges.

intersects contour a in the vicinity of the sample point pi (with regard to ε), this point
must be skipped and the next one must be considered (see Figure 5.28).

Notice that containment test is applied only if bounding boxes of contours a and
b are overlapped, otherwise no containment is possible. As trimming contours consist
of polylines as well as rational Bézier curves, it is possible that contours with smaller
bounding boxes contains contours with larger bounding boxes (though the probability
of such event is low). Therefore, contour b is tested on containment in contour a first

if its boundary box area is smaller than the area of contour a bounding box. Otherwise
contour a is tested on containment in contour b first.

Bounding box for each contour can be computed by union of boundary boxes of its
segments: polylines and rational Bézier curves. Notice that for contours which consist
of rational Bézier curves tight bounding boxes have to be computed, i.e., the refined
(by recursive subdivision) control polygons of rational Bézier curves must be used for
this purpose.

5.5.4 Trimming Test

Once the nearest intersection point S = (uint, vint) (in parameter uv space) of a ray
and a rational Bézier patch is obtained, one needs to execute the trimming test in order
to decide whether or not the intersection point belongs to any of trimmed regions, i.e.,
to one defined by a contour of clockwise orientation. If it belongs to any of trimmed
regions, the ray is assumed to miss the rational Bézier patch at this point, and other
possible intersections are to be computed. If the intersection point does not belong to
trimmed regions, it can be reported as the nearest one.

91



92 CHAPTER 5. PRACTICAL RAY TRACING TRIMMED NURBS SURFACES

One can see that in order to execute the trimming test, one needs to determine the
lowest level trimming contour of the trimming hierarchy (see the previous section) which
contains the obtained intersection point S. If the lowest level contour has clockwise
orientation, the point lies in the trimmed region, and therefore the intersection of the
ray with the Bézier patch does not exist at this point. If the lowest level contour
has counter-clockwise orientation, the intersection of the ray with the Bézier patch is
assumed to exist at this point.

Recall a corollary of the Jordan curve theorem: if any ray R in 2D parameter
space (not to be confused with a tracing ray in 3D) emanating from point S intersects
a trimming contour an odd (even) number of times, then S is inside (outside) the
contour. One can see that the inside/outside is based on the 2D ray-trimming contour
intersection. For simplicity we assume that the ray R points in the positive u direction,
i.e., its direction vector is (1, 0). In practice, one can choose the ray with any of ±u or
±v directions. Recall that each trimming contour consists of segments: polylines and
rational Bézier curves. The total number of ray-trimming contour intersections is equal
to the number of intersections with its segments. Notice that we are not interested in
the exact number of ray-contour segment intersections but only in its parity.

An efficient algorithm for determining the parity of the number of intersections
with Bézier curves utilizing the convex hull property (see Section 2.3.3) is proposed
by Nishita [29]. Although it was designed for Bézier curves it can be easily applied to
polylines too. The algorithm begins by splitting the parameter domain of the rational
Bézier patch into quadrants which meet as S as shown in Figure 5.29. To determine if R
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Figure 5.29: Quadrants of parameter
domain.

Figure 5.30: Problem of shared ver-
tices.

intersects a given Bézier trimming curve an even or odd number of times, we categorize
the curve based on which quadrants its control points occupy:
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• Case A: All control points lie on the same side of the line containing R (in
quadrants I, II, III, IV, I&II, or III&IV) or ”behind” R (in quadrants II&III).
The convex hull property of Bézier curves guarantees zero intersections with R.

• Case B: All control points lie in quadrants I&IV, but not case A. Since the
curve is continuous and obeys the convex hull property, if the curve endpoints lie
in the same quadrant, the curve crosses R an even number of times. Otherwise,
the curve intersects R an odd number of times. Note that tangencies between
the ray and trimming-curve tangencies, even those of high order, do not pose a
problem.

• Case C: All other case.

If a trimming Bézier curve is case A or B no further processing is needed to determine
its intersection parity with a ray. For a case C, we subdivide it using the de Casteljau
algorithm (see Section 2.3.3) into three rational Bézier segments in such a way that
the two end segments are guaranteed a priori to be case A or B. This can be accom-
plished by applying the Bézier clipping technique (see Section 4.3.2) against either the
u quadrant axis (L = u−uint = 0) or the v quadrant axis (L = v− vint = 0) where the
ray anchor S = (uint, vint). If a case C curve is Bézier clipped against the u quadrant
axis, the resulting curve end segments 1 and 3 must be case A and segment 2 could be
any case. If a case C curve is Bézier clipped against the v quadrant axis, the resulting
curve end segments 1 and 3 must be case A or B and the middle segment 2 could be
any case.

We should clip against the axis which results in the smallest segment 2. A good
heuristic for this is to measure the distance from the curve endpoints to each of the
axis. Generally, the largest the distance from an axis, the larger the clip tends to be.
Denote du = |d0|+ |dn| for the case when L is the u quadrant axis, and dv = |d0|+ |dn|
when L is the v quadrant axis. Thus, if du > dv , it is usually best to clip against
L = u − uint.

The complete point classification algorithm appears as follows:

Algorithm 5.10 (Point classification algorithm)

//stack of Bezier curves

typedef stack<TBezierCurve> TCurvesStack;

//the case of the curve (see the algorithm description)

enum {A, B, C};
//the direction of applied clip

enum {Du, Dv};
//determined parity of intersections

enum {ON, ODD, EVEN};

uint Parity(TBezierCurve &curve, const TVec2f &p)

{
/∗ Determines whether ray with origin at p and direction (0, 1)

intersects the given Bezier curve even or odd number of times

(or its origin is on the Bezier curve)

∗/
/∗
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Input: @curve - a curve to be tested; @p - a checking point.

Output: ON if the point @p is on the curve;

ODD if the ray intersects the curve odd number of times.

EVEN if the ray intersects the curve even number of times;

∗/

int parity = 0;

TCurvesStack cs = TCurvesStack(0);

cs.push(curve);

while (cs.size() > 0)

{
TBezierCurve cr = cs.top();

cs.pop();

//determine the case of the curve (see the algorithm description)

switch (cr.GetPointsCase())

{
case A:

break; //nothing to do

case B:

//compare quadrants of the first and the last curve control points

if (cr.FirstPointQuadrant() != cr.LastPointQuadrant())

parity++;

break;
case C:

//if the checking point is almost on the curve

if (cr.LargestBoxDimension() < Epsilon)

return ON;

TBezierCurve b1, b2, b3;

int dim = cr.MakeBestClip(p, b1, b2, b3);

if (dim == Du) //curve has been Bezier clipped at Lu line

cs.push(b2);

else //curve has been Bezier clipped at Lv line

{
cs.push(b1);

cs.push(b2);

cs.push(b3);

}
break;

}
}

//determine parity for the whole curve

if ((parity % 2) == 0)

return EVEN;

return ODD;

}

Notice that if the distance from the point to one of the trimming curves is less than a
tolerance value ε, the point is declared to be on a trimming curve.

Polylines can be handled analogously. Intersection test with a line segment in the
case of axis aligned ray direction is relatively easy and fast. Therefore, if a polyline is
of the case C, all its line segments are tested against the ray and the aggregate number
of intersections is calculated in order to determine the parity.

Now, in order to determine the parity of ray-trimming contour intersections, we
need to execute the parity test for each segment of the contour, i.e., for each polyline
and for each rational Bézier curve which form the contour. If the ray intersects contour
odd number of times (the parity is odd), its point of origin S is supposed to be inside
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the contour. If the ray intersects contour even number of times (the parity is even), its
point of origin S is supposed to be outside the contour:

Algorithm 5.11 (Inside/outside point-trimming contour test)

bool Contains(const Trim &trim, const TVec2f &p)

{
/∗ Determines whether the trimming contour contains

the given point. ∗/
/∗
Input: @trim - a trimming contour to be tested; @p - testing point.

∗/

if (!trim.bbox.Contains(p)) //bounding box containment test first

return false; //even or zero number of intersections with the contour

uint parity = 0;

//loop over all segments of the trimming contour

for (int i = 0; i < trim.segments.Size(); i++)

parity += Parity(trim.segments[i], p);

//determine parity for the whole contour

if ((parity % 2) == 0)

return false;

return true;
}

A problem can arise when R happens to pass through an end control point shared by
two contour segments (or through a vertex shared by two polyline segments), because
two intersections are reported when one is often the correct answer (see Figure 5.30).
To avoid this problem one needs to perturb S away from R on a sub-pixel distance ε.

Now we ray trace trimmed NURBS (transformed into rational Bézier patches) by
first performing ray intersection with the untrimmed surface. If an intersection point
S = (uint, vint) is found, we look to the trim hierarchy to determine whether it is to be
culled or returned as a hit:

Algorithm 5.12 (Performing the trimming test)

bool IsTrimmed(const TrimmingList &tlist, const TVec2f &p)

{
/∗ Determines whether the point is trimmed (culled) or not.∗/
/∗
Input: @tlist - a list of trimming contours; @p - a checking point.

Output: true if the checking point is trimmed and false otherwise.

∗/

for (int i = 0; i < tlist.Size(); i++) //loop over trimming contours in the current list

if (Contains(tlist[i], p)) //if the current contour contains the given point

return Inside(tlist[i].tlist, p);

//top level list must be handled in a special way

if (tlist.GetDepthLevel() == 0)

{
if (tlist.Size() > 0)

return !tlist[0].tlist.IsClockwise();

else
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return false; //there are no trimming contours at all

}

return tlist.IsClockwise();

}

5.5.5 Removal of fully trimmed ADS nodes

As was explained in the previous sections each NURBS surface is transformed into
rational Bézier surfaces and ADS tree is created for each rational Bézier surface. In the
case of trimmed NURBS surfaces it can happen that surface patches enclosed in some
leaves of the ADS tree (or even the whole rational Bézier surface) are fully trimmed. In
this case such nodes are redundant and should be removed from the ADS tree in order
to improve the performance of ray tracing. Notice that it can decrease the computation
time because neither ray-rational Bézier patch intersection test nor trimming test are
executed.

Parameter domain of each surface patch enclosed in ADS tree leaf is represented
by a domain rectangle. The patch is fully trimmed if and only if the three conditions
hold:

1. neither of the domain rectangle edges crosses any of trimming contours;

2. the domain rectangle does not contain any trimming contours;

3. any point of the domain rectangle is inside a trimmed region.

Martin, Cohen, Fish, and Shirley [27] suggested to deal only with the first and the
last condition. This approach is not absolutely robust in the case when the parameter
domain of the ADS leaf contains some trimming contours. In this case wrong images
might be computed. The probability of such case is low with the higher depths of
the ADS tree, but in order to guarantee the robustness, we must deal with the second
condition as well.

Notice that if only the first two conditions hold, the enclosed surface patch does
not have any trimmed regions. In this case we can flag the corresponding ADS leaf as
”not having trimmed regions” and skip trimming test completely for this leaf. This
can slightly improve the overall performance.

Figure 5.31 shows an example of trimming contours for a single rational Bézier
surface. The constant level 6 ADS tree is built for the surface. Parameter domains of
leaf nodes of the ADS tree are represented by dashed rectangular mesh. Those leaves
which are fully trimmed (and should therefore be removed from the tree) are marked by
blue rectangles. Those leaves which do not have trimmed regions (and must therefore
be flagged to accelerate the trimming test) are marked by green rectangles. All other
leaves are not marked and contain surface patches which are partially trimmed.

Notice that if the left and the right child of a node of the ADS tree are removed
from the tree, the node itself must be also removed.

In order to determine whether edges of the domain rectangle intersect any of trim-
ming contours, we must anchor four rays at the corner points of the domain rectangle
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Parameter Domain of NURBS Surface

vmax

vmin

umin umax

Parameter Domain of NURBS Surface

vmax
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umin umax

Figure 5.31: Determining fully
trimmed ADS leaves.

Figure 5.32: Parameter rectangle
cross test.

(as shown in Figure 5.32) and shoot the rays in positive u (v) direction in order to ob-
tain the nearest intersection with the trimming contours. If the distance to the nearest
intersection point from the ray origin is less than the length of the corresponding edge
of the domain rectangle, the rectangle is supposed to intersect the trimming contours
and the corresponding leaf of the ADS tree cannot be therefore removed or flagged.

Notice that the Bézier clipping algorithm described in Section 4.3 can be used to
obtain the nearest ray-rational Bézier curve intersection. Ray-polyline intersection test
is relatively easy and is therefore not discussed here.

The algorithm framework for determining whether an axis aligned line segment
crosses any of trimming contours is given below.

Algorithm 5.13 (Trimming contour cross test for a line segment)

bool IsCrossed(const TrimmingList &tlist, const TVec2f &p,

bool u axis, float length, bool &trimmed)

{
/∗ Determines whether an axis aligned line segment crosses

a trimming contour.∗/
/∗
Input: @tlist - a list of trimming contours;

@p - anchor (first point) of the line segment;

@u axis - determines u/v line segment direction (true/false);

@length - the length of the line segment

Output: returns true in the case the line crosses the trimming

contour and false otherwise; in the case of false the @trimmed

is set to true if the line segment lies in the trimmed region and

false otherwise.

∗/
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//loop over trimming contours in the current list

for (int i = 0; i < tlist.Size(); i++)

{
float distance = Infinity; //distance to the nearest intersection

//check whether the line intersects contour; if it intersects then

//@distance is set to the distance to the nearest intersection

if (tlist[i].FindNearestIntersection(p, u axis, distance)

{
if (distance < length)

return true; //the line segment crosses the contour

//check children contours

if (Contains(tlist[i], p))

return IsCrossed(tlist[i].tlist, p, u axis, length, trimmed);

}
}

trimmed = tlist.contour.IsClockwise();

return false; //the line segment does not cross the contour

}

The structure of ADS leaf node specific data presented in Section 5.3.2 and modified
in Section 5.4.3 must be again modified as follows:

Algorithm 5.14 (Trimming modification of the ADS data)

//Structure for representing Leaf Specific Data

struct HLeaf

{
...

//specifies whether the enclosed surface patch

//does not have any trimmed regions

bool solid;

...

};

One more byte is now required in order to store one leaf ADS node. The ADS building
procedure presented in Section 5.3.2 and modified in Sections 5.3.3 and 5.4.3 must be
again modified as follows:

Algorithm 5.15 (Trimming modification of the ADS construction)

HBox∗ HIERARCHY(const BSurface &s, int level, const float alpha,

const TrimmingList &tlist, float &Cmax)

{
/∗ Build hierarchical axis aligned bounding box for a given surface ∗/
/∗
Input: ...

@tlist - a list of trimming contours for the given surface;

Output: hierarchical data structure or NULL is surface is fully trimmed

and must be removed from the ray tracing application.

∗/

...

if (level != 0)

{
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...

hbox->left = HIERARCHY(a, level-1, alpha, tlist, Cleft);

hbox->right = HIERARCHY(b, level-1, alpha, tlist, Cright);

//if both node’s children are fully trimmed

if ((hbox->left == NULL) & (hbox->right == NULL))

{
delete hbox;

return NULL;

}

if (hbox->left == NULL) //if left child is fully trimmed

{
HBox ∗tmp = hbox->right;

hbox = hbox->right; //the right child becomes the current one

delete tmp;

Cmax = Cright;

return hbox;

}

if (hbox->right == NULL) //if right child is fully trimmed

{
HBox ∗tmp = hbox->left;

hbox = hbox->left; //the left child becomes the current one

delete tmp;

Cmax = Cleft;

return hbox;

}

...

}
else
{

...

}

...

//check whether the domain rectangle does not contain and does not

//cross any of trimming contours; in this case hbox->leaf->solid will

//be set to true if the surface patch is a region and to false if the surface

//patch is a hole

if (IsEmpty(tlist, s.umin, s.umax, s.vmin, s.vmax, hbox->leaf->solid))

{
if (!hbox->leaf->solid)

{
delete hbox;

return NULL;

}
}

}

Ray-rational Bézier patch intersection test presented in Section 5.3.4 must be modified
as follows in order to support trimming:

Algorithm 5.16 (Trimming modification of the intersection routine)

bool NEAREST INT(const BSurface &s, HitPoint &p, Ray &r,

const TrimmingList &tlist, HBox ∗hbox=NULL)
{

/∗ Obtain the nearest intersection with a Bezier surface

utilizing ADS ∗/
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/∗
Input: ...

@tlist - a list of trimming contours for the given surface;

Output: true/false if intersection was/was not found;

∗/

...

if (hbox->left == NULL)

{
//find the nearest intersection

if (!s.FindIntersection(p, r, hbox))

return false;

//if corresponding surface patch does not have

//any trimmed regions then report the intersection

if (hbox->leaf->solid)

return true;

//return the result of the trimming test

return !IsTrimmed(tlist, p)

}

//all NEAREST INT calls below must include @tlist parameter

...

}

5.6 Adaptive ADS Construction for Trimmed Surfaces

Adaptive curvature based ADS construction described in Section 5.3.3 does not work
properly if fully trimmed ADS nodes are removed during the construction. If one of
the interior node leaves is fully trimmed and the area of the surface patch enclosed in
this leaf is relatively big with respect to the whole surface area, then there is no need
to apply curvature based construction for the current tree branch, even if the surface
patches enclosed in the branch nodes are flat.

Let us consider a plane which has many holes, such as many ADS nodes are removed
as fully trimmed. If we apply adaptive curvature based ADS construction, we get just
one root bounding box which does not have any children. In this case ray-surface
intersection routine is executed every time the ray hit the bounding box, and many
unnecessary intersection points are computed. These unnecessary intersections can be
avoided if we take trimming regions into account during adaptive curvature based ADS
construction. We should merge two leaves of an interior node into single leaf only if

trimmed surface area enclosed in these leaves is below some threshold value.
As we do not need the exact value of trimmed surface area, we can use the trimmed

parameter domain area instead and measure it approximately using samples. The
samples are already used for curvature measurement (see Section 5.3.3), so we can
just apply trimming test for each sample point and calculate approximate trimmed
parameter domain area by equation

Atrm = An · Ntrm

N
(5.21)

where An is the area of the parameter rectangle of the considered ADS node, Ntrm is
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the number of trimmed samples, and N is the total number of samples.

During the ADS construction we calculate Atrm for each leaf and apply curvature
based construction only if the following equation holds for an interior node:

Al,trm + Ar,trm

A
< β (5.22)

where Al,trm and Ar,trm are the trimmed parameter domain area of the left and the
right child respectively, A is the total parameter domain area of the considered Bézier
patch, and β is the control coefficient. During experiments we have found that β = 0.2
is a good choice for the control coefficient.

The ADS building procedure presented in Section 5.3.2 and modified in Sections
5.3.3, 5.4.3, and 5.5.5 must be again modified as follows (notice that only the part
presented in Section 5.3.3 must be modified):

Algorithm 5.17 (Adaptive ADS construction for trimmed patches)

static float S; //parameter domain area of the initial Bezier patch.

HBox∗ HIERARCHY(const BSurface &s, int level, const float alpha,

const float beta, const TrimmingList &tlist, float &Cmax, float &TA)

{
/∗ Build hierarchical axis aligned bounding box for a given surface ∗/
/∗
Input: ...

@beta - coefficient to control the ADS construction for

trimmed surfaces;

@TA - auxiliary variable for propagating trimmed parameter

domain area between levels of the tree.

Output: hierarchical data structure;

∗/

...

if (level != 0)

{
...

float Cleft = 0.0, Cright = 0.0;

float TAleft = 0.0, TAright = 0.0;

hbox->left = HIERARCHY(a, level-1, alpha, beta, tlist, Cleft, Aleft);

hbox->right = HIERARCHY(b, level-1, alpha, beta, tlist, Cright, Aright);

TA = TAleft + TAright;

if ((hbox->left == NULL) & (hbox->right == NULL))

{
...

}
...

Cmax = (Cleft > Cright) ? Cleft : Cright;

hbox->bbox = hbox->left->bbox + hbox->right->bbox;

if ((TA / S) > beta)

return hbox;

D = hbox->bbox->GetDiagonalLength();

if (D > (alpha / Cmax))

return hbox;

...

}
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else
{

...

s.GetTrimmedAreaAndMaxCurvature(TA, Cmax);

}
...

}

Notice again that the value of maximum curvature and the approximate value of
trimmed parameter domain area can be calculated using the same sample points in
parameter space.

In the framework presented above S is the static float variable which must be set
to the parameter domain area of the initial Bézier patch before executing the routine
for ADS construction for this patch.

In the presented technique we have assumed that surface parameterization is uni-
form. The better performance can be achieved if we consider surface area in 3D instead
of taking the area of parameter domain. The surface area in 3D can be computed ap-
proximately via triangulation, but such approach requires more preprocessing time.

5.7 Numerical Robustness

Bézier surface and Bézier curve evaluation routines can be implemented either using
direct formulae or using de Casteljau algorithm for subdivision (see Section 2.3.3).
The latter approach is preferable because it is faster than the former one. Moreover,
when using de Casteljau algorithm there is a way for evaluation of point on a surface
and partial derivatives at this point at the same time (using only two de Casteljau
subdivisions: one in u direction and one in v direction). Control points of one of the
four obtained subpatches can be used in order to evaluate the initial Bézier surface.

In order to avoid numerical round-off errors when evaluating a surface at the borders
of its parameter domain, one always want to take the subpatch which has the largest
parameter subdomain as shown in Figure 5.33.

~dv

~du

p

Figure 5.33: Surface evaluation via de Casteljau subdivision.

Another approach would be to use always the same subpatch (let us say one which
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corresponds to the upper right subdomain), but perturb the subdivision point away
from the border of parameter space on ε distance in order to avoid computation of zero
length partial derivatives vectors.

Notice that partial derivatives evaluation is critical for Newton’s iteration method
(see Section 4.4) of finding the nearest ray-rational Bézier patch intersection, because
projected rational Bézier patch is evaluated on each iteration in order to converge to
the right solution.

Another numerical problem happens in the case of wrongly modeled scenes where
two neighbor patches are not ”glued” properly and holes between them are visible on
the result image. There is one way to avoid these visible cracks - to enlarge each
NURBS surface along the surface borders on ε value. It can be done as follows:

1. we move all border points of u direction (along the vector through the point and
the neighbor point) in v direction on ε value away from surface;

2. we move all border points of v direcation (along the vector through the point and
the neighbor point) in u direction on ε value away from surface.

This idea is shown in Figure 5.35 where black points correspond to the border points
of the patch before the enlargement, blue points correspond to the border points after
the first step, and red points correspond to the border points after the second step.

Contours before enlarging

Contours after enlarging

Parameter Domain of NURBS Surface

vmax

vmin

umin umax

Figure 5.34: Enlarging NURBS sur-
faces.

Figure 5.35: Enlarging trimming re-
gions.

Sometimes cracks are caused by wrongly modeled trimming contours. In this case
we can slightly enlarge regions and diminish holes in order to prevent visible artifacts
on the final image. As kind of a trimming contour (hole or region) is determined by its
orientation (or orientation of normals of its segments) everything what we want to do

103



104 CHAPTER 5. PRACTICAL RAY TRACING TRIMMED NURBS SURFACES

- it is to move all trimming contour points along the negative direction of normals at
this points on ε distance (see Figure 5.35). In the case of polylines we move polyline
vertices and in the case of rational Bézier curve we move its control points. Here we
suppose the normal at the point pi to have orientation of the edge pi − pi+1 rotated
by 90 degrees in the counter-clockwise direction. Notice that normal at each point is
equal to the normalized sum of normals of two adjacent edges.

However, such approach may be inconvenient in the case of non-uniform parame-
terization when too small area in parameter space of a surface corresponds to relatively
large area of the surface. One needs to take care when using the proposed trick.

Even with the proposed tricks the result images may still have artifacts which
are caused by precision problem of floating point representation. Such artifacts are
often visible as dots of wrong color because intersections at some points were wrongly
computed. One way to avoid such problem is to use doubles instead of the floats. But
this approach doubles the amount of memory for storing rational Bézier patches and
ADS trees. Moreover, arithmetic operations with double numbers are slower than with
float numbers.

The mentioned artifacts can be also more or less avoided when using antialiasing
techniques (shooting more than one ray per pixel in order to obtain its color). As
antialiasing techniques are used at any rate in order to improve quality of result images
this approach is more preferable.

5.8 Comparison and Results

In Section 5.2 we described reasons for subdividing NURBS surfaces into rational Bézier
patches on the preprocessing step of ray tracing. An efficient data structure for accel-
erating ray-rational Bézier patch intersection test was described in Section 5.3. Section
5.4 showed how this data structure can be utilized when using Bézier clipping method
and Newton’s iteration method for finding ray-rational Bézier patch intersection. Both
methods were implemented within a library (myNURBS) which is supposed to be used
in ray tracing applications. In order to test the implementation, the library was in-
tegrated into GOLEM [1] ray tracing system. Tests have been performed on Intel(R)
Xeon(TM) CPU 3.06GHz (512KB cache) with an image resolution 800 × 800. Ray
casting technique has been used in order to generate images. Kd-trees were used as
acceleration spatial data structure. Tables 5.1 – 5.10 show the testing results for scene
models which do not have trimming regions2 for different scene models in VRML‘97

2the tables use the following notations:
Preproc. Time, Sec - preprocessing time in seconds for building ADS trees;
Rendering Time, Sec - rendering time in seconds;
A1 - adaptive ADS of maximum level 7 and flatness coefficient 0.5;
A2 - adaptive ADS of maximum level 7 and flatness coefficient 0.25.
MA per HRay - number of mail boxes accesses per hit ray;
BX per HRay - number of bounding boxes tests per hit ray;
BH per HRay - number of bounding hierarchy (ADS) traverses per hit ray;
BZ per HRay - number of Bézier patch tests per hit ray;
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format.

Ray tracing rational Bézier patches works in the following way. Each ray has the
minimum and the maximum allowed distance from the origin where intersection points
are accessed (it is done for efficient acceleration spatial data structure traverse). Let
us call this interval the interval of interest.

At first, mail box (cache) of a patch is accessed in order to determine whether
the intersection test of the current ray with the patch has already been performed (it
might happen during acceleration spatial data structure traverse). If the mail box test
successes, the result (intersection or miss) is obtained from the mail box cache.

If mail box test fails then the ray is tested against the bounding box of the patch.
If the bounding box test fails, we have to update the mail box cache (with miss) only

if the ray misses bounding box completely (not only on the interval of interest), i.e., of
interval (0, inf). In any case the miss is reported.

If the ray intersects the bounding box then the ray traverses the acceleration data
structure (ADS) of the patch not taking the interval of interest into account, i.e., on
the whole interval (0, inf) (in order to be able to update the mail box cache with the
result of the traverse).

If the ray reaches leaf bounding box of the ADS tree then it is tested against the
patch, i.e., the ray-rational Bézier patch intersection test is performed. Notice that
during the ADS traverse ray-rational Bézier patch intersection test can be performed
many times3.

The result of the ADS traverse (intersection or miss) is written in the mail box
cache of the patch irrespective of the interval of interest, i.e., even if the obtained
intersection is outside this interval. But the intersection is reported only if the obtained
intersection is inside the interval of interest. Otherwise the miss is reported.

Using the notations of the Tables 5.1 – 5.10 one can write the scheme for ray tracing
rational Bézier patches:

MA → BX → BH 	 BZ (5.23)

Tables 5.11 – 5.20 show the testing results for scene models which have trimming
regions4.

Tests have been performed for different depth levels of the ADS trees. Higher
levels of the ADS trees have not been tested for trimmed scenes because of the time
consuming preprecessing step. Adaptively constructed ADS trees (using curvature
based subdivision described in Section 5.3.3) have also been tested. 9 samples have
been used in order to estimate maximal curvature of the surface patch enclosed in each

Avg Its/Any BZ Call - average number of iterations per one Bézier patch test;
Avg Its/Scs BZ Call - maximum number of iterations per one success Bézier patch test;
Memory, Mb - amount of memory for storing ADS;
Artifacts - visible artifacts on the final image.

3even for one leaf the intersection test can be performed twice if Newton’s iteration method is used.
4the tables use additionally the following notations:

Trimming Tests (TT) - total number of executed trimming tests;
Hit TT/Total TT - ratio of the number of trimming tests which return hit to the total number of
trimming tests.
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leaf. Both methods for ray tracing rational Bézier patches discussed in this Master
Thesis (Bézier clipping method and Newton’s iteration method) have been utilized for
the testing purposes. Both approaches for ADS construction (with ADS trees and with
ADS leaves only) have been tested. Notice that Newton’s iteration method gives wrong
images in the case of ”trimmed” scenes because of the low depth of the ADS trees and
is given only for comparison.

Test shows that Newton’s iteration method is faster than Bézier clipping method
almost for all scenes and levels of ADS. The approach with ADS leaves only is in general
faster than approach with ADS hierarchy. The best timings have been achieved with
the maximum level of ADS.

Notice that Newton’s iteration method gives wrong images for lower levels of ADS.
In the case of complex scenes with thousands of NURBS surfaces construction of high
level ADS is time consuming, therefore Newton’s iteration method is unacceptable for
such scenes. Bézier clipping method computes right images for any level of hierarchy
and is therefore of more general use.

The adaptively constructed ADS do not give the best timings, but using the adap-
tively constructed ADS one can achieve the equilibrium between consuming of memory
and speed performance.

Tests show that the ADS reduction for trimmed scene models significantly improves
the rendering performance, because not only unnecessary trimming tests are skipped,
but many unnecessary ray-Bézier patch intersections are avoided.
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.00 0.01 0.02 0.03 0.06 0.13 0.27 0.54 0.79 0.86
Rendering Time, Sec 4.42 4.19 3.65 3.78 3.52 3.21 3.09 3.02 3.39 3.10

MA per HRay 9.35 11.10 9.49 9.48 10.78 9.41 9.40 9.39 9.39 9.39
BX per HRay 9.00 10.46 9.20 9.19 10.18 9.12 9.12 9.10 9.10 9.10
BH per HRay 2.66 2.81 2.66 2.66 2.78 2.66 2.66 2.64 2.64 2.64
BZ per HRay 2.66 2.24 1.76 1.64 1.65 1.52 1.49 1.46 1.48 1.46

Avg Its/Any BZ Call 2.71 3.09 3.38 3.31 3.14 2.82 2.56 2.41 3.26 2.73
Avg Its/Scs BZ Call 5.54 5.18 4.92 4.55 4.10 3.62 3.23 3.02 4.14 3.42
ADS Memory, Mb 0.00 0.01 0.02 0.04 0.09 0.19 0.37 0.75 0.23 0.42
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.00 0.01 0.01 0.03 0.08 0.14 0.27 0.52 0.80 0.86
Rendering Time, Sec 4.53 3.84 3.35 3.12 2.78 2.75 2.52 2.50 2.80 2.61

MA per HRay 9.59 7.32 7.11 6.47 4.90 5.06 4.85 4.51 4.72 4.42
BX per HRay 9.20 6.94 6.67 6.02 4.47 4.64 4.40 4.10 4.21 3.95
BH per HRay 2.74 2.16 1.72 1.55 1.43 1.39 1.36 1.34 1.38 1.34
BZ per HRay 2.74 2.16 1.72 1.55 1.43 1.39 1.36 1.34 1.38 1.34

Avg Its/Any BZ Call 2.74 3.04 3.34 3.28 3.03 2.75 2.50 2.36 3.23 2.70
Avg Its/Scs BZ Call 5.57 5.18 4.92 4.53 4.01 3.59 3.22 3.02 4.17 3.44
ADS Memory, Mb 0.00 0.01 0.01 0.03 0.06 0.11 0.22 0.44 0.14 0.25
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.01 0.01 0.02 0.03 0.06 0.14 0.26 0.54 0.79 0.87
Rendering Time, Sec 4.00 3.44 2.78 3.45 2.52 2.31 2.26 2.21 2.33 2.24

MA per HRay 9.32 11.05 9.44 9.43 10.72 9.36 9.36 9.34 9.34 9.34
BX per HRay 8.97 10.41 9.15 9.14 10.13 9.08 9.08 9.06 9.06 9.06
BH per HRay 2.66 2.80 2.64 2.64 2.76 2.64 2.64 2.62 2.63 2.62
BZ per HRay 3.54 2.86 2.13 1.90 1.82 1.63 1.57 1.50 1.60 1.53

Avg Its/Any BZ Call 2.29 2.11 1.90 1.75 1.57 1.38 1.23 1.11 1.52 1.26
Avg Its/Scs BZ Call 2.54 2.21 1.93 1.75 1.57 1.38 1.23 1.11 1.52 1.26
ADS Memory, Mb 0.01 0.02 0.03 0.07 0.15 0.30 0.60 1.19 0.36 0.67
Visible Artifacts many some some no no no no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.00 0.01 0.02 0.04 0.07 0.09 0.27 0.56 0.79 0.90
Rendering Time, Sec 4.04 3.12 2.49 2.22 2.00 1.90 1.81 1.77 1.96 1.85

MA per HRay 9.56 7.28 7.06 6.42 4.86 5.02 4.79 4.45 4.68 4.36
BX per HRay 9.17 6.90 6.63 5.99 4.44 4.61 4.37 4.06 4.18 3.92
BH per HRay 2.74 2.13 1.69 1.54 1.41 1.37 1.34 1.32 1.36 1.32
BZ per HRay 3.65 2.72 2.05 1.78 1.57 1.48 1.41 1.37 1.48 1.40

Avg Its/Any BZ Call 2.29 2.10 1.90 1.74 1.54 1.36 1.22 1.10 1.51 1.26
Avg Its/Scs BZ Call 2.54 2.19 1.92 1.74 1.53 1.36 1.21 1.10 1.51 1.25
ADS Memory, Mb 0.01 0.01 0.03 0.06 0.11 0.22 0.44 0.89 0.27 0.50
Visible Artifacts many some some no no no no no no no

File Name: Couch.wrl
Number of Patches: 70
Number of Control Points: 1120
Average Surface Degree: 3.00
Screen Coverage: 13%

Table 5.1: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Couch.wrl model. Copyright 1999 Lunatic interactive, Berlin).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.01 0.02 0.03 0.06 0.12 0.26 0.55 1.09 1.55 1.71
Rendering Time, Sec 11.70 9.67 9.14 9.03 8.86 8.70 8.25 7.89 8.65 8.54

MA per HRay 23.54 9.84 9.63 9.60 9.47 9.53 9.79 9.52 9.52 9.52
BX per HRay 22.58 9.02 8.84 8.82 8.74 8.77 9.01 8.77 8.76 8.77
BH per HRay 2.34 2.08 2.05 2.03 2.03 2.03 2.03 2.03 2.03 2.03
BZ per HRay 2.34 1.97 1.90 1.89 1.84 1.81 1.77 1.76 1.80 1.78

Avg Its/Any BZ Call 3.31 3.17 2.99 2.87 2.81 2.67 2.31 1.96 2.77 2.62
Avg Its/Scs BZ Call 6.03 5.46 5.12 4.94 4.77 4.49 3.79 3.19 4.60 4.32
ADS Memory, Mb 0.01 0.02 0.04 0.09 0.19 0.38 0.76 1.52 0.46 0.88
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.01 0.02 0.04 0.07 0.10 0.27 0.55 1.10 1.54 1.74
Rendering Time, Sec 12.20 9.43 8.56 8.26 8.08 7.84 7.33 7.11 7.87 7.72

MA per HRay 30.57 12.08 9.00 6.64 6.50 6.90 7.16 6.96 6.33 6.56
BX per HRay 28.25 10.64 7.57 5.35 5.25 5.66 5.89 5.74 5.00 5.21
BH per HRay 2.46 1.91 1.80 1.77 1.71 1.69 1.66 1.66 1.68 1.66
BZ per HRay 2.46 1.91 1.80 1.77 1.71 1.69 1.66 1.66 1.68 1.66

Avg Its/Any BZ Call 3.21 3.21 3.08 2.99 2.94 2.77 2.35 2.00 2.90 2.73
Avg Its/Scs BZ Call 6.03 5.45 5.12 4.94 4.76 4.47 3.71 3.15 4.62 4.33
ADS Memory, Mb 0.01 0.01 0.03 0.06 0.11 0.23 0.45 0.90 0.28 0.52
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.01 0.02 0.03 0.06 0.14 0.27 0.56 1.07 1.56 1.72
Rendering Time, Sec 9.30 7.40 7.05 6.81 6.60 6.40 6.19 5.99 6.61 6.34

MA per HRay 23.63 9.88 9.66 9.60 9.45 9.49 9.75 9.48 9.48 9.48
BX per HRay 22.66 9.04 8.86 8.81 8.72 8.74 8.98 8.74 8.74 8.74
BH per HRay 2.36 2.09 2.06 2.03 2.03 2.02 2.03 2.02 2.02 2.02
BZ per HRay 2.93 2.37 2.23 2.14 2.04 1.96 1.87 1.82 2.02 1.91

Avg Its/Any BZ Call 2.31 2.10 1.98 1.85 1.73 1.59 1.42 1.24 1.77 1.58
Avg Its/Scs BZ Call 2.55 2.23 2.07 1.91 1.76 1.60 1.40 1.21 1.80 1.59
ADS Memory, Mb 0.01 0.03 0.07 0.15 0.30 0.60 1.21 2.42 0.74 1.40
Visible Artifacts huge many many some no no no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.01 0.02 0.03 0.07 0.14 0.27 0.56 1.14 1.57 1.74
Rendering Time, Sec 9.88 7.15 6.50 6.06 5.66 5.45 5.20 5.06 5.68 5.38

MA per HRay 30.63 12.09 9.05 6.63 6.46 6.83 7.07 6.84 6.26 6.46
BX per HRay 28.32 10.65 7.61 5.35 5.23 5.61 5.83 5.67 4.95 5.15
BH per HRay 2.47 1.91 1.80 1.76 1.69 1.67 1.63 1.62 1.65 1.63
BZ per HRay 3.07 2.27 2.07 1.95 1.85 1.78 1.72 1.68 1.84 1.75

Avg Its/Any BZ Call 2.29 2.11 1.99 1.85 1.73 1.57 1.39 1.20 1.76 1.57
Avg Its/Scs BZ Call 2.56 2.22 2.05 1.88 1.73 1.56 1.36 1.17 1.78 1.56
ADS Memory, Mb 0.01 0.03 0.06 0.11 0.23 0.45 0.90 1.80 0.55 1.04
Visible Artifacts huge many many some no no no no no no

File Name: Parfum.wrl
Number of Patches: 142
Number of Control Points: 2144
Average Surface Degree: 2.89
Screen Coverage: 34%

Table 5.2: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Parfum.wrl model. Blaxxun interactive - Intel NURBS export).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.01 0.02 0.04 0.06 0.15 0.32 0.60 1.28 1.71 1.91
Rendering Time, Sec 12.80 11.50 11.00 10.60 10.40 9.99 9.61 9.37 10.10 10.20

MA per HRay 9.01 8.32 8.40 8.43 8.38 8.37 8.37 8.37 8.37 8.37
BX per HRay 7.93 7.21 7.28 7.35 7.27 7.26 7.26 7.26 7.25 7.25
BH per HRay 2.71 2.60 2.61 2.59 2.57 2.57 2.57 2.56 2.56 2.56
BZ per HRay 2.71 2.51 2.45 2.37 2.28 2.23 2.19 2.17 2.25 2.19

Avg Its/Any BZ Call 3.13 2.81 2.59 2.51 2.44 2.25 2.02 1.82 2.31 1.96
Avg Its/Scs BZ Call 6.59 5.74 5.22 4.98 4.73 4.28 3.77 3.32 4.44 3.65
ADS Memory, Mb 0.01 0.02 0.05 0.10 0.21 0.43 0.86 1.72 0.49 0.88
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.01 0.02 0.04 0.09 0.12 0.31 0.65 1.35 1.75 1.91
Rendering Time, Sec 13.40 11.00 10.30 10.10 9.41 8.99 8.72 8.33 9.25 8.64

MA per HRay 11.91 13.56 11.53 9.12 9.25 8.88 8.95 8.90 8.59 8.89
BX per HRay 10.17 11.85 9.80 7.46 7.51 7.23 7.27 7.27 6.96 7.21
BH per HRay 2.87 2.42 2.33 2.25 2.17 2.14 2.11 2.08 2.14 2.10
BZ per HRay 2.87 2.42 2.33 2.25 2.17 2.14 2.11 2.08 2.14 2.10

Avg Its/Any BZ Call 2.95 2.84 2.65 2.56 2.48 2.27 2.03 1.84 2.35 1.98
Avg Its/Scs BZ Call 6.58 5.73 5.23 4.98 4.73 4.27 3.76 3.32 4.43 3.64
ADS Memory, Mb 0.01 0.02 0.03 0.06 0.13 0.26 0.51 1.02 0.30 0.52
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.01 0.02 0.03 0.08 0.15 0.31 0.62 1.25 1.75 1.88
Rendering Time, Sec 10.50 9.47 9.19 8.87 8.31 8.07 7.77 7.53 8.12 8.31

MA per HRay 9.41 8.41 8.41 8.41 8.36 8.35 8.34 8.34 8.35 8.34
BX per HRay 8.24 7.27 7.29 7.33 7.25 7.24 7.24 7.23 7.24 7.24
BH per HRay 2.83 2.62 2.61 2.59 2.57 2.56 2.56 2.56 2.56 2.56
BZ per HRay 3.52 3.06 2.93 2.75 2.58 2.46 2.35 2.28 2.49 2.35

Avg Its/Any BZ Call 2.37 2.29 2.19 2.08 1.94 1.80 1.64 1.49 1.79 1.60
Avg Its/Scs BZ Call 2.81 2.61 2.42 2.22 2.02 1.84 1.66 1.48 1.84 1.61
ADS Memory, Mb 0.02 0.04 0.08 0.17 0.34 0.68 1.37 2.75 0.79 1.40
Visible Artifacts huge huge many some some some no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.01 0.02 0.04 0.08 0.16 0.30 0.65 1.30 1.71 1.92
Rendering Time, Sec 10.80 9.00 8.38 7.83 7.27 6.98 6.68 6.38 7.01 6.64

MA per HRay 12.47 13.70 11.56 9.10 9.21 8.83 8.88 8.80 8.55 8.82
BX per HRay 10.56 11.94 9.82 7.45 7.49 7.20 7.22 7.21 6.93 7.17
BH per HRay 3.01 2.44 2.33 2.23 2.14 2.10 2.07 2.03 2.11 2.06
BZ per HRay 3.73 2.89 2.70 2.52 2.36 2.27 2.20 2.13 2.28 2.18

Avg Its/Any BZ Call 2.35 2.31 2.22 2.09 1.93 1.79 1.63 1.47 1.78 1.59
Avg Its/Scs BZ Call 2.83 2.59 2.39 2.18 1.98 1.80 1.62 1.45 1.80 1.58
ADS Memory, Mb 0.02 0.03 0.06 0.13 0.26 0.51 1.02 2.04 0.59 1.04
Visible Artifacts huge huge many some some some no no no no

File Name: Duck.wrl
Number of Patches: 161
Number of Control Points: 2576
Average Surface Degree: 3.00
Screen Coverage: 36%

Table 5.3: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Duck.wrl model. Blaxxun interactive - Intel NURBS export).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.03 0.05 0.10 0.17 0.36 0.74 1.38 2.84 4.93 4.90
Rendering Time, Sec 12.20 7.81 5.92 4.92 4.51 4.36 4.21 4.11 4.11 4.16

MA per HRay 63.54 58.10 58.09 58.08 58.06 58.06 58.05 58.01 58.01 58.01
BX per HRay 63.53 58.07 58.07 58.06 58.04 58.04 58.03 57.99 57.99 57.99
BH per HRay 29.03 28.71 28.71 28.69 28.68 28.68 28.66 28.67 28.67 28.67
BZ per HRay 29.03 14.99 8.60 5.50 4.07 3.54 3.50 3.43 3.44 3.43

Avg Its/Any BZ Call 1.11 1.34 1.71 2.15 2.57 2.80 2.35 2.05 2.05 2.05
Avg Its/Scs BZ Call 5.13 5.01 4.99 4.82 4.72 4.65 3.86 3.24 3.24 3.24
ADS Memory, Mb 0.02 0.05 0.11 0.23 0.47 0.95 1.92 3.85 3.82 3.85
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.03 0.06 0.09 0.19 0.39 0.74 1.49 2.83 5.05 5.03
Rendering Time, Sec 12.10 6.69 4.12 2.55 1.98 1.79 1.62 1.49 1.49 1.52

MA per HRay 83.62 33.93 19.79 11.01 10.96 11.26 7.32 4.99 5.14 4.99
BX per HRay 82.63 32.49 18.85 10.04 10.06 10.39 6.28 3.98 4.10 3.98
BH per HRay 29.12 14.79 7.79 4.08 2.66 2.16 2.04 1.94 1.95 1.94
BZ per HRay 29.12 14.79 7.79 4.08 2.66 2.16 2.04 1.94 1.95 1.94

Avg Its/Any BZ Call 1.10 1.33 1.66 2.07 2.52 2.81 2.31 2.03 2.03 2.03
Avg Its/Scs BZ Call 5.15 5.02 5.00 4.85 4.75 4.69 3.87 3.24 3.24 3.24
ADS Memory, Mb 0.02 0.04 0.07 0.14 0.29 0.57 1.14 2.29 2.27 2.29
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.03 0.06 0.10 0.18 0.36 0.72 1.40 2.91 4.93 4.92
Rendering Time, Sec 11.00 7.32 5.49 4.33 3.74 3.52 3.51 3.46 3.47 3.47

MA per HRay 76.43 61.43 57.27 56.77 56.70 56.70 56.68 56.67 56.67 56.67
BX per HRay 76.41 61.40 57.25 56.75 56.68 56.68 56.66 56.65 56.65 56.65
BH per HRay 34.90 30.33 28.30 28.03 28.00 28.00 27.98 27.99 27.99 27.99
BZ per HRay 39.48 18.72 10.60 6.84 4.88 4.05 3.84 3.70 3.71 3.70

Avg Its/Any BZ Call 1.69 1.86 1.84 1.72 1.57 1.49 1.52 1.34 1.35 1.34
Avg Its/Scs BZ Call 2.99 2.50 2.16 1.89 1.66 1.58 1.54 1.33 1.33 1.33
ADS Memory, Mb 0.04 0.08 0.18 0.37 0.76 1.53 3.06 6.14 6.09 6.14
Visible Artifacts huge huge huge many some no no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.03 0.06 0.11 0.19 0.37 0.72 1.46 2.88 4.99 5.04
Rendering Time, Sec 11.10 6.37 3.76 2.21 1.56 1.32 1.21 1.14 1.16 1.15

MA per HRay 100.59 35.97 19.50 10.68 10.59 10.82 6.95 4.66 4.81 4.66
BX per HRay 99.38 34.35 18.57 9.76 9.75 10.02 6.01 3.76 3.88 3.76
BH per HRay 35.00 15.64 7.66 3.95 2.56 2.06 1.94 1.83 1.84 1.83
BZ per HRay 39.61 18.41 9.50 4.99 3.10 2.36 2.14 1.98 1.99 1.98

Avg Its/Any BZ Call 1.69 1.85 1.86 1.78 1.65 1.59 1.51 1.33 1.34 1.33
Avg Its/Scs BZ Call 3.00 2.51 2.16 1.86 1.62 1.54 1.44 1.27 1.27 1.27
ADS Memory, Mb 0.04 0.07 0.14 0.29 0.57 1.14 2.29 4.57 4.53 4.57
Visible Artifacts huge huge huge many some no no no no no

File Name: Dna.wrl
Number of Patches: 360
Number of Control Points: 5760
Average Surface Degree: 3.00
Screen Coverage: 5%

Table 5.4: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Dna.wrl model. Model courtesy of Mr. Phillip Sand Hansel II).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.05 0.08 0.13 0.27 0.49 1.10 2.23 4.49 5.63 6.17
Rendering Time, Sec 7.58 6.71 6.41 6.17 6.02 5.81 5.82 5.79 6.23 5.98

MA per HRay 8.37 8.30 8.24 8.22 8.22 8.20 8.21 8.21 8.21 8.21
BX per HRay 7.61 7.57 7.51 7.53 7.52 7.52 7.53 7.52 7.52 7.52
BH per HRay 2.50 2.48 2.47 2.48 2.48 2.47 2.47 2.47 2.47 2.47
BZ per HRay 2.50 2.27 2.17 2.10 2.07 2.03 2.00 1.98 2.10 2.03

Avg Its/Any BZ Call 2.73 2.49 2.36 2.16 1.95 1.76 1.71 1.69 2.22 1.98
Avg Its/Scs BZ Call 5.32 4.89 4.48 4.02 3.54 3.14 3.00 2.98 4.14 3.57
ADS Memory, Mb 0.03 0.08 0.17 0.36 0.74 1.50 3.03 6.07 0.76 1.94
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.05 0.09 0.15 0.30 0.51 1.16 2.23 4.50 5.65 6.12
Rendering Time, Sec 7.93 6.42 6.00 5.70 5.51 5.25 5.20 5.18 5.85 5.46

MA per HRay 13.82 8.41 8.04 7.72 7.88 7.74 6.47 6.51 7.59 7.42
BX per HRay 11.99 6.87 6.74 6.40 6.68 6.54 5.28 5.33 6.11 6.10
BH per HRay 2.70 2.21 2.08 2.01 1.99 1.97 1.94 1.94 2.02 1.96
BZ per HRay 2.70 2.21 2.08 2.01 1.99 1.97 1.94 1.94 2.02 1.96

Avg Its/Any BZ Call 2.56 2.53 2.43 2.22 1.99 1.79 1.75 1.71 2.28 2.03
Avg Its/Scs BZ Call 5.32 4.89 4.47 4.00 3.52 3.13 3.00 2.98 4.14 3.57
ADS Memory, Mb 0.03 0.06 0.11 0.22 0.45 0.90 1.80 3.60 0.46 1.16
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.05 0.08 0.16 0.28 0.52 1.13 2.27 4.41 5.63 6.12
Rendering Time, Sec 6.63 5.82 5.44 5.17 4.93 4.73 5.29 4.50 5.27 4.90

MA per HRay 8.89 8.56 8.34 8.25 8.18 8.15 8.16 8.16 8.17 8.16
BX per HRay 8.03 7.79 7.60 7.57 7.49 7.48 7.50 7.48 7.49 7.49
BH per HRay 2.67 2.55 2.49 2.48 2.46 2.46 2.46 2.46 2.46 2.46
BZ per HRay 3.52 2.98 2.69 2.50 2.35 2.23 2.13 2.06 2.50 2.29

Avg Its/Any BZ Call 2.14 1.96 1.83 1.68 1.51 1.35 1.19 1.08 1.71 1.49
Avg Its/Scs BZ Call 2.33 2.06 1.87 1.69 1.50 1.33 1.17 1.06 1.71 1.47
ADS Memory, Mb 0.06 0.13 0.28 0.59 1.19 2.40 4.83 9.67 1.23 3.09
Visible Artifacts huge huge many some no no no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.05 0.09 0.15 0.26 0.57 1.08 2.29 4.52 5.67 6.14
Rendering Time, Sec 7.02 5.47 4.94 4.55 4.31 4.04 4.10 3.79 4.69 4.27

MA per HRay 14.58 8.70 8.12 7.74 7.81 7.63 6.36 6.38 7.54 7.32
BX per HRay 12.56 7.11 6.81 6.43 6.64 6.47 5.21 5.25 6.08 6.05
BH per HRay 2.87 2.28 2.09 2.01 1.96 1.93 1.89 1.89 2.00 1.92
BZ per HRay 3.77 2.85 2.51 2.32 2.19 2.09 2.01 1.97 2.34 2.14

Avg Its/Any BZ Call 2.12 1.95 1.82 1.66 1.49 1.32 1.17 1.06 1.70 1.47
Avg Its/Scs BZ Call 2.34 2.04 1.85 1.65 1.46 1.29 1.14 1.04 1.69 1.44
ADS Memory, Mb 0.06 0.11 0.22 0.45 0.90 1.80 3.60 7.20 0.93 2.31
Visible Artifacts huge huge many some no no no no no no

File Name: Head.wrl
Number of Patches: 567
Number of Control Points: 9072
Average Surface Degree: 3.00
Screen Coverage: 23%

Table 5.5: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Head.wrl model. Model courtesy of Charles Adams).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.07 0.11 0.17 0.35 0.69 1.38 2.75 5.55 7.59 8.48
Rendering Time, Sec 4.54 3.99 3.86 3.62 3.49 3.39 3.37 3.37 3.48 3.43

MA per HRay 9.02 8.26 8.39 8.29 8.13 8.05 8.14 8.11 8.10 8.10
BX per HRay 8.27 7.59 7.72 7.65 7.40 7.33 7.41 7.39 7.38 7.38
BH per HRay 2.34 2.26 2.25 2.25 2.20 2.20 2.20 2.20 2.20 2.20
BZ per HRay 2.34 2.04 1.96 1.90 1.82 1.80 1.77 1.75 1.82 1.77

Avg Its/Any BZ Call 3.04 3.03 2.90 2.53 2.25 2.09 2.07 2.08 2.30 2.09
Avg Its/Scs BZ Call 5.18 4.86 4.51 3.82 3.31 3.02 2.98 2.96 3.38 3.00
ADS Memory, Mb 0.04 0.09 0.21 0.45 0.93 1.88 3.78 7.58 1.90 4.07
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.07 0.11 0.21 0.35 0.72 1.39 2.79 5.70 7.62 8.53
Rendering Time, Sec 4.50 3.93 3.44 3.22 2.99 2.90 2.85 2.89 3.02 2.88

MA per HRay 13.60 7.08 6.75 6.18 6.20 6.23 5.07 5.12 6.24 5.02
BX per HRay 11.94 5.72 5.44 4.94 5.00 5.03 3.91 3.94 4.96 3.80
BH per HRay 2.40 1.89 1.75 1.68 1.63 1.62 1.58 1.57 1.63 1.57
BZ per HRay 2.40 1.89 1.75 1.68 1.63 1.62 1.58 1.57 1.63 1.57

Avg Its/Any BZ Call 2.95 3.07 2.97 2.58 2.27 2.12 2.11 2.11 2.33 2.13
Avg Its/Scs BZ Call 5.18 4.86 4.50 3.80 3.29 3.02 2.98 2.96 3.36 3.00
ADS Memory, Mb 0.04 0.07 0.14 0.28 0.56 1.12 2.25 4.49 1.14 2.42
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.07 0.11 0.19 0.32 0.67 1.40 2.82 5.75 7.75 8.48
Rendering Time, Sec 3.32 3.02 3.04 2.75 2.59 2.51 2.46 2.43 2.67 2.52

MA per HRay 9.25 8.20 8.31 8.20 8.01 7.93 8.01 7.99 8.00 7.98
BX per HRay 8.44 7.54 7.66 7.57 7.31 7.24 7.31 7.30 7.30 7.29
BH per HRay 2.38 2.24 2.23 2.22 2.17 2.17 2.17 2.17 2.17 2.17
BZ per HRay 2.87 2.40 2.23 2.10 1.94 1.85 1.77 1.72 1.93 1.79

Avg Its/Any BZ Call 1.96 1.87 1.73 1.55 1.36 1.18 1.06 0.99 1.36 1.12
Avg Its/Scs BZ Call 2.12 1.92 1.74 1.53 1.33 1.15 1.04 0.97 1.32 1.09
ADS Memory, Mb 0.07 0.16 0.35 0.73 1.49 3.00 6.03 12.08 3.03 6.49
Visible Artifacts huge huge many some some some no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.07 0.11 0.21 0.39 0.76 1.38 2.88 5.70 7.63 8.55
Rendering Time, Sec 3.40 2.72 2.46 2.31 2.20 2.11 1.99 1.98 2.19 2.04

MA per HRay 13.86 7.02 6.65 6.05 6.00 5.98 4.80 4.84 6.05 4.77
BX per HRay 12.12 5.68 5.37 4.86 4.87 4.87 3.77 3.79 4.85 3.66
BH per HRay 2.45 1.87 1.72 1.65 1.58 1.56 1.51 1.51 1.58 1.51
BZ per HRay 2.95 2.18 1.93 1.81 1.69 1.63 1.56 1.54 1.68 1.56

Avg Its/Any BZ Call 1.95 1.87 1.72 1.53 1.34 1.15 1.04 0.98 1.33 1.09
Avg Its/Scs BZ Call 2.11 1.89 1.70 1.49 1.29 1.11 1.01 0.96 1.28 1.05
ADS Memory, Mb 0.07 0.14 0.28 0.56 1.12 2.25 4.49 8.99 2.27 4.84
Visible Artifacts huge huge many some some some no no no no

File Name: Bunny.wrl
Number of Patches: 708
Number of Control Points: 11328
Average Surface Degree: 3.00
Screen Coverage: 14%

Table 5.6: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Bunny.wrl model. Model courtesy of Charles Adams).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.07 0.12 0.18 0.34 0.70 1.53 3.02 6.02 8.09 8.36
Rendering Time, Sec 8.05 7.58 7.48 7.01 6.73 6.68 6.73 6.75 7.13 6.86

MA per HRay 9.24 9.23 9.22 9.78 9.87 9.88 9.87 9.90 9.90 9.90
BX per HRay 8.28 8.30 8.25 8.84 8.90 8.90 8.90 8.92 8.92 8.92
BH per HRay 1.96 1.95 1.94 1.95 1.95 1.95 1.95 1.95 1.95 1.95
BZ per HRay 1.96 1.88 1.83 1.80 1.78 1.76 1.74 1.72 1.84 1.79

Avg Its/Any BZ Call 2.98 2.77 2.51 2.24 2.02 1.93 1.93 1.94 2.34 2.06
Avg Its/Scs BZ Call 5.13 4.67 4.13 3.62 3.20 3.02 3.00 2.99 3.84 3.29
ADS Memory, Mb 0.04 0.10 0.23 0.49 1.00 2.03 4.09 8.21 0.47 1.28
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.07 0.12 0.21 0.36 0.78 1.51 3.03 6.04 8.09 8.39
Rendering Time, Sec 8.28 7.43 6.83 6.50 6.23 6.12 6.08 6.09 6.75 6.33

MA per HRay 12.96 7.95 7.44 7.68 7.62 7.87 6.24 6.26 8.13 7.70
BX per HRay 11.24 6.50 6.05 6.27 6.25 6.46 4.93 4.95 6.68 6.23
BH per HRay 2.04 1.85 1.79 1.75 1.73 1.72 1.69 1.68 1.80 1.74
BZ per HRay 2.04 1.85 1.79 1.75 1.73 1.72 1.69 1.68 1.80 1.74

Avg Its/Any BZ Call 2.90 2.79 2.54 2.27 2.05 1.96 1.97 1.97 2.36 2.09
Avg Its/Scs BZ Call 5.13 4.66 4.12 3.60 3.19 3.02 3.00 2.99 3.83 3.27
ADS Memory, Mb 0.04 0.08 0.15 0.30 0.61 1.22 2.43 4.87 0.29 0.77
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.08 0.12 0.21 0.40 0.77 1.48 3.03 5.98 8.05 8.35
Rendering Time, Sec 6.32 5.95 5.81 5.45 5.24 5.09 5.01 4.97 5.66 5.40

MA per HRay 9.20 9.19 9.18 9.73 9.82 9.82 9.82 9.85 9.85 9.85
BX per HRay 8.25 8.27 8.22 8.81 8.86 8.86 8.86 8.89 8.89 8.89
BH per HRay 1.96 1.94 1.93 1.94 1.94 1.94 1.94 1.94 1.94 1.94
BZ per HRay 2.44 2.25 2.12 2.03 1.95 1.87 1.80 1.75 2.13 1.98

Avg Its/Any BZ Call 1.96 1.83 1.68 1.53 1.36 1.21 1.12 1.05 1.61 1.38
Avg Its/Scs BZ Call 2.00 1.83 1.67 1.50 1.33 1.17 1.08 1.02 1.58 1.33
ADS Memory, Mb 0.08 0.18 0.38 0.79 1.61 3.25 6.53 13.08 0.77 2.05
Visible Artifacts some some no no no no no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.08 0.12 0.22 0.40 0.77 1.55 3.11 6.10 8.03 8.40
Rendering Time, Sec 6.48 5.68 5.20 4.91 4.70 4.47 4.37 4.29 5.27 4.75

MA per HRay 12.91 7.90 7.38 7.60 7.52 7.73 6.10 6.11 8.07 7.61
BX per HRay 11.21 6.47 6.01 6.22 6.19 6.39 4.85 4.86 6.64 6.17
BH per HRay 2.03 1.84 1.77 1.73 1.70 1.68 1.65 1.64 1.78 1.71
BZ per HRay 2.55 2.18 2.02 1.91 1.84 1.78 1.71 1.68 2.03 1.86

Avg Its/Any BZ Call 1.95 1.83 1.68 1.52 1.34 1.19 1.10 1.04 1.60 1.35
Avg Its/Scs BZ Call 2.00 1.82 1.65 1.47 1.29 1.14 1.05 1.00 1.56 1.29
ADS Memory, Mb 0.08 0.15 0.30 0.61 1.22 2.43 4.87 9.74 0.59 1.55
Visible Artifacts some some no no no no no no no no

File Name: Monster.wrl
Number of Patches: 767
Number of Control Points: 12272
Average Surface Degree: 3.00
Screen Coverage: 30%

Table 5.7: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Monster.wrl model. Blaxxun interactive - Intel NURBS export).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.09 0.16 0.24 0.46 0.96 1.89 3.76 7.55 9.64 10.44
Rendering Time, Sec 10.20 8.89 8.34 7.93 7.62 7.62 7.27 7.20 7.88 7.41

MA per HRay 10.82 10.61 10.59 10.49 10.53 10.50 10.50 10.53 10.53 10.53
BX per HRay 9.86 9.67 9.67 9.58 9.61 9.58 9.56 9.61 9.61 9.61
BH per HRay 2.78 2.74 2.72 2.70 2.70 2.70 2.70 2.70 2.70 2.70
BZ per HRay 2.78 2.53 2.42 2.35 2.30 2.27 2.22 2.21 2.31 2.25

Avg Its/Any BZ Call 3.08 2.83 2.62 2.40 2.21 2.04 1.88 1.79 2.22 1.98
Avg Its/Scs BZ Call 6.21 5.50 4.90 4.41 4.01 3.65 3.29 3.09 4.04 3.52
ADS Memory, Mb 0.05 0.13 0.29 0.62 1.28 2.59 5.21 10.45 1.38 3.31
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.09 0.15 0.28 0.46 0.94 1.99 3.85 7.82 9.69 10.48
Rendering Time, Sec 10.40 8.25 7.43 6.96 6.63 6.48 6.09 6.01 6.71 6.25

MA per HRay 14.92 8.98 8.64 8.45 8.65 8.30 6.49 6.45 9.07 6.57
BX per HRay 12.82 7.25 6.87 6.83 7.08 6.81 5.16 5.22 7.39 5.17
BH per HRay 3.04 2.43 2.24 2.16 2.11 2.08 2.00 1.99 2.12 2.03
BZ per HRay 3.04 2.43 2.24 2.16 2.11 2.08 2.00 1.99 2.12 2.03

Avg Its/Any BZ Call 2.89 2.80 2.65 2.43 2.24 2.06 1.91 1.81 2.23 2.01
Avg Its/Scs BZ Call 6.20 5.47 4.90 4.42 4.01 3.66 3.30 3.09 4.02 3.52
ADS Memory, Mb 0.05 0.10 0.19 0.39 0.77 1.55 3.10 6.20 0.83 1.98
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.09 0.16 0.25 0.46 0.95 1.94 3.83 7.65 9.60 10.49
Rendering Time, Sec 8.02 7.21 6.72 6.38 6.06 5.83 11.60 5.52 6.57 5.78

MA per HRay 11.71 10.97 10.79 10.48 10.49 10.42 10.41 10.44 10.49 10.45
BX per HRay 10.54 9.97 9.84 9.58 9.57 9.52 9.49 9.54 9.58 9.55
BH per HRay 3.02 2.82 2.73 2.69 2.69 2.68 2.68 2.68 2.68 2.68
BZ per HRay 3.75 3.19 2.86 2.67 2.53 2.42 2.30 2.23 2.55 2.37

Avg Its/Any BZ Call 2.17 2.08 1.96 1.83 1.67 1.52 1.36 1.22 1.66 1.43
Avg Its/Scs BZ Call 2.52 2.27 2.06 1.88 1.69 1.52 1.34 1.20 1.68 1.42
ADS Memory, Mb 0.10 0.23 0.49 1.01 2.05 4.14 8.31 16.65 2.21 5.29
Visible Artifacts huge huge many many some some no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.09 0.15 0.28 0.52 0.97 1.97 3.96 7.78 9.65 10.50
Rendering Time, Sec 8.51 6.61 5.85 5.41 5.11 4.90 4.55 4.40 5.19 4.68

MA per HRay 16.26 9.35 8.69 8.38 8.54 8.15 6.31 6.24 8.95 6.40
BX per HRay 13.80 7.51 6.91 6.79 7.00 6.71 5.05 5.08 7.31 5.07
BH per HRay 3.27 2.50 2.24 2.13 2.06 2.03 1.94 1.92 2.08 1.97
BZ per HRay 4.07 3.01 2.61 2.39 2.26 2.17 2.04 1.99 2.29 2.09

Avg Its/Any BZ Call 2.16 2.09 1.98 1.85 1.68 1.52 1.35 1.21 1.66 1.42
Avg Its/Scs BZ Call 2.53 2.26 2.06 1.87 1.68 1.50 1.33 1.19 1.66 1.39
ADS Memory, Mb 0.10 0.19 0.39 0.77 1.55 3.10 6.20 12.39 1.67 3.95
Visible Artifacts huge huge many many some some no no no no

File Name: Gnom.wrl
Number of Patches: 976
Number of Control Points: 15616
Average Surface Degree: 3.00
Screen Coverage: 27%

Table 5.8: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Gnom.wrl model. Blaxxun interactive - Intel NURBS export).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.11 0.18 0.32 0.53 1.12 2.27 4.59 9.08 13.98 14.92
Rendering Time, Sec 6.03 5.28 4.70 4.40 4.24 4.12 4.14 4.13 4.22 4.10

MA per HRay 8.63 9.95 9.93 10.10 10.10 10.09 10.24 10.20 10.19 10.20
BX per HRay 8.05 9.37 9.36 9.51 9.53 9.52 9.64 9.60 9.59 9.60
BH per HRay 3.85 3.92 3.94 3.90 3.89 3.88 3.88 3.88 3.88 3.88
BZ per HRay 3.85 2.98 2.48 2.21 2.06 1.99 1.95 1.93 1.96 1.95

Avg Its/Any BZ Call 2.11 2.34 2.45 2.41 2.31 2.22 2.18 2.16 2.42 2.21
Avg Its/Scs BZ Call 5.22 4.85 4.27 3.72 3.32 3.08 2.97 2.91 3.34 3.00
ADS Memory, Mb 0.06 0.15 0.35 0.73 1.51 3.05 6.15 12.34 5.41 8.23
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.11 0.16 0.32 0.55 1.09 2.31 4.68 9.24 13.89 15.21
Rendering Time, Sec 6.66 4.93 4.08 3.54 3.16 2.92 2.85 2.90 3.15 2.95

MA per HRay 14.43 10.00 8.21 6.40 5.22 3.82 3.56 3.51 4.54 3.91
BX per HRay 12.50 8.56 7.09 5.47 4.43 3.07 2.86 2.83 3.65 3.18
BH per HRay 4.58 3.01 2.26 1.88 1.66 1.53 1.48 1.47 1.60 1.50
BZ per HRay 4.58 3.01 2.26 1.88 1.66 1.53 1.48 1.47 1.60 1.50

Avg Its/Any BZ Call 1.88 2.25 2.44 2.42 2.30 2.21 2.18 2.15 2.42 2.19
Avg Its/Scs BZ Call 5.21 4.84 4.26 3.71 3.30 3.06 2.97 2.90 3.32 2.98
ADS Memory, Mb 0.06 0.11 0.23 0.46 0.91 1.83 3.66 7.31 3.22 4.88
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.10 0.18 0.30 0.54 1.07 2.26 4.52 9.12 13.83 15.14
Rendering Time, Sec 4.99 4.22 3.71 3.37 3.16 3.04 2.97 2.95 3.08 2.99

MA per HRay 8.71 9.81 9.76 9.93 9.94 9.93 10.07 10.04 10.03 10.03
BX per HRay 8.11 9.26 9.22 9.37 9.39 9.38 9.51 9.47 9.46 9.47
BH per HRay 3.88 3.86 3.87 3.83 3.82 3.82 3.82 3.82 3.82 3.82
BZ per HRay 4.66 3.52 2.85 2.44 2.19 2.04 1.95 1.89 2.02 1.94

Avg Its/Any BZ Call 1.90 1.79 1.65 1.48 1.33 1.18 1.05 0.98 1.28 1.10
Avg Its/Scs BZ Call 2.19 1.91 1.67 1.47 1.31 1.16 1.03 0.96 1.26 1.09
ADS Memory, Mb 0.11 0.27 0.58 1.19 2.42 4.88 9.80 19.65 8.62 13.11
Visible Artifacts huge many some some no no no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.11 0.17 0.32 0.57 1.13 2.33 4.63 9.23 13.97 15.14
Rendering Time, Sec 5.62 3.99 3.13 2.60 2.38 2.09 2.00 1.99 2.25 2.05

MA per HRay 14.54 9.83 8.01 6.19 5.02 3.62 3.35 3.28 4.31 3.67
BX per HRay 12.58 8.44 6.94 5.33 4.30 2.96 2.74 2.70 3.51 3.04
BH per HRay 4.60 2.96 2.19 1.81 1.59 1.47 1.41 1.40 1.53 1.43
BZ per HRay 5.47 3.52 2.55 2.02 1.71 1.54 1.45 1.42 1.62 1.48

Avg Its/Any BZ Call 1.84 1.79 1.66 1.49 1.33 1.17 1.04 0.96 1.29 1.09
Avg Its/Scs BZ Call 2.21 1.91 1.67 1.47 1.29 1.14 1.01 0.95 1.26 1.07
ADS Memory, Mb 0.11 0.23 0.46 0.91 1.83 3.66 7.31 14.62 6.44 9.77
Visible Artifacts huge many some some no no no no no no

File Name: Lamp.wrl
Number of Patches: 1152
Number of Control Points: 18216
Average Surface Degree: 2.98
Screen Coverage: 14%

Table 5.9: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Lamp.wrl model. Model courtesy of Charles Adams).
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ADS Level
0 1 2 3 4 5 6 7 A1 A2

Bezier Clipping Method (with ADS Hierarchy)
Preproc. Time, Sec 0.12 0.18 0.30 0.56 1.07 2.24 4.52 9.03 13.08 13.69
Rendering Time, Sec 2.28 1.97 1.86 1.81 1.81 1.79 1.82 1.80 1.85 1.83

MA per HRay 10.42 10.27 10.25 10.24 10.19 10.29 10.30 10.30 10.29 10.29
BX per HRay 9.73 9.60 9.59 9.59 9.52 9.63 9.64 9.64 9.63 9.64
BH per HRay 3.39 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37
BZ per HRay 3.39 2.71 2.41 2.21 2.16 2.10 2.10 2.06 2.19 2.14

Avg Its/Any BZ Call 2.04 2.04 2.01 2.07 2.04 2.08 2.03 2.00 2.31 2.19
Avg Its/Scs BZ Call 4.26 3.65 3.26 3.10 3.01 2.98 2.92 2.81 3.43 3.19
ADS Memory, Mb 0.06 0.15 0.35 0.74 1.52 3.08 6.19 12.42 3.47 5.19
Visible Artifacts no no no no no no no no no no

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 0.12 0.19 0.33 0.53 1.13 2.32 4.57 9.22 13.03 13.78
Rendering Time, Sec 2.39 1.85 1.63 1.49 1.43 1.34 1.36 1.31 1.62 1.51

MA per HRay 14.39 11.69 10.72 9.45 8.76 6.32 5.93 5.82 6.76 6.98
BX per HRay 12.28 9.84 9.00 7.90 7.35 5.08 4.76 4.72 4.90 5.37
BH per HRay 3.62 2.59 2.16 1.89 1.74 1.60 1.55 1.50 1.99 1.80
BZ per HRay 3.62 2.59 2.16 1.89 1.74 1.60 1.55 1.50 1.99 1.80

Avg Its/Any BZ Call 1.99 2.01 2.01 2.07 2.04 2.06 2.02 1.96 2.33 2.19
Avg Its/Scs BZ Call 4.26 3.61 3.25 3.11 3.01 2.97 2.90 2.76 3.44 3.16
ADS Memory, Mb 0.06 0.12 0.23 0.46 0.92 1.84 3.68 7.36 2.07 3.09
Visible Artifacts no no no no no no no no no no

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 0.12 0.18 0.30 0.58 1.12 2.28 4.52 9.03 12.96 13.67
Rendering Time, Sec 2.03 1.67 1.51 1.40 1.37 1.33 1.34 1.32 1.47 1.39

MA per HRay 10.36 10.17 10.14 10.15 10.11 10.22 10.23 10.23 10.23 10.23
BX per HRay 9.67 9.52 9.50 9.51 9.46 9.57 9.58 9.59 9.59 9.59
BH per HRay 3.36 3.32 3.33 3.33 3.33 3.34 3.35 3.35 3.34 3.34
BZ per HRay 4.41 3.35 2.83 2.48 2.33 2.19 2.14 2.05 2.60 2.40

Avg Its/Any BZ Call 1.66 1.44 1.26 1.14 1.04 0.98 0.92 0.86 1.30 1.15
Avg Its/Scs BZ Call 1.66 1.42 1.25 1.13 1.03 0.97 0.92 0.86 1.29 1.14
ADS Memory, Mb 0.12 0.27 0.58 1.20 2.44 4.92 9.87 19.78 5.54 8.27
Visible Artifacts many some some some no no no no no no

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 0.12 0.18 0.31 0.54 1.16 2.34 4.63 9.25 13.06 13.80
Rendering Time, Sec 2.12 1.53 1.30 1.15 1.05 0.98 0.97 0.95 1.27 1.15

MA per HRay 14.32 11.55 10.58 9.31 8.63 6.20 5.77 5.55 6.64 6.82
BX per HRay 12.21 9.73 8.90 7.81 7.26 5.01 4.67 4.56 4.83 5.26
BH per HRay 3.59 2.54 2.11 1.84 1.70 1.57 1.52 1.46 1.96 1.77
BZ per HRay 4.72 3.16 2.49 2.05 1.83 1.64 1.56 1.48 2.35 2.00

Avg Its/Any BZ Call 1.67 1.45 1.27 1.14 1.04 0.98 0.91 0.84 1.32 1.16
Avg Its/Scs BZ Call 1.67 1.42 1.25 1.13 1.03 0.97 0.91 0.84 1.31 1.16
ADS Memory, Mb 0.12 0.23 0.46 0.92 1.84 3.68 7.36 14.73 4.15 6.18
Visible Artifacts many some some some no no no no no no

File Name: Stingray.wrl
Number of Patches: 1160
Number of Control Points: 18560
Average Surface Degree: 3.00
Screen Coverage: 6%

Table 5.10: Comparison of ray tracing untrimmed rational Bézier surfaces methods
(Stingray.wrl model. Blaxxun interactive - Intel NURBS export).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 3.47 3.64 3.95 4.02 3.45 3.69 4.02 4.04
Rendering Time, Sec 51.40 47.40 48.60 48.30 34.00 26.70 25.10 25.00

MA per HRay 24.35 25.08 25.08 25.08 15.28 12.20 12.20 12.20
BX per HRay 19.50 20.12 20.12 20.13 11.80 9.96 9.96 9.96
BH per HRay 9.17 9.11 9.11 9.11 5.62 4.55 4.55 4.55
BZ per HRay 9.18 9.15 9.22 9.20 5.90 4.55 4.59 4.58

Avg Its/Any BZ Call 3.52 3.22 3.27 3.25 3.61 3.21 3.25 3.24
Avg Its/Scs BZ Call 5.29 4.89 5.01 4.97 5.55 5.13 5.21 5.19
ADS Memory, Mb 0.19 0.42 0.29 0.31 0.10 0.20 0.12 0.13

Trimming Tests (TT) 773486 773200 773290 773201 475951 357794 359714 358733
Hit TT/Total TT 0.20 0.20 0.20 0.20 0.33 0.43 0.43 0.43

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 3.52 3.66 3.96 3.99 3.44 3.75 4.09 4.08
Rendering Time, Sec 49.70 45.50 54.20 48.20 34.60 24.10 24.60 25.70

MA per HRay 34.45 32.11 32.93 31.97 23.61 15.95 17.01 16.50
BX per HRay 23.24 22.65 23.23 22.41 15.95 10.74 11.83 11.49
BH per HRay 9.23 8.64 8.80 8.72 6.05 4.38 4.49 4.46
BZ per HRay 9.23 8.64 8.80 8.72 6.05 4.38 4.49 4.46

Avg Its/Any BZ Call 3.47 3.29 3.32 3.31 3.54 3.26 3.27 3.26
Avg Its/Scs BZ Call 5.27 4.89 4.98 4.95 5.54 5.14 5.21 5.19
ADS Memory, Mb 0.14 0.28 0.20 0.21 0.07 0.12 0.08 0.08

Trimming Tests (TT) 767125 751160 756109 753014 476225 349756 352966 350730
Hit TT/Total TT 0.20 0.20 0.20 0.20 0.33 0.43 0.43 0.43

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 3.48 3.61 3.91 4.05 3.52 3.71 4.17 4.00
Rendering Time, Sec 53.30 52.20 53.90 53.20 34.70 26.10 26.20 29.30

MA per HRay 28.76 27.39 27.41 27.41 18.11 13.38 13.39 13.39
BX per HRay 22.89 21.85 21.87 21.86 13.86 10.85 10.86 10.86
BH per HRay 10.79 9.92 9.92 9.92 6.59 4.95 4.95 4.95
BZ per HRay 18.21 16.98 17.13 17.09 10.99 7.46 7.55 7.52

Avg Its/Any BZ Call 1.92 1.81 1.86 1.84 2.00 1.88 1.91 1.90
Avg Its/Scs BZ Call 1.96 1.84 1.89 1.86 2.07 1.93 1.97 1.96
ADS Memory, Mb 0.32 0.70 0.49 0.53 0.17 0.32 0.20 0.21

Trimming Tests (TT) 1465172 1594394 1552428 1572104 837253 619713 613024 616016
Hit TT/Total TT 0.10 0.10 0.10 0.10 0.17 0.25 0.25 0.25

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 3.42 3.73 4.05 4.06 3.55 3.71 4.16 4.12
Rendering Time, Sec 53.30 52.00 51.70 51.10 35.90 24.30 25.70 25.70

MA per HRay 41.76 35.48 36.34 35.36 28.62 17.68 18.83 18.25
BX per HRay 27.93 24.91 25.54 24.69 19.11 11.82 13.04 12.67
BH per HRay 11.07 9.47 9.65 9.58 7.23 4.79 4.91 4.87
BZ per HRay 18.49 16.07 16.41 16.27 11.40 7.18 7.36 7.30

Avg Its/Any BZ Call 1.92 1.81 1.86 1.83 2.01 1.89 1.92 1.91
Avg Its/Scs BZ Call 1.96 1.83 1.88 1.85 2.07 1.93 1.97 1.96
ADS Memory, Mb 0.28 0.55 0.40 0.43 0.15 0.24 0.15 0.16

Trimming Tests (TT) 1435155 1532155 1504166 1516877 835396 612047 610094 611599
Hit TT/Total TT 0.11 0.11 0.11 0.11 0.18 0.28 0.28 0.28

File Name: Gear shift.wrl
Number of Patches: 1391
Number of Control Points: 27559
Average Surface Degree: 4.04
Number of Trimming Contours: 781
Screen Coverage: 18%

Table 5.11: Comparison of ray tracing trimmed rational Bézier surfaces methods
(Gear shift.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 3.93 4.18 4.89 4.96 3.95 4.17 4.99 4.93
Rendering Time, Sec 363.00 356.00 379.00 354.00 226.00 246.00 240.00 181.00

MA per HRay 80.11 80.09 80.10 80.10 43.53 36.51 36.50 36.50
BX per HRay 63.64 63.63 63.64 63.64 35.29 29.60 29.60 29.60
BH per HRay 34.27 34.26 34.27 34.27 21.01 17.78 17.78 17.78
BZ per HRay 33.25 33.16 32.76 32.77 20.57 14.89 14.92 14.89

Avg Its/Any BZ Call 4.10 4.05 4.14 4.11 4.36 4.40 4.41 4.40
Avg Its/Scs BZ Call 4.96 4.89 4.94 4.91 4.98 4.95 4.96 4.95
ADS Memory, Mb 0.27 0.61 0.47 0.55 0.10 0.17 0.15 0.16

Trimming Tests (TT) 6621326 6621317 6621424 6621490 4366190 3207562 3233542 3213853
Hit TT/Total TT 0.04 0.04 0.04 0.04 0.06 0.08 0.08 0.08

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 3.92 4.17 4.88 4.94 3.90 4.17 4.99 4.93
Rendering Time, Sec 402.00 348.00 354.00 348.00 234.00 202.00 183.00 187.00

MA per HRay 119.07 109.84 109.40 109.06 63.93 41.00 40.73 40.92
BX per HRay 74.46 71.50 68.25 67.91 39.17 26.28 26.24 26.14
BH per HRay 33.48 32.31 32.84 32.49 21.11 14.86 14.97 14.88
BZ per HRay 33.48 32.31 32.84 32.49 21.11 14.86 14.97 14.88

Avg Its/Any BZ Call 4.09 4.10 4.11 4.11 4.31 4.38 4.39 4.39
Avg Its/Scs BZ Call 4.96 4.89 4.95 4.92 4.98 4.95 4.96 4.95
ADS Memory, Mb 0.20 0.40 0.32 0.37 0.07 0.10 0.09 0.10

Trimming Tests (TT) 6637839 6537991 6589249 6568710 4422679 3191689 3224798 3201819
Hit TT/Total TT 0.04 0.04 0.04 0.04 0.06 0.08 0.08 0.08

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 3.93 4.16 4.97 4.98 3.94 4.13 4.95 4.88
Rendering Time, Sec 422.00 444.00 416.00 405.00 258.00 206.00 195.00 196.00

MA per HRay 83.17 82.80 82.83 82.82 45.38 37.76 37.78 37.77
BX per HRay 65.67 65.42 65.44 65.43 36.46 30.43 30.44 30.44
BH per HRay 35.32 35.18 35.19 35.18 21.66 18.25 18.25 18.25
BZ per HRay 66.37 66.14 65.38 65.36 40.57 28.97 29.11 28.99

Avg Its/Any BZ Call 1.82 1.72 1.76 1.73 1.83 1.72 1.73 1.72
Avg Its/Scs BZ Call 1.83 1.72 1.76 1.74 1.84 1.73 1.74 1.73
ADS Memory, Mb 0.47 1.00 0.79 0.92 0.17 0.28 0.23 0.26

Trimming Tests (TT) 13576579 14206215 13501537 13807982 8698072 6419471 6401545 6412780
Hit TT/Total TT 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.04

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 3.91 4.31 4.95 4.95 3.90 4.18 4.96 4.99
Rendering Time, Sec 440.00 394.00 412.00 811.00 264.00 193.00 194.00 677.00

MA per HRay 124.54 114.20 114.00 113.47 67.19 42.74 42.45 42.63
BX per HRay 77.01 73.56 70.29 69.90 40.54 27.06 27.03 26.93
BH per HRay 34.47 33.11 33.69 33.31 21.75 15.24 15.36 15.26
BZ per HRay 66.80 64.39 65.54 64.78 41.68 28.93 29.23 29.00

Avg Its/Any BZ Call 1.81 1.71 1.75 1.72 1.83 1.72 1.73 1.72
Avg Its/Scs BZ Call 1.82 1.72 1.76 1.73 1.84 1.72 1.74 1.72
ADS Memory, Mb 0.40 0.80 0.64 0.73 0.15 0.21 0.18 0.19

Trimming Tests (TT) 13572113 13866369 13386011 13598510 8819422 6396271 6391138 6397321
Hit TT/Total TT 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.04

File Name: DBE.wrl
Number of Patches: 2010
Number of Control Points: 56358
Average Surface Degree: 7.48
Number of Trimming Contours: 665
Screen Coverage: 38%

Table 5.12: Comparison of ray tracing trimmed rational Bézier surfaces methods
(DBE.wrl model. Model courtesy of DaimlerChrysler AG).

118



5.8. COMPARISON AND RESULTS 119

ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 6.51 7.03 8.19 9.23 6.58 7.29 8.46 8.44
Rendering Time, Sec 15.00 14.90 16.30 16.10 13.40 10.80 11.90 11.70

MA per HRay 12.82 12.90 12.90 12.90 8.51 7.17 7.17 7.17
BX per HRay 10.20 10.30 10.29 10.30 6.62 5.57 5.57 5.57
BH per HRay 4.02 4.02 4.02 4.02 3.13 2.77 2.77 2.77
BZ per HRay 3.96 3.89 3.98 3.99 3.06 2.59 2.67 2.66

Avg Its/Any BZ Call 2.95 2.72 3.04 3.01 2.94 2.70 3.08 3.02
Avg Its/Scs BZ Call 4.41 4.00 4.56 4.53 4.51 4.04 4.56 4.51
ADS Memory, Mb 0.42 0.95 0.76 0.79 0.29 0.60 0.50 0.52

Trimming Tests (TT) 256262 256170 256129 256159 178944 150012 167759 165455
Hit TT/Total TT 0.44 0.44 0.44 0.44 0.55 0.61 0.62 0.63

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 6.58 6.97 8.16 8.10 6.64 7.37 8.48 8.55
Rendering Time, Sec 14.80 13.10 14.80 14.70 12.00 9.61 11.10 11.00

MA per HRay 14.94 13.17 16.04 15.90 10.60 8.39 10.56 10.61
BX per HRay 10.44 9.27 10.49 10.42 7.68 6.37 7.36 7.41
BH per HRay 3.83 3.52 4.02 4.02 3.03 2.45 2.74 2.71
BZ per HRay 3.83 3.52 4.02 4.02 3.03 2.45 2.74 2.71

Avg Its/Any BZ Call 2.97 2.77 3.00 2.98 2.96 2.77 3.05 2.99
Avg Its/Scs BZ Call 4.42 4.00 4.57 4.54 4.51 4.03 4.57 4.52
ADS Memory, Mb 0.31 0.63 0.51 0.53 0.21 0.38 0.32 0.34

Trimming Tests (TT) 249638 237608 255258 255253 178296 145303 170098 167181
Hit TT/Total TT 0.44 0.45 0.44 0.44 0.54 0.62 0.62 0.63

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 6.62 7.00 8.28 8.98 6.62 7.19 8.45 8.44
Rendering Time, Sec 15.50 15.50 16.40 16.00 14.80 10.60 11.60 11.50

MA per HRay 12.57 12.63 12.63 12.63 8.35 7.01 7.01 7.01
BX per HRay 10.05 10.13 10.13 10.13 6.53 5.46 5.46 5.46
BH per HRay 3.96 3.95 3.95 3.95 3.08 2.72 2.72 2.72
BZ per HRay 6.24 6.14 6.28 6.29 4.59 3.72 3.88 3.85

Avg Its/Any BZ Call 1.51 1.42 1.53 1.49 1.59 1.49 1.62 1.60
Avg Its/Scs BZ Call 1.50 1.40 1.53 1.49 1.58 1.48 1.62 1.60
ADS Memory, Mb 0.74 1.58 1.27 1.32 0.50 0.98 0.82 0.85

Trimming Tests (TT) 420289 451757 415624 418349 275450 236797 239694 236875
Hit TT/Total TT 0.28 0.26 0.28 0.28 0.37 0.41 0.45 0.46

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 6.55 7.00 8.23 8.37 6.62 7.30 8.46 8.49
Rendering Time, Sec 16.10 13.40 17.90 15.70 12.10 9.10 11.10 10.40

MA per HRay 14.60 12.80 15.66 15.51 10.37 8.17 10.32 10.36
BX per HRay 10.25 9.06 10.30 10.22 7.55 6.25 7.23 7.27
BH per HRay 3.75 3.43 3.95 3.93 2.97 2.39 2.68 2.66
BZ per HRay 5.99 5.44 6.35 6.33 4.51 3.44 3.98 3.93

Avg Its/Any BZ Call 1.51 1.41 1.54 1.51 1.58 1.48 1.62 1.60
Avg Its/Scs BZ Call 1.49 1.39 1.54 1.50 1.57 1.45 1.62 1.60
ADS Memory, Mb 0.63 1.25 1.03 1.06 0.42 0.76 0.65 0.67

Trimming Tests (TT) 407969 412008 414436 416956 274809 229040 245178 241363
Hit TT/Total TT 0.29 0.29 0.29 0.29 0.38 0.43 0.46 0.47

File Name: Middle console.wrl
Number of Patches: 3159
Number of Control Points: 97520
Average Surface Degree: 5.49
Number of Trimming Contours: 1265
Screen Coverage: 16%

Table 5.13: Comparison of ray tracing trimmed rational Bézier surfaces methods (Mid-
dle console.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 8.06 9.21 12.12 12.39 8.49 9.83 12.93 13.16
Rendering Time, Sec 21.80 21.10 21.20 20.00 20.70 14.50 14.80 15.10

MA per HRay 9.15 9.11 9.12 9.11 7.64 6.55 6.55 6.55
BX per HRay 7.11 7.06 7.07 7.06 5.89 5.17 5.17 5.17
BH per HRay 3.67 3.68 3.68 3.68 3.16 2.65 2.65 2.65
BZ per HRay 3.71 3.77 3.73 3.74 3.16 2.64 2.61 2.62

Avg Its/Any BZ Call 3.19 2.78 2.91 2.85 3.34 2.93 3.06 3.00
Avg Its/Scs BZ Call 4.98 4.33 4.50 4.43 5.03 4.36 4.50 4.44
ADS Memory, Mb 0.90 2.02 1.54 1.72 0.72 1.52 1.19 1.31

Trimming Tests (TT) 302141 300429 300475 300425 241317 192598 199488 196000
Hit TT/Total TT 0.48 0.48 0.48 0.48 0.48 0.59 0.59 0.59

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 8.13 9.22 12.84 12.38 8.43 9.88 13.02 13.04
Rendering Time, Sec 20.70 20.50 19.90 20.70 18.90 14.10 14.40 16.50

MA per HRay 14.01 13.81 14.85 13.92 11.60 9.58 9.46 9.44
BX per HRay 9.35 9.68 9.52 9.23 7.80 6.89 6.43 6.61
BH per HRay 3.90 3.64 3.84 3.69 3.33 2.61 2.63 2.62
BZ per HRay 3.90 3.64 3.84 3.69 3.33 2.61 2.63 2.62

Avg Its/Any BZ Call 3.03 2.76 2.75 2.78 3.17 2.89 2.99 2.95
Avg Its/Scs BZ Call 4.98 4.31 4.49 4.41 5.02 4.35 4.49 4.43
ADS Memory, Mb 0.66 1.33 1.05 1.15 0.53 0.98 0.79 0.86

Trimming Tests (TT) 299340 288056 290540 289408 239881 187630 196202 191978
Hit TT/Total TT 0.48 0.49 0.48 0.49 0.48 0.59 0.60 0.59

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 8.09 9.09 12.05 12.21 8.39 9.91 13.21 13.02
Rendering Time, Sec 23.70 21.00 21.70 21.30 20.30 13.70 15.20 14.70

MA per HRay 9.03 8.94 8.94 8.94 7.55 6.42 6.42 6.42
BX per HRay 7.04 6.96 6.96 6.96 5.84 5.09 5.09 5.09
BH per HRay 3.64 3.62 3.62 3.62 3.13 2.61 2.61 2.61
BZ per HRay 5.57 5.63 5.57 5.57 4.60 3.60 3.56 3.58

Avg Its/Any BZ Call 1.74 1.61 1.65 1.63 1.75 1.62 1.66 1.63
Avg Its/Scs BZ Call 1.76 1.62 1.66 1.63 1.76 1.61 1.66 1.62
ADS Memory, Mb 1.56 3.35 2.59 2.87 1.25 2.50 1.97 2.17

Trimming Tests (TT) 460779 513985 487265 497439 358425 300991 295926 299356
Hit TT/Total TT 0.33 0.31 0.32 0.32 0.34 0.40 0.43 0.41

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 8.08 9.18 12.40 12.32 8.44 9.79 13.29 13.16
Rendering Time, Sec 24.10 20.50 23.50 21.40 20.00 13.90 15.60 13.70

MA per HRay 13.82 13.47 14.51 13.59 11.45 9.34 9.22 9.21
BX per HRay 9.24 9.49 9.36 9.06 7.72 6.76 6.32 6.49
BH per HRay 3.85 3.56 3.76 3.62 3.30 2.56 2.58 2.56
BZ per HRay 5.78 5.34 5.64 5.41 4.82 3.52 3.57 3.54

Avg Its/Any BZ Call 1.76 1.61 1.66 1.62 1.77 1.62 1.67 1.63
Avg Its/Scs BZ Call 1.77 1.60 1.67 1.62 1.77 1.61 1.66 1.62
ADS Memory, Mb 1.33 2.66 2.10 2.30 1.07 1.97 1.57 1.72

Trimming Tests (TT) 454498 490172 466777 475523 357916 297631 294984 297032
Hit TT/Total TT 0.35 0.34 0.35 0.35 0.35 0.44 0.46 0.44

File Name: Seats.wrl
Number of Patches: 6704
Number of Control Points: 243606
Average Surface Degree: 5.51
Number of Trimming Contours: 1562
Screen Coverage: 21%

Table 5.14: Comparison of ray tracing trimmed rational Bézier surfaces methods
(Seats.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 12.60 15.12 20.88 22.19 16.94 24.70 31.17 31.21
Rendering Time, Sec 138.00 106.00 106.00 112.00 134.00 92.00 91.70 93.50

MA per HRay 43.64 43.94 43.93 43.93 40.07 36.16 36.15 36.15
BX per HRay 35.11 35.38 35.37 35.37 32.71 28.77 28.77 28.77
BH per HRay 22.12 22.24 22.24 22.24 20.75 19.03 19.03 19.02
BZ per HRay 21.89 17.14 17.11 17.10 20.47 14.38 14.43 14.40

Avg Its/Any BZ Call 0.95 0.96 0.99 0.98 0.89 0.85 0.88 0.87
Avg Its/Scs BZ Call 4.93 4.44 4.59 4.55 4.92 4.42 4.58 4.52
ADS Memory, Mb 2.46 5.55 4.07 4.79 2.11 4.67 3.44 4.04

Trimming Tests (TT) 538214 538239 538300 538286 397715 280210 324495 300329
Hit TT/Total TT 0.47 0.47 0.47 0.47 0.53 0.58 0.63 0.60

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 12.69 15.09 21.15 21.52 17.10 24.68 32.19 31.24
Rendering Time, Sec 160.00 90.40 93.60 93.70 152.00 79.70 83.00 85.60

MA per HRay 79.64 46.77 48.90 48.99 76.10 39.97 39.97 39.79
BX per HRay 51.25 31.18 33.15 32.86 49.82 26.65 26.96 26.76
BH per HRay 26.73 14.70 15.08 15.06 24.98 12.85 13.03 12.98
BZ per HRay 26.73 14.70 15.08 15.06 24.98 12.85 13.03 12.98

Avg Its/Any BZ Call 0.83 1.02 1.06 1.06 0.80 0.90 0.94 0.93
Avg Its/Scs BZ Call 4.93 4.47 4.61 4.56 4.95 4.42 4.59 4.52
ADS Memory, Mb 1.83 3.66 2.78 3.20 1.57 3.05 2.32 2.68

Trimming Tests (TT) 526031 482381 504442 509046 396123 265050 314838 291752
Hit TT/Total TT 0.49 0.50 0.48 0.48 0.54 0.58 0.62 0.59

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 12.65 15.27 23.85 22.70 17.14 24.65 30.81 31.38
Rendering Time, Sec 153.00 132.00 122.00 123.00 144.00 102.00 104.00 109.00

MA per HRay 44.49 43.79 43.80 43.80 40.89 36.06 36.07 36.07
BX per HRay 35.37 35.21 35.22 35.21 32.98 28.65 28.66 28.66
BH per HRay 22.28 22.15 22.15 22.15 20.94 18.97 18.98 18.97
BZ per HRay 26.49 21.23 21.24 21.18 23.94 16.70 16.87 16.78

Avg Its/Any BZ Call 1.40 1.41 1.43 1.42 1.36 1.37 1.38 1.38
Avg Its/Scs BZ Call 1.95 1.80 1.84 1.82 1.98 1.89 1.91 1.89
ADS Memory, Mb 4.29 9.21 6.86 7.99 3.68 7.71 5.76 6.71

Trimming Tests (TT) 834593 961032 901626 915906 574912 443770 477816 456370
Hit TT/Total TT 0.32 0.30 0.31 0.31 0.38 0.40 0.46 0.43

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 12.62 15.14 21.19 21.47 17.15 24.78 31.69 31.47
Rendering Time, Sec 190.00 103.00 104.00 104.00 178.00 88.20 92.70 91.00

MA per HRay 81.70 46.56 48.77 48.81 78.33 39.88 39.92 39.69
BX per HRay 51.87 31.03 33.03 32.72 50.59 26.57 26.91 26.67
BH per HRay 27.02 14.59 14.98 14.95 25.27 12.77 12.98 12.91
BZ per HRay 31.33 17.87 18.68 18.58 28.51 14.79 15.24 15.10

Avg Its/Any BZ Call 1.36 1.43 1.43 1.42 1.33 1.38 1.39 1.38
Avg Its/Scs BZ Call 2.00 1.83 1.81 1.79 2.04 1.89 1.88 1.85
ADS Memory, Mb 3.66 7.31 5.56 6.40 3.14 6.10 4.65 5.35

Trimming Tests (TT) 798466 815785 821077 842629 567113 419355 468256 449629
Hit TT/Total TT 0.35 0.35 0.34 0.34 0.41 0.43 0.47 0.44

File Name: Steering wheel.wrl
Number of Patches: 18432
Number of Control Points: 547470
Average Surface Degree: 4.62
Number of Trimming Contours: 1414
Screen Coverage: 31%

Table 5.15: Comparison of ray tracing trimmed rational Bézier surfaces methods (Steer-
ing wheel.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 64.33 73.78 86.27 86.19 68.57 84.36 99.73 99.43
Rendering Time, Sec 2180.00 1940.00 2020.00 2330.00 593.00 407.00 409.00 414.00

MA per HRay 240.38 240.52 240.46 240.46 54.60 46.27 46.26 46.26
BX per HRay 139.06 139.24 139.19 139.20 30.52 23.95 23.95 23.95
BH per HRay 70.53 70.53 70.52 70.52 14.03 12.70 12.70 12.70
BZ per HRay 73.90 75.00 74.52 74.36 14.93 13.21 13.40 13.39

Avg Its/Any BZ Call 3.43 2.80 3.15 3.11 3.32 2.42 2.46 2.44
Avg Its/Scs BZ Call 5.42 4.71 5.29 5.21 6.50 5.27 5.39 5.34
ADS Memory, Mb 8.63 19.49 8.99 10.80 3.26 7.02 4.75 5.25

Trimming Tests (TT) 18793113 18795516 18790137 18790342 2925325 2347735 2428541 2398656
Hit TT/Total TT 0.04 0.04 0.04 0.04 0.23 0.28 0.30 0.29

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 66.34 73.40 85.05 88.20 69.64 83.28 101.17 99.27
Rendering Time, Sec 2300.00 1760.00 2250.00 2020.00 673.00 425.00 469.00 471.00

MA per HRay 437.02 408.76 416.25 424.19 92.41 77.75 90.64 90.56
BX per HRay 179.30 157.05 175.17 173.07 31.11 23.66 26.44 26.76
BH per HRay 80.42 71.10 84.90 83.17 16.42 13.61 15.85 15.80
BZ per HRay 80.42 71.10 84.90 83.17 16.42 13.61 15.85 15.80

Avg Its/Any BZ Call 3.14 2.60 3.00 2.96 3.03 2.29 2.47 2.45
Avg Its/Scs BZ Call 5.26 4.65 5.14 5.07 6.26 5.34 5.33 5.30
ADS Memory, Mb 6.41 12.83 6.62 7.69 2.42 4.55 3.21 3.50

Trimming Tests (TT) 18690302 16573523 20909020 20455658 2983193 2256364 2946645 2908823
Hit TT/Total TT 0.04 0.04 0.05 0.05 0.24 0.27 0.31 0.30

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 64.86 72.00 85.02 85.37 68.93 84.09 99.73 99.13
Rendering Time, Sec 2180.00 2530.00 2610.00 2600.00 853.00 798.00 803.00 802.00

MA per HRay 241.20 239.84 239.96 239.95 54.84 46.12 46.13 46.13
BX per HRay 139.41 138.78 138.87 138.86 30.58 23.84 23.84 23.84
BH per HRay 70.60 70.28 70.32 70.32 14.10 12.68 12.68 12.68
BZ per HRay 123.17 126.41 125.63 125.28 22.73 19.53 19.98 19.94

Avg Its/Any BZ Call 1.45 1.34 1.56 1.53 1.55 1.46 1.50 1.50
Avg Its/Scs BZ Call 1.56 1.42 1.69 1.66 1.82 1.68 1.74 1.73
ADS Memory, Mb 15.05 32.31 15.61 18.49 5.68 11.57 7.96 8.75

Trimming Tests (TT) 36731487 39090075 35737779 36067152 4721752 4107273 4108018 4085130
Hit TT/Total TT 0.02 0.02 0.02 0.02 0.15 0.17 0.18 0.18

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 64.83 72.08 84.54 87.54 68.57 84.61 100.39 100.09
Rendering Time, Sec 2500.00 1990.00 2300.00 2270.00 881.00 517.00 553.00 551.00

MA per HRay 439.58 407.94 415.75 423.60 93.21 77.48 90.44 90.36
BX per HRay 179.58 156.18 174.67 172.55 31.17 23.48 26.31 26.61
BH per HRay 80.32 70.64 84.61 82.82 16.45 13.54 15.79 15.73
BZ per HRay 129.06 115.20 142.42 138.89 23.79 18.95 22.92 22.80

Avg Its/Any BZ Call 1.43 1.31 1.51 1.49 1.48 1.39 1.40 1.40
Avg Its/Scs BZ Call 1.55 1.41 1.64 1.61 1.73 1.66 1.61 1.60
ADS Memory, Mb 12.83 25.65 13.25 15.38 4.85 9.10 6.42 7.00

Trimming Tests (TT) 36197929 33521075 40161529 39410876 4614313 3561631 4581232 4541580
Hit TT/Total TT 0.02 0.02 0.03 0.03 0.16 0.18 0.21 0.21

File Name: Comand.wrl
Number of Patches: 64659
Number of Control Points: 1261136
Average Surface Degree: 7.58
Number of Trimming Contours: 8651
Screen Coverage: 71%

Table 5.16: Comparison of ray tracing trimmed rational Bézier surfaces methods (Co-
mand.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 240.66 269.62 324.51 332.16 263.93 320.59 382.15 384.46
Rendering Time, Sec 1230.00 1020.00 1040.00 1030.00 353.00 249.00 252.00 249.00

MA per HRay 87.79 87.68 87.68 87.69 30.27 26.23 26.22 26.23
BX per HRay 46.25 46.39 46.39 46.40 18.31 15.70 15.70 15.70
BH per HRay 25.65 25.58 25.58 25.58 10.72 10.09 10.09 10.09
BZ per HRay 27.45 27.33 27.32 27.26 10.17 8.66 8.69 8.68

Avg Its/Any BZ Call 2.80 2.18 2.32 2.31 2.45 1.79 1.87 1.86
Avg Its/Scs BZ Call 5.59 4.81 5.18 5.14 5.56 4.52 4.71 4.67
ADS Memory, Mb 30.97 69.89 44.71 51.38 20.30 44.01 31.79 35.94

Trimming Tests (TT) 6444241 6445569 6446165 6446814 1878214 1452515 1572237 1539296
Hit TT/Total TT 0.12 0.12 0.12 0.12 0.34 0.41 0.44 0.43

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 241.31 270.03 326.48 328.00 265.01 323.72 385.24 387.46
Rendering Time, Sec 1360.00 859.00 1010.00 946.00 470.00 255.00 267.00 266.00

MA per HRay 194.10 150.02 150.59 150.89 69.91 39.70 42.45 42.13
BX per HRay 66.78 44.59 45.98 45.73 27.18 15.39 18.10 18.10
BH per HRay 34.28 25.11 27.38 27.01 14.72 9.01 9.63 9.53
BZ per HRay 34.28 25.11 27.38 27.01 14.72 9.01 9.63 9.53

Avg Its/Any BZ Call 2.32 1.98 2.15 2.14 1.94 1.70 1.80 1.80
Avg Its/Scs BZ Call 5.64 4.71 4.98 4.94 5.67 4.56 4.73 4.70
ADS Memory, Mb 23.00 46.01 31.12 35.07 15.08 28.61 21.39 23.84

Trimming Tests (TT) 6032569 5300839 6069612 5990560 1942617 1393122 1673635 1628957
Hit TT/Total TT 0.13 0.14 0.13 0.13 0.33 0.40 0.43 0.42

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 241.55 271.37 327.58 326.15 267.38 320.67 381.34 384.33
Rendering Time, Sec 1150.00 1710.00 1650.00 1690.00 407.00 682.00 688.00 679.00

MA per HRay 89.39 87.86 87.87 87.86 31.11 26.31 26.32 26.32
BX per HRay 47.04 46.45 46.45 46.44 18.78 15.73 15.74 15.74
BH per HRay 26.00 25.63 25.63 25.63 10.96 10.14 10.14 10.14
BZ per HRay 38.10 39.53 39.52 39.41 13.88 11.40 11.53 11.47

Avg Its/Any BZ Call 1.30 1.32 1.40 1.38 1.44 1.41 1.46 1.45
Avg Its/Scs BZ Call 1.47 1.48 1.61 1.58 1.73 1.63 1.71 1.68
ADS Memory, Mb 53.97 115.90 75.83 86.44 35.37 72.61 53.18 59.77

Trimming Tests (TT) 10036552 11750633 10867757 11010552 3046684 2559047 2570713 2557536
Hit TT/Total TT 0.08 0.07 0.08 0.08 0.22 0.25 0.28 0.28

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 241.48 270.06 327.06 332.07 277.66 322.46 385.28 392.61
Rendering Time, Sec 1260.00 1030.00 1160.00 1100.00 521.00 341.00 363.00 353.00

MA per HRay 197.67 150.31 151.00 151.15 71.97 39.93 42.74 42.37
BX per HRay 67.63 44.58 46.08 45.80 27.69 15.41 18.16 18.14
BH per HRay 34.61 25.15 27.46 27.08 14.96 9.06 9.69 9.59
BZ per HRay 45.03 35.68 40.01 39.31 18.86 11.55 12.69 12.50

Avg Its/Any BZ Call 1.28 1.29 1.36 1.35 1.38 1.37 1.41 1.40
Avg Its/Scs BZ Call 1.50 1.47 1.56 1.53 1.77 1.65 1.68 1.66
ADS Memory, Mb 46.01 92.01 62.25 70.13 30.15 57.21 42.78 47.68

Trimming Tests (TT) 9705452 10017606 10947502 10903042 3087225 2371021 2688445 2657886
Hit TT/Total TT 0.09 0.09 0.08 0.08 0.23 0.27 0.29 0.29

File Name: W203 Interieur 1.wrl
Number of Patches: 231926
Number of Control Points: 5119047
Average Surface Degree: 4.94
Number of Trimming Contours: 38318
Screen Coverage: 97%

Table 5.17: Comparison of ray tracing trimmed rational Bézier surfaces methods
(W203 Interieur 1.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 242.60 268.70 336.08 325.24 263.33 320.96 398.38 383.55
Rendering Time, Sec 1000.00 670.00 681.00 672.00 322.00 228.00 227.00 225.00

MA per HRay 46.94 46.66 46.66 46.66 19.78 16.38 16.38 16.38
BX per HRay 27.74 27.62 27.63 27.63 12.22 10.11 10.11 10.11
BH per HRay 15.48 15.44 15.45 15.45 6.96 6.16 6.16 6.16
BZ per HRay 16.40 17.15 16.78 16.97 7.22 6.41 6.20 6.37

Avg Its/Any BZ Call 2.97 2.24 2.32 2.29 3.03 2.25 2.38 2.32
Avg Its/Scs BZ Call 5.45 4.81 4.91 4.89 5.96 4.86 5.00 4.97
ADS Memory, Mb 30.97 69.89 44.71 51.38 20.30 44.01 31.79 35.94

Trimming Tests (TT) 4011288 4006899 4008056 4007850 1779103 1384461 1457716 1434802
Hit TT/Total TT 0.17 0.17 0.17 0.17 0.34 0.41 0.43 0.42

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 240.70 270.65 324.88 330.22 266.49 322.84 393.17 392.38
Rendering Time, Sec 827.00 590.00 658.00 657.00 359.00 226.00 234.00 237.00

MA per HRay 94.19 75.91 78.01 76.38 40.27 25.27 26.29 26.26
BX per HRay 38.28 27.63 29.34 28.85 17.24 10.64 12.16 12.36
BH per HRay 18.97 15.70 17.64 17.47 8.65 6.32 6.54 6.57
BZ per HRay 18.97 15.70 17.64 17.47 8.65 6.32 6.54 6.57

Avg Its/Any BZ Call 2.65 2.17 2.60 2.60 2.66 2.23 2.31 2.29
Avg Its/Scs BZ Call 5.47 4.76 5.34 5.34 5.93 4.88 5.00 4.96
ADS Memory, Mb 23.00 46.01 31.12 35.07 15.08 28.61 21.39 23.84

Trimming Tests (TT) 3842163 3484472 4491695 4450763 1775454 1340873 1491241 1465699
Hit TT/Total TT 0.18 0.20 0.16 0.16 0.34 0.41 0.43 0.42

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 240.47 271.86 329.76 332.95 265.10 320.78 397.80 385.31
Rendering Time, Sec 959.00 1750.00 1430.00 1430.00 490.00 761.00 773.00 762.00

MA per HRay 46.96 46.26 46.34 46.26 19.83 16.25 16.29 16.25
BX per HRay 27.74 27.41 27.44 27.42 12.24 10.04 10.06 10.04
BH per HRay 15.49 15.36 15.37 15.36 6.98 6.13 6.14 6.13
BZ per HRay 23.35 25.20 24.49 24.86 10.55 9.15 8.78 9.12

Avg Its/Any BZ Call 1.49 1.47 1.51 1.51 1.75 1.69 1.71 1.71
Avg Its/Scs BZ Call 1.68 1.64 1.71 1.70 1.96 1.83 1.87 1.86
ADS Memory, Mb 53.97 115.90 75.83 86.44 35.37 72.61 53.18 59.77

Trimming Tests (TT) 6490497 7750110 7028542 7266674 2868700 2654907 2468495 2620743
Hit TT/Total TT 0.12 0.10 0.11 0.11 0.23 0.24 0.28 0.25

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 242.77 273.50 332.50 333.08 271.66 324.55 392.87 387.57
Rendering Time, Sec 1230.00 823.00 925.00 939.00 555.00 354.00 355.00 355.00

MA per HRay 94.49 75.29 77.57 75.74 40.48 25.03 26.13 26.05
BX per HRay 38.31 27.41 29.20 28.66 17.27 10.54 12.09 12.27
BH per HRay 19.00 15.60 17.57 17.38 8.68 6.28 6.51 6.53
BZ per HRay 25.98 22.65 26.37 26.12 12.18 8.75 9.09 9.21

Avg Its/Any BZ Call 1.48 1.46 1.58 1.57 1.72 1.63 1.65 1.64
Avg Its/Scs BZ Call 1.73 1.65 1.80 1.78 1.99 1.82 1.85 1.83
ADS Memory, Mb 46.01 92.01 62.25 70.13 30.15 57.21 42.78 47.68

Trimming Tests (TT) 6238403 6727341 6944073 7062697 2804298 2463830 2461661 2585595
Hit TT/Total TT 0.13 0.13 0.12 0.12 0.25 0.28 0.30 0.29

File Name: W203 Interieur 2.wrl
Number of Patches: 231926
Number of Control Points: 5119047
Average Surface Degree: 4.94
Number of Trimming Contours: 38318
Screen Coverage: 100%

Table 5.18: Comparison of ray tracing trimmed rational Bézier surfaces methods
(W203 Interieur 2.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 315.70 345.41 397.82 403.78 342.11 407.55 464.68 464.29
Rendering Time, Sec 1300.00 964.00 1680.00 977.00 325.00 274.00 294.00 316.00

MA per HRay 98.65 98.87 98.87 98.87 34.57 24.04 24.04 24.04
BX per HRay 31.17 31.33 31.33 31.33 13.05 11.83 11.83 11.83
BH per HRay 22.90 22.85 22.85 22.84 9.14 8.34 8.34 8.34
BZ per HRay 25.30 25.57 25.52 25.54 9.43 8.28 8.30 8.31

Avg Its/Any BZ Call 1.92 1.46 1.51 1.50 1.95 1.66 1.75 1.73
Avg Its/Scs BZ Call 6.88 5.80 6.02 6.00 5.07 4.83 5.01 4.98
ADS Memory, Mb 30.97 69.89 44.71 51.38 20.30 44.01 31.79 35.94

Trimming Tests (TT) 3435472 3432088 3431944 3431908 1760838 1468778 1560658 1533789
Hit TT/Total TT 0.25 0.25 0.25 0.25 0.40 0.48 0.49 0.48

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 315.82 347.78 409.09 482.24 339.93 401.68 463.27 467.03
Rendering Time, Sec 1180.00 995.00 917.00 900.00 396.00 275.00 330.00 713.00

MA per HRay 178.20 138.98 139.17 145.28 51.58 36.89 37.90 37.53
BX per HRay 44.01 34.06 36.38 35.32 18.76 12.44 15.17 14.64
BH per HRay 27.53 24.14 25.55 25.07 11.01 8.51 9.19 8.98
BZ per HRay 27.53 24.14 25.55 25.07 11.01 8.51 9.19 8.98

Avg Its/Any BZ Call 1.84 1.33 1.44 1.42 1.82 1.49 1.63 1.59
Avg Its/Scs BZ Call 6.79 5.69 5.78 5.80 4.97 4.78 4.94 4.91
ADS Memory, Mb 23.00 46.01 31.12 35.07 15.08 28.61 21.39 23.84

Trimming Tests (TT) 3442876 2930974 3358710 3213833 1821823 1345474 1620231 1521348
Hit TT/Total TT 0.25 0.26 0.26 0.26 0.41 0.49 0.50 0.49

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 313.77 343.63 399.29 401.07 339.56 400.53 464.66 463.93
Rendering Time, Sec 6160.00 891.00 907.00 889.00 1640.00 253.00 255.00 260.00

MA per HRay 99.44 99.35 99.35 99.34 34.91 24.13 24.13 24.13
BX per HRay 31.47 31.51 31.51 31.51 13.21 11.89 11.89 11.89
BH per HRay 23.15 23.01 23.01 23.01 9.27 8.38 8.39 8.39
BZ per HRay 30.35 30.53 30.49 30.50 12.13 10.23 10.34 10.33

Avg Its/Any BZ Call 1.56 1.29 1.33 1.32 1.52 1.34 1.39 1.38
Avg Its/Scs BZ Call 1.91 1.68 1.81 1.79 1.70 1.60 1.70 1.67
ADS Memory, Mb 53.97 115.90 75.83 86.44 35.37 72.61 53.18 59.77

Trimming Tests (TT) 5015115 5246715 4908896 4997860 2780718 2364666 2369697 2376691
Hit TT/Total TT 0.18 0.18 0.19 0.19 0.27 0.32 0.34 0.33

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 314.92 346.24 402.39 410.61 341.95 401.45 463.20 471.61
Rendering Time, Sec 6160.00 809.00 870.00 846.00 1670.00 256.00 273.00 575.00

MA per HRay 179.82 139.58 139.85 145.96 52.10 37.00 38.05 37.65
BX per HRay 44.45 34.25 36.61 35.54 18.95 12.48 15.24 14.69
BH per HRay 27.78 24.30 25.72 25.23 11.10 8.53 9.22 9.00
BZ per HRay 32.91 28.45 31.02 30.14 13.99 10.24 11.43 11.08

Avg Its/Any BZ Call 1.54 1.26 1.34 1.32 1.50 1.31 1.39 1.36
Avg Its/Scs BZ Call 1.91 1.67 1.79 1.76 1.72 1.60 1.68 1.66
ADS Memory, Mb 46.01 92.01 62.25 70.13 30.15 57.21 42.78 47.68

Trimming Tests (TT) 5061270 4574255 5081917 4907368 2890674 2161713 2482365 2388389
Hit TT/Total TT 0.18 0.20 0.20 0.19 0.28 0.35 0.36 0.35

File Name: W203 Interieur 3.wrl
Number of Patches: 231926
Number of Control Points: 5119047
Average Surface Degree: 4.94
Number of Trimming Contours: 38318
Screen Coverage: 99%

Table 5.19: Comparison of ray tracing trimmed rational Bézier surfaces methods
(W203 Interieur 3.wrl model. Model courtesy of DaimlerChrysler AG).
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ADS Level
w/o ADS reduction with ADS reduction

0 1 A1 A2 0 1 A1 A2
Bezier Clipping Method (with ADS Hierarchy)

Preproc. Time, Sec 244.54 269.26 329.65 326.71 262.80 326.56 399.96 383.67
Rendering Time, Sec 438.00 317.00 312.00 317.00 153.00 95.70 103.00 98.70

MA per HRay 49.22 49.22 49.18 49.18 24.23 21.40 21.39 21.39
BX per HRay 30.96 31.05 31.03 31.03 16.60 16.02 16.01 16.01
BH per HRay 20.06 20.04 20.04 20.04 10.37 9.31 9.31 9.31
BZ per HRay 20.95 17.01 17.02 17.02 9.44 6.87 7.09 7.04

Avg Its/Any BZ Call 1.94 1.74 1.80 1.77 2.02 1.78 1.91 1.87
Avg Its/Scs BZ Call 4.93 4.44 4.63 4.56 4.61 3.95 4.18 4.11
ADS Memory, Mb 30.97 69.89 44.71 51.38 20.30 44.01 31.79 35.94

Trimming Tests (TT) 1889237 1887179 1886255 1886211 1028748 754490 917189 885536
Hit TT/Total TT 0.27 0.27 0.27 0.27 0.35 0.42 0.46 0.46

Bezier Clipping Method (ADS Leaves Only)
Preproc. Time, Sec 242.61 271.82 328.11 329.38 264.48 324.75 386.97 384.47
Rendering Time, Sec 464.00 295.00 309.00 311.00 168.00 95.10 101.00 99.70

MA per HRay 107.69 71.17 75.09 74.27 44.58 24.10 29.05 27.95
BX per HRay 41.62 27.71 28.05 27.72 22.23 12.14 15.55 15.18
BH per HRay 22.91 16.42 17.43 17.16 10.79 6.47 7.35 7.13
BZ per HRay 22.91 16.42 17.43 17.16 10.79 6.47 7.35 7.13

Avg Its/Any BZ Call 1.88 1.74 1.74 1.74 1.84 1.81 1.85 1.84
Avg Its/Scs BZ Call 5.06 4.49 4.66 4.59 4.62 3.98 4.20 4.14
ADS Memory, Mb 23.00 46.01 31.12 35.07 15.08 28.61 21.39 23.84

Trimming Tests (TT) 1906322 1802352 1854050 1844168 1041324 728420 923448 885575
Hit TT/Total TT 0.27 0.27 0.27 0.27 0.35 0.42 0.45 0.45

Newton’s Method (with ADS Hierarchy)
Preproc. Time, Sec 240.74 268.91 324.51 328.15 263.25 322.65 395.92 386.51
Rendering Time, Sec 884.00 384.00 383.00 383.00 311.00 147.00 155.00 155.00

MA per HRay 49.00 48.54 48.58 48.55 23.98 21.00 21.02 21.01
BX per HRay 30.87 30.66 30.68 30.66 16.45 15.76 15.77 15.76
BH per HRay 20.05 19.81 19.82 19.81 10.27 9.14 9.14 9.14
BZ per HRay 26.99 22.84 22.92 22.91 12.99 9.23 9.74 9.62

Avg Its/Any BZ Call 1.38 1.33 1.40 1.38 1.49 1.37 1.46 1.44
Avg Its/Scs BZ Call 1.62 1.49 1.61 1.57 1.63 1.44 1.57 1.53
ADS Memory, Mb 53.97 115.90 75.83 86.44 35.37 72.61 53.18 59.77

Trimming Tests (TT) 3113435 3498231 3202690 3296160 1752581 1382510 1495675 1488853
Hit TT/Total TT 0.19 0.18 0.18 0.18 0.23 0.27 0.31 0.30

Newton’s Method (ADS Leaves Only)
Preproc. Time, Sec 245.23 272.17 328.77 330.07 265.69 325.10 388.90 389.54
Rendering Time, Sec 913.00 488.00 380.00 382.00 326.00 146.00 155.00 152.00

MA per HRay 107.39 70.10 74.12 73.25 44.22 23.51 28.46 27.35
BX per HRay 41.46 27.26 27.66 27.31 22.03 11.85 15.25 14.86
BH per HRay 22.90 16.20 17.24 16.95 10.69 6.31 7.20 6.97
BZ per HRay 29.29 21.81 23.75 23.23 14.61 8.62 10.30 9.87

Avg Its/Any BZ Call 1.39 1.33 1.42 1.39 1.48 1.37 1.50 1.46
Avg Its/Scs BZ Call 1.65 1.50 1.64 1.59 1.66 1.45 1.61 1.56
ADS Memory, Mb 46.01 92.01 62.25 70.13 30.15 57.21 42.78 47.68

Trimming Tests (TT) 3105048 3281970 3132853 3196134 1763820 1325053 1513675 1491786
Hit TT/Total TT 0.19 0.18 0.18 0.18 0.23 0.28 0.31 0.31

File Name: W203 Interieur 4.wrl
Number of Patches: 231926
Number of Control Points: 5119047
Average Surface Degree: 4.94
Number of Trimming Contours: 38318
Screen Coverage: 59%

Table 5.20: Comparison of ray tracing trimmed rational Bézier surfaces methods
(W203 Interieur 4.wrl model. Model courtesy of DaimlerChrysler AG).
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5.9. IMAGE GALLERY 127

5.9 Image Gallery

This section contains examples of images which are rendered using GOLEM [1] ray
tracing system. The implemented NURBS evaluation library myNURBS has been
integrated into the system in order to make it support direct ray tracing trimmed
NURBS surfaces. Ray casting technique has been used in order to generate images.
Four rays per pixel have been shot to prevent aliasing. All image scenes contain NURBS
surfaces only.
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Figure 5.36: Duck.wrl model ren-
dered with 800x800 image resolu-
tion. Blaxxun interactive - Intel
NURBS export.

Figure 5.37: Head.wrl model ren-
dered with 800x800 image resolu-
tion. Model courtesy of Charles
Adams.

Figure 5.38: Gnom.wrl model ren-
dered with 800x800 image resolu-
tion. Blaxxun interactive - Intel
NURBS export.

Figure 5.39: Lamp.wrl model ren-
dered with 800x800 image resolu-
tion. Model courtesy of Charles
Adams.
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Figure 5.40: Gear shift.wrl model
rendered with 800x800 image reso-
lution. Model courtesy of Daimler-
Chrysler AG.

Figure 5.41: DBE.wrl model ren-
dered with 800x800 image resolu-
tion. Model courtesy of Daimler-
Chrysler AG.

Figure 5.42: Middle console.wrl
model rendered with 800x800 im-
age resolution. Model courtesy of
DaimlerChrysler AG.

Figure 5.43: Comand.wrl model
rendered with 800x800 image res-
olution. Model courtesy of Daim-
lerChrysler AG.
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Figure 5.44: W203 Interieur 1.wrl
model rendered with 800x800 im-
age resolution. Model courtesy of
DaimlerChrysler AG.

Figure 5.45: W203 Interieur 2.wrl
model rendered with 800x800 im-
age resolution. Model courtesy of
DaimlerChrysler AG.

Figure 5.46: W203 Interieur 3.wrl
model rendered with 800x800 im-
age resolution. Model courtesy of
DaimlerChrysler AG.

Figure 5.47: W203 Interieur 4.wrl
model rendered with 800x800 im-
age resolution. Model courtesy of
DaimlerChrysler AG.
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Chapter 6
Conclusion

The problem of direct ray tracing of trimmed NURBS surfaces has been thoroughly
discussed throughout the Master Thesis. The first chapters of the Master Thesis in-
troduce a reader to curves, surfaces, and basics of ray tracing techniques. The rest of
the Master Thesis is dedicated to the problem of finding ray-trimmed NURBS surface
intersection.

Different approaches for ray tracing trimmed NURBS surfaces have been described
in the Master Thesis. Two most practical methods for ray tracing NURBS surfaces
have been described in more details, namely Bézier clipping method and Newton’s
iteration method. It has been shown that it is preferable to transform NURBS surfaces
into rational Bézier patches on the preprocessing stage of the ray tracing, because they
have faster evaluation routines. The importance of utilizing acceleration data structure
(ADS) for Bézier patches has been underlined and an efficient trimming test has been
proposed.

Some reported problems as well as some suggestions for improvement of existing
techniques have not been noticed by any researches so far. Below we summarize our
novel achievements.

In Section 4.3.3 performance of Bézier clipping method has been improved by re-
computing clipping lines Lu and Lv on each iteration.

Multiple equivalent intersections problem of Bézier clipping method has been re-
ported in Section 4.3.5 with suggestions of handling of such intersections.

Termination criteria of Bézier clipping method has been modified by considering
3D object space rather than 2D parameter space. An efficient computation of epsilon
value as termination criteria has been proposed in Section 4.3.6.

Termination criteria of Newton’s iteration method has also been modified in Section
4.4.4 for handling virtual intersections correctly.

Efficient acceleration data structure (ADS) for Bézier patches has been proposed in
Section 5.3 in order to accelerate the ray tracing process. Efficient choice of clipping
plane for building ADS trees and ideas of adaptive curvature based ADS construction
have been explained in details in Section 5.3.3. In Sections 5.5.5 and 5.6 it has been
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shown how leaves of ADS which enclose fully trimmed or fully untrimmed surface
patches can be handled efficiently. In Section 5.3.5 it has also been shown that approach
with ADS leaves only can have better performance when utilizing acceleration spatial
data structure for ray tracing (e.g., kd-trees).

The efficient scheme of combining the ADS with two most practical methods for
ray tracing Bézier patches (Bézier clipping method and Newton’s iteration method)
has been proposed in Section 5.4. In Section 5.4.2 it has been shown how the initial
clipping can improve the performance of Bézier clipping method. In Section 5.4.3 it
has been shown how the initial guess can be computed carefully for Newton’s iteration
method in order to decrease probability of convergence to wrong intersections.

Some experienced numerical problems have been described in Section 5.7 together
with suggestions how they can be eliminated or alleviated.

Most practical techniques for ray tracing trimmed NURBS surfaces have been im-
plemented within a library for NURBS evaluation (myNURBS). The library can be
integrated into ray tracing applications in order to make them support direct ray trac-
ing of trimmed NURBS surfaces.

For testing purposes the implemented library has been integrated into GOLEM [1]
ray tracing system. By this way the presented techniques have been tested with different
settings of parameters. Section 5.8 shows the comparison of presented methods and
achieved results.

A possible future work can be to extend the library with adaptive trimmed NURBS
triangulation routines and compare two different approaches for ray tracing trimmed
NURBS surfaces: direct one and one via triangulation.
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Appendix A
Library Compatibility with VRML97

and X3D

The implemented for testing purposes library for NURBS evaluation (myNURBS) is
compatible with some NURBS nodes of VRML97 [2] and X3D [3] specifications, i.e.,
behavior of such nodes can be simulated using the library classes and methods. Table
A.1 shows the library compatibility with VRML97 [2] specification. Table A.2 shows
the library compatibility with X3D [3] specification.
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VRML97 NURBS Node Compatibility

Contour2D yes

CoordinateDeformer yes

NurbsCurve yes

NurbsCurve2D yes

NurbsGroup no

NurbsPositionInterpolator yes

NurbsSurface yes

NurbsTextureSurface yes

Polyline2D yes

TrimmedSurface yes

Table A.1: The library compatibility with VRML97 [2] specification.

X3D NURBS Node Compatibility

Contour2D yes

ContourPolyline2D yes

CoordinateDouble no

NurbsCurve yes

NurbsCurve2D yes

NurbsOrientationInterpolator yes

NurbsPatchSurface yes

NurbsPositionInterpolator yes

NurbsSet no

NurbsSurfaceInterpolator yes

NurbsSweptSurface no

NurbsSwungSurface no

NurbsTextureCoordinate yes

NurbsTrimmedSurface yes

Table A.2: The library compatibility with X3D [3] specification.
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Appendix B
Integration the Library into a Ray

Tracing System

The library provides a set of classes and methods for maintaining trimmed NURBS
surfaces in a ray tracing application. Evaluation procedures of NURBS surfaces are
much slower than evaluation procedures of rational Bézier patches. Therefore, NURBS
surfaces are supposed to be transformed into rational Bézier patches during the pre-
processing step of ray tracing, i.e., the rational Bézier patches must be used as basic
objects in a ray tracing application.

We can distinguish two stages of operations with trimmed NURBS surfaces in a ray
tracing application:

• operations during the preprocessing step;

• rendering operations.

During the preprocessing stage a hierarchy of trimming contours must be created, a
texture mapping must be specified, NURBS surfaces must be transformed into rational
Bézier patches. The trimming hierarchy, the texture mapping, and the Bézier patches
specify interface objects for a ray tracing application, which are used during the render-
ing process. Notice that the trimming hierarchy and the texture mapping are optional
and may be set unspecified. A framework of the preprocessing stage is given below.

Algorithm B.1 (The framework of the preprocessing stage)

//----------------------------------------------------------------------//

//FRAMEWORK FOR CREATING THE TRIMMING HIERARCHY FOR A NURBS SURFACE

//----------------------------------------------------------------------//

//prepare a trimming hierarchy

myTrimmingContour ∗trim = new myTrimmingContour();

//loop over all contours to be processed

for (;;)

{
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136 APPENDIX B. INTEGRATION THE LIBRARY INTO A RAY TRACING SYSTEM

//prepare a contour for future processing

myContour2D∗ contour = new myContour2D();

//create a nurbs curve

myNurbsCurve nurbs curve = myNurbsCurve(degree, knots, points, weights);

//represent the nurbs curve by the number of bezier splines

vector<myBezierCurve> bezier splines;

nurbs curve.nurbsGetBezierSplines(bezier splines);

//loop over obtained bezier splines

for (int i = 0; i < (int)bezier splines.size(); i++)

{
//create a pointer to the allocated in memory bezier spline

myBezierCurve ∗spline = new myBezierCurve(bezier splines[i]);

//add the bezier spline to the contour

contour->contourAdd(spline);

}

//create a pointer to an allocated in memory polyline

myPolyline2D ∗polyline = new myPolyline2D(vertices);

//add the polyline to the contour

contour->contourAdd(polyline);

//----------------------------------------------------------------------//

//process all other nurbs curves and polylines which compose the

//contour. notice, that the contour must be closed, i.e. the first

//point of the first contour segment must be the equal to the last

//point of the last contour segment.

//----------------------------------------------------------------------//

//add the contour to the trimming hierarchy

trim->trimmingAddContour(contour);

}

//----------------------------------------------------------------------//

//FRAMEWORK FOR CREATING THE NURBS TEXTURE MAPPING FOR A NURBS SURFACE

//----------------------------------------------------------------------//

//create the nurbs texture mapping

myNurbsTextureSurface texture = myNurbsTextureSurface(degree u, degree v,

dimension u, dimension v, knots u, knots v, points);

//represent the nurbs texture by the number of bezier textures

myTBezierTexturePatches textures;

texture.nurbsGetBezierPatches(textures);

//----------------------------------------------------------------------//

//FRAMEWORK FOR PROCESSING A NURBS SURFACE

//----------------------------------------------------------------------//

//set up the building parameters for all processing nurbs surfaces.

//the routine has a number of parameters, which are described in

//details in myBezierRT.h header file.

myBezierSurfaceRT::SetBuildingParameters(...);

//set up the epsilon value for 2D parameter space and 3D object space

myNURBS::Epsilon2D = eps2D;

myNURBS::Epsilon3D = eps3D;
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//create a nurbs surface

myNurbsSurface surface = myNurbsSurface(degree u, degree v,

dimension u, dimension v, knot u, knot v, points);

//apply the current matrix transformation (if necessary)

surface.nurbsApplyTransformation(matrix);

//represent the nurbs surface by the number of bezier patches

myTBezierSurfacePatches patches;

surface.nurbsGetBezierPatches(patches);

//loop over obtained bezier patches

for (int i = 0; i < (int)patches.size(); i++)

{
for (int j = 0; j < (int)patches[i].size(); j++)

{
//create an interface object for the bezier patch

myBezierSurfaceRT ∗object = new myBezierSurfaceRT(patches[i][j],

trim, new myBezierTextureSurface(textures[i][j]));

//if the bezier patch is fully trimmed then skeep the future

//processing, i.e. delete and skeep the current patch.

if (myBezierSurfaceRT::IsTrimmed())

{
delete object;

continue;
}

//use the interface object in order to create an object of

//a ray tracing system which utilizes the library

CBEZIER ∗bezier = new CBEZIER(object);

}
}

The rendering operations are computing the nearest intersection, normal and partial
derivatives evaluation at the intersection point, obtaining the texture coordinates for
the intersection point, and other. A framework of the simplest rendering scheme is given
below. More information about supported routines can be found in well documented
header files of the library.

Algorithm B.2 (The framework of the rendering stage)

//----------------------------------------------------------------------//

//FRAMEWORK FOR FINDING THE NEAREST INTERSECTION

//----------------------------------------------------------------------//

//prepare a ray

myRay ray = myRay(origin, direction);

//set up the epsilon value for finding the nearest ray-object

//intersection. instead of myNURBS::Epsilon3D one can use the

//view dependently calculated epsilon value or other values.

object->SetEpsilon(myNURBS::Epsilon3D);

//set up the maximum allowed distance to the nearest intersection

ray. t = Infinity;

//prepare two auxiliary variables

float min = 0.0, max = 0.0;
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bool result = false;

//if the ray misses the object’s bounding box

if (!object-> voxel-> bbox.bboxIntersect(ray, min, max))

return;

//find the nearest intersection using Bezier Clipping Method

result = object->bezierFindNearestIntersectionA(point, ray);

//find the nearest intersection using Newton’s Method

result = object->bezierFindNearestIntersectionB(point, ray);

//----------------------------------------------------------------------//

//FRAMEWORK FOR OBTAINING THE NORMAL AND PARTIAL DERIVATIVES

//AT THE INTERSECTION POINT

//----------------------------------------------------------------------//

//normalize parameter coordinates of intersection to the

//parameter domain [0..1]x[0..1] in the context of bezier patch

float nu = point. u, nv = point. v;

object->BezierToNormalizedBezier(nu, nv);

//obtain the normal at the intersection point

normal = object->bezierCalculateNormal(nu, nv);

//obtain the partial derivatives at the intersection point

float du = 0.0, dv = 0.0;

object->bezierCalculateDuDv(nu, nv, du, dv);

//----------------------------------------------------------------------//

//FRAMEWORK FOR OBTAINING THE TEXTURE COORDINATES

//AT THE INTERSECTION POINT

//----------------------------------------------------------------------//

//normalize parameter coordinates of intersection to the

//parameter domain [0..1]x[0..1] in the context of nurbs surface

float tu = point. u, tv = point. v;

object->BezierToNormalizedBezier(tu, tv);

//obtain texture coordinates at the intersection point

object->GetTextureCoordinates(tu, tv);
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