
Volume xx (200y), Number z, pp. 1–12

Fast Insertion-Based Optimization of
Bounding Volume Hierarchies

Jiří Bittner, Michal Hapala and Vlastimil Havran

Czech Technical University in Prague, Faculty of Electrical Engineering, Czech Republic

Abstract

We present an algorithm for fast optimization of bounding volume hierarchies (BVH) for efficient ray tracing. We
perform selective updates of the hierarchy driven by the cost model derived from the surface area heuristic. In
each step the algorithm updates a fraction of the hierarchy nodes in order to minimize the overall hierarchy cost.
The updates are realized by simple operations on the tree nodes: removal, search, and insertion. Our method can
quickly reduce the cost of the hierarchy constructed by the traditional techniques such as the surface area heuris-
tic. We evaluate the properties of the proposed method on fourteen test scenes of different complexity including
individual objects and architectural scenes. The results show that our method can improve a BVH initially con-
structed with the surface area heuristic by up to 27% and a BVH constructed with the spatial median split by up
to 88%.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—[Ray tracing]

1. Introduction

The current ray tracing based algorithms allow to capture
even complex illumination effects and reach high degree of
realism of the rendered images. With advances in computa-
tional power and algorithmic efficiency the ray tracing based
methods have also become an alternative to rasterization for
interactive and real time applications. Unlike rasterization,
ray tracing relies on a highly efficient acceleration data struc-
ture which allows to trace tens or hundreds million rays per
second.

Constructing such high quality acceleration data struc-
tures is thus very important and it has received a strong at-
tention in the last two decades. Even a relatively small im-
provement in performance can bring an interactive ray tracer
closer to real-time or provide significant time savings when
rendering many high quality images of complex and detailed
scenes in the movie industry.

There are two major classes of data structures used for ray
tracing acceleration: spatial subdivisions (such as kd-trees,
octrees, or grids) and bounding volume hierarchies (BVH).
In this paper we propose a method which allow to optimize
a given BVH beyond the current state of the art techniques.

The method is based on an iterative algorithm that changes
the topology of inner nodes of a bounding volume hierarchy
in order to improve the quality of the hierarchy initially built
with arbitrary method. An example visualization of the re-
duction of traversal steps achieved by the proposed method
is shown in Figure 1.

Our method constructs more efficient bounding volume
hierarchies in shorter time than previous approaches, while
it allows to easily trade-off the time used for updating the
BVH and the expected traversal cost. Compared to the cur-
rent state of the art approach for high quality BVHs proposed
by Kensler [Ken08] (simulated annealing), our algorithm is
25 to 147 times faster for architectural scenes, while achiev-
ing BVHs of comparable or even better quality. The method
is applicable to a BVH built with an arbitrary technique, it
is simple to implement and thus it has a potential to become
a common optimization approach following the construction
of the hierarchy.

The paper is further structured as follows. In Section 2
we describe the related work, Section 3 describes the pro-
posed algorithm, Section 4 shows the results and Section 5
concludes the paper.

submitted to COMPUTER GRAPHICS Forum (11/2012).

2 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

(a) (b) (c) (d)

Figure 1: Visualization of the number of traversal steps for the view of the Sibenik Cathedral scene rendered with primary
and ambient occlusion rays. (a) Rendered image. (b) Number of traversal steps per ray for BVH built with SAH. (c) Number
of traversal steps for the BVH optimized by the proposed method. On this image our method gives an approximately 16%
performance gain over the base build algorithm with the SAH. (d) Bar-graph with pseudo colors used in the two visualization
images - blue color corresponds to 0 traversal steps, red color to 100 or more steps.

2. Related Work

There is a large body of literature on efficient spatial data
structures for rendering. We restrict our discussion to the
BVH methods for efficient rendering of static scenes.

The bounding volume hierarchies have a long tradition in
the context of ray tracing. Rubin and Whitted used rectan-
gular bounding volumes to create a BVH manually [RW80].
Weghorst et al. [WHG84] studied different types of bound-
ing volumes for BVH and used a modeling hierarchy to build
it. Kay and Kajiya [KK86] suggested to create a BVH by an
automatic top down recursive algorithm with a spatial me-
dian method and studied the efficiency of different bounding
volumes. Goldsmith and Salmon [GS87] proposed the mea-
sure currently known as the surface area heuristic (SAH)
which predicts the efficiency of the hierarchy already during
the BVH construction. However, as they have built up the
BVH incrementally by insertion, the BVH was usually in-
efficient as shown in performance study by Havran [Hav00]
and later by Masso et al. [ML03]. The improvements for the
efficiency of BVH were discussed in several articles in Ray
Tracing News [RTN] and suggested in literature more than a
decade ago, for example in the paper by Smits [Smi98].

BVHs are mostly used with axis-aligned bounding boxes
as bounding volumes. Wächter and Keller [WK06] and
Woop et al. [WMS06] used different bounding primitives re-
sulting in light-weight hierarchies. Another research effort
was devoted to decreasing the memory size by hierarchi-
cal encoding of the bounding volumes [MW06, KMKY10]
or their better memory layout with respect to data traf-
fic [YM06].

The precise evaluation of surface area heuristic requires
sorting and thus exhibits O(NlogN) complexity (N is the
number of scene triangles). To reduce the constants behind
the asymptotic complexity Havran et al. [HHS06], Wald et
al. [Wal07,WBS07,WIP08], and Ize et al. [IWP07] used ap-
proximate SAH evaluation based on binning and centroids of

bounding boxes of triangles. Another method to reduce the
sorting demands was proposed by Hunt et al. [HMF07] who
suggest reusing the organization of geometric data in the
scene graph. They show that when certain assumptions about
the scene graph hold, it is possible to achieve linear time
complexity of BVH construction. Dammertz et al. [DHK08]
proposed the variation of BVH using the branching factor
of four to gain better utilization of SIMD units in modern
CPUs.

Wald [Wal07] proposed a CPU based parallel BVH
construction by separating the build up process into two
stages — horizontal and vertical parallel execution. An-
other asynchronous construction method was presented by
Ize et al. [IWP07]. More recently, the parallel build-up
of BVH has been demonstrated also on GPU by Lauter-
bach et al. [LGS∗09], using 3D space-filling curve. Aila
and Laine [AL09] identify the sources of inefficiency for
traversing BVH on a GPU and propose a simple solution
to improve the performance. Wald studied the possibility of
fast rebuilds from scratch on upcoming Intel architecture
with many cores [Wal12]. Pantaleoni and Luebke [PL10]
and Garanzha et al. [GPM11] recently proposed GPU based
methods for parallel BVH construction that are able to very
quickly construct a BVH, however for complex scenes the
BVH quality for these methods can be significantly lower
than that of the full SAH builder.

Several papers have been published that relax the condi-
tion of having only one reference to each primitive. Ernst
and Greiner [EG07] suggest to precompute several bounding
boxes for each primitive and use them independently during
top down construction. More recently, to achieve higher per-
formance Stich et al. [SFD09] and Popov et al. [PGDS09]
suggest to use spatial splits during the BVH construction,
hence reintroducing some properties of kd-trees to BVHs.

Recently more interest has been devoted to methods,
which are not limited to top-down BVH construction.

submitted to COMPUTER GRAPHICS Forum (11/2012).

J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies 3

Walter et al. [WBKP08], propose to use bottom-up ag-
glomerative clustering for constructing high quality BVH.
Kensler [Ken08] propose to optimize the BVH in postpro-
cess using tree rotations with the hill climbing or simulated
annealing optimization algorithms. Both these approaches
allow to decrease the expected cost of BVH compared to
the top down approach.

The goal of our work is the most similar to the paper of
Kensler [Ken08], where the BVH is optimized beyond the
common golden standard, i.e. BVHs built in top down fash-
ion with the surface area heuristic. Compared to the method
of Kensler [Ken08] our optimization procedure is signifi-
cantly faster, and for complex scenes it results in hierarchies
with lower costs.

3. Selective BVH Updates

This section describes our method starting with the algo-
rithm outline, followed by a detailed description of individ-
ual steps of the algorithm, discussion of the design choices
and providing further implementation details.

!

Figure 2: . The core of our method is the removal of ineffi-
cient nodes from the tree and re-insertion of their children to
positions that decrease the overall cost of the tree.

3.1. Algorithm Overview

The BVH as an input of our algorithm can be built with vari-
ous ways. We construct a BVH using a standard top down
technique with the cost model based on the surface area
heuristic as used for example in [Wal07, HSZ∗11]. Alterna-
tively we can use a faster BVH construction method based
on object, or spatial median splits, or the method by [PL10].
Our algorithm performs the following steps (see also Fig-
ure 2):

Begin While Loop

1) Select inner nodes for optimization
2) For each selected node

a) Remove both its children from the tree
b) Find a position to reinsert the children using a cost

driven branch and bound search

c) Insert each of the two children at their new positions
and refit bounding volumes of all affected nodes

End While Loop (until termination criteria are met)

The core of our method lies in steps 1) and 2) of the algo-
rithm. In step 1) we select the inner nodes for optimization
and in step 2) these nodes are removed from the tree and
then reinserted back into the tree at more appropriate posi-
tions. In the next section we recall the cost model behind our
approach and then discuss individual steps of the algorithm
in more detail.

3.2. Cost model

The surface area heuristic (SAH) [MB90, Hav00] is usually
described using a formula evaluating for each node the ex-
pected number of operations for processing a given ray, i.e.,
the cost of the node. In particular given a node N and assum-
ing uniformly distributed unoccluded rays, which intersect
the bounding volume of the node N, the expected cost of the
node C(N) is given as:

C(N) = (1)

=

{
cT +

SA(L(N))·C(L(N))+SA(R(N))·C(R(N))
SA(N)

if N is inner
cI · tN if N is leaf

,

where cT is the cost of traversing the inner node of the tree
including the box intersection calculations, cI is the cost for
ray triangle intersection, tN is the number of triangles in leaf
N, SA(x) is the surface area of the bounding box associated
with the node x, and L(N) and R(N) are the left and right
children of N, respectively. Note that for hierarchies with
larger branching factor than two, the traversal cost cT would
increase.

The SAH makes two assumptions: (1) the distribution of
rays is uniform, (2) the rays are unoccluded thus the traversal
does not terminate when a ray intersects a geometric prim-
itive. Although these assumptions are generally not met in
practice, the experiments indicate that the cost model with
the SAH expresses the runtime behavior of a ray tracing
quite well (see Figure 3). Therefore reducing the cost is di-
rectly reflected in reducing ray tracing times and as we show
in Section 4.

BVH COST [−] 100 300
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 200

C
A

S
T

 T
IM

E
 [s

]

 0

Figure 3: Dependence of the ray casting time on the cost of
the tree (measured on the Sibenik Cathedral scene) for dif-
ferent BVHs. The trees of different costs were obtained dur-
ing the cost optimization algorithm described in the paper.

submitted to COMPUTER GRAPHICS Forum (11/2012).

4 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

The cost of the root node expresses the expected number
of operations to process a ray intersecting the scene. By a
simple derivation the recursion can be eliminated and the
cost of the tree C(T) can be rewritten as:

C(T) =
1

SA(T)

cT · ∑
N∈inner nodes

SA(N)+ cI ·∑
N∈leaves

SA(N) · tN

, (2)

where SA(T) is the surface area of the bounding box of the
scene. Note that the second term in the formula represent-
ing the ray triangle intersection calculations is constant for
a given scene supposed there is a fixed number of primitives
per leaf. Thus the cost term which should primarily be opti-
mized is the sum of surface areas of inner nodes in the tree
which induces the traversal overhead of the interior part of
the tree (cT ·∑SA(N)). This is exactly the core of our ap-
proach - we perform global updates of the tree by removing
and reinserting nodes to minimize the total sum of surface
areas of inner nodes. This contrasts to previous BVH opti-
mization techniques which use local operations on the tree
such as rotations.

3.3. Updating Nodes

Let us assume that we have identified a node N in the tree
which causes a cost overhead. The key idea of our method
is to remove the child nodes of N from the tree and reinsert
both of them back at more appropriate positions. For the two
child nodes we perform a global search to find the insertion
positions that will minimize the tree cost. Once the insertion
position is found, the node is inserted in the tree using local
operations. Note that although we use a global search for
the best position to reinsert the nodes, the method performs
a greedy optimization since we always choose the positions
which minimize the current tree cost.

The rest of this section describes the steps of removing,
searching, and reinsertion in more detail. In Section 3.4 we
then describe how to actually select the nodes to be updated.

Removing nodes. When updating an inner node N, we re-
move N, its children L and R, and its parent P from the
tree. Then we update the links of the affected nodes to keep
the topological consistency of the tree. We also update the
bounding boxes of the affected nodes by traversing up to the
root of the tree. We put the children L and R in an ordered
list of nodes to be reinserted, while the nodes are ordered so
that the node with larger surface area will be processed first.
The nodes N and P are placed in a list of nodes which will be
used to link the reinserted nodes with the nodes at the new
positions of the tree. The removal operation is illustrated in
Figure 4. Note that nodes L and R need not be leaves, but
they can represent whole subtrees of the BVH.

Searching for new positions. We start the search for the
new position to insert the node L at the root of the BVH and

⇓

L R+

+

+

+

X 1

P

R

X 1

N X 2

X 3 X 4

X 2

X 3 X 4

N

P

L

to be reinserted (list I)

unused (list U)

Figure 4: Illustration of removal of node N – RemoveN-
ode(node N, list U, list I, root P) operation. The children
of N are put into the list I that contains the nodes to be in-
serted. Nodes N and P are put to the list U that stores the
nodes that can be reused.

incrementally compute the total increase of the surface area.
When reaching a node X , the surface area and therefore the
cost increase is given by two components:

• the direct cost CD(L,X) = SA(X ∪ L), where SA(X ∪ L)
denotes the surface area of the box that is a union of
bounding boxes of the node L and the node X .

• the induced cost CI(L,X), that is the accumulated increase
of the surface area on the path from the root to the parent
of the node X assuming the node L would be inserted in
the subtree rooted at X . This can be defined also recur-
sively so CI(L,X) = 0 if X is the root node and CI(L,X) =
CI(L, parent(X))+SA(parent(X)∪L)−SA(parent(X)),
otherwise.

The two components of the cost increase are illustrated in
Figure 5. The total increase of the surface area of the tree is
considered as the cost for merging L and X , that is C(L,X) =
CD(L,X) +CI(L,X). We search for such a node Xbest that
minimizes this cost in the whole tree.

We use a branch and bound algorithm based on a prior-
ity queue in which the priority is inversely proportional to
the induced cost. We can prune the search along the tree ef-
fectively using the smallest cost Cbest corresponding to node
Xbest found so far. We evaluate a lower bound of the cost in
the subtree of X in order to decide whether to continue the
search in that subtree. The lower bound of the cost is given
by the induced cost above X and the surface area of L, which
is the lower bound of the direct cost in the whole subtree of
X — the induced cost represents the necessary enlargement

submitted to COMPUTER GRAPHICS Forum (11/2012).

J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies 5

X 1

X 2

X 1 X 2

X 1

X 2

L

X 1

X 2

L

L

X 2

L

+

⇒

CI (L , X 2)

CD (L , X 2)

Figure 5: A 2D example of how the total cost increase of
adding the node L to the tree at node X2 is computed. The
induced cost CI(L,X2) results from enlarging ascendants of
X2 when inserting the node L as the bounding boxes have to
be refitted (Algorithm 1:line 20). The direct cost CD(L,X2)
is surface area of the box for the union of X2 and L (Algo-
rithm 1:line 11).

⇒+

N

X 1

X 2 Xbest

Xbest

X 1

X 2L

L

N

(list U)

(list I)

Figure 6: Illustration of reinserting the node L back to the
tree. The node L is merged with the node Xbest while using
the node N as their new parent. The same procedure is used
for inserting the node R (using P as the parent node).

of nodes above X and the surface area of L is the minimum
size of the node inserted into the tree, which joins L with
a node from the tree. The subtree of X is traversed only if
the lower bound of the cost is smaller than Cbest . The whole
algorithm can be terminated if the lower bound of the cost
for the node on the top of the priority queue is larger than
Cbest . The pseudocode of the searching algorithm is shown
in Algorithm 1.

Note that we have also experimented with using the total
cost of the node X for driving the priority queue (instead of
the induced cost), but in that case the pruning of the search
was not as efficient as for using only the induced cost for
computing the priority.

Similar cost model was used in the early work of Gold-
smith and Salmon [GS87] who aimed to optimized the tree
construction by minimizing the overall cost of the tree dur-

Algorithm:FindNodeForReinsertion(node L)1

// Cbest - the smallest total cost increase found so far2

Cbest = infinity;
// Priority queue contains pairs: (node, induced cost)3

Push (Root o f BV H, 0, 1
ε
) to priority queue PQ;

while PQ is not empty do4

(X , CI(L,X)) = Pop node from PQ;5

if CI(L,X) + SA(L) >= Cbest then6

// Early termination - not possible7

break; // to reduce the cost Cbest8

end9

// Compute the total cost of merging L with X10

CD(L,X) = SA(X ∪ L); // Direct cost11

C(L,X) = CI(L,X)+CD(L,X); // Total cost12

if C(L,X) < Cbest then13

// Merging L and X decreases the best cost14

Cbest = C(L,X);15

// Xbest is the currently best node found16

Xbest = X ;17

end18

// Calculate the induced cost for children of X19

CI = C(L,X) - SA(X);20

// Check if the cost decrease is possible in subtree21

if CI + SA(L) < Cbest then22

if X is not a leaf then23

// Search in both children24

Push (left child of X , CI , 1
CI+ε

) to PQ ;25

Push (right child of X , CI , 1
CI+ε

) to PQ ;26

end27

end28

end29

return Xbest ;30

Algorithm 1: FindNodeForReinsertion(node L) - pseudo-
code of finding suitable inner node or leaf for reinsertion
of the candidate node L so the total cost increase is mini-
mized. Constant ε is a small positive number (e.g. 10−20),
the entries with the highest priorities are removed first from
the priority queue PQ.

ing incremental insertion of primitives. They proposed to
track the “inheritance cost” which corresponds to our in-
duced cost. However, the actual search of the tree was lim-
ited either to a greedy decision and a traversal of a single
path or spreading the search in all subtrees for higher levels
of the tree. This method was later improved in independent
work by Omohundro [Omo89] who proposed to use priority
queue when constructing an optimized sphere tree for prox-
imity searching. Our method differs from the search tech-
nique of Omohundro by using different metric for priority
(induced cost instead of total cost). Also our target applica-
tion is different as we use the search within the tree update
procedure and work with complete subtrees instead of incre-
mental insertion of scene primitives.

submitted to COMPUTER GRAPHICS Forum (11/2012).

6 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

Reinserting nodes. After we select the node Xbest for inser-
tion, which minimizes the cost increase in the whole BVH,
we simply merge Xbest and L using one of the removed nodes
(N or P) as their parent. After each reinsertion we update all
the bounding boxes along the path from the parent of the
merged nodes to the root. The algorithm is illustrated in Fig-
ure 6.

3.4. Selecting Nodes For Update

The update procedure described above process arbitrarily se-
lected nodes in the tree. An obvious choice for the selecting
the nodes for updates is random sampling. When using a ran-
dom sampling we observe that the BVH cost is reduced until
a point where it converges.

In order to accelerate the tree optimization we should first
update those nodes that cause the highest cost overhead (sur-
face area increase) in the tree. To achieve this we need a
node inefficiency measure that would ideally correlate with
the actual cost reduction when updating the node. We ex-
perimented with numerous node inefficiency measures and
below we discuss the three most important ones which we
finally combine together.

The first node inefficiency measure MSUM corresponds
to a component of the cost model used by Lauterbach et
al. [LYTM06] and is evaluated as:

MSUM(N) =
SA(N)

1/|children of N| ·∑X∈children o f N SA(X)
,

where SA(N) is the surface area of the evaluated node
N, |children of N| is the number child nodes of N, and
∑X∈children o f N SA(X) is the sum of surface areas for these
child nodes. This measure estimates the relative increase of
the surface area of the node with respect to average surface
areas of the children. Thus if there will be a lot of empty
space inside the node this measure will be large.

The second node inefficiency measure MMIN is evaluated
as:

MMIN(N) =
SA(N)

MinX∈children o f NSA(X)
,

where SA(N) is the surface area of the evaluated node and
MinX∈children o f NSA(X) is the minimum of surface areas of
its children. This measure aims to handle the situation when
the node contains child nodes of significantly different sizes
(e.g. one large node representing the whole terrain and a
small node representing a particular object on the terrain).
Then the MSUM measure defined above might not identify
such node as problematic as it takes the average surface area
of the children which in this example will still be large. On
the contrary the MMIN measure will detect such a situation.

The third node inefficiency measure MAREA directly cor-
responds to the surface area of the node:

MAREA(N) = SA(N).

The MAREA measure simple prioritizes the updates of the
larger nodes of the tree since each such node has a significant
contribution to the tree cost.

These three measures are able to detect some situations
in which high global cost decrease can be expected. We
have experimentally verified that the steepest decrease of the
tree cost as a function of computation time was consistently
achieved by combining these three measures together into:

MCOMB(N) = MSUM(N) ·MMIN(N) ·MAREA(N)

Once the node inefficiency measure is defined we can use
it to prioritize the updates of the hierarchy nodes according
to their inefficiency measure. Our method works in passes
where in each pass it updates a specified number of nodes
k (typically k=1% of nodes). These nodes are selected as
follows: we evaluate the inefficiency measure for all inner
nodes. Then we determine k nodes with the highest values
of the inefficiency measure using a partial sort of the node
array. These k nodes are then processed sequentially in de-
scending order according to their inefficiency measures (the
most inefficient nodes first).

Note that an alternative would be to always update a single
node with currently the highest inefficiency measure. The
batch processing of nodes however speeds up the node selec-
tion procedure since the inefficiency measures are calculated
only once per pass and are not updated after each change in
the tree. Additionally the batch processing makes the method
more robust with respect to getting stuck in a local minimum
for the case that the inefficiency measure of some node(s) is
hard to reduce. A comparison of the decrease of the cost us-
ing the above described cost measures is shown in Figure 7.

SUM

AREA

MIN

COMB

 160

 210

 220

 0 50 100 150 200

Random

B
V

H
 c

os
t

Pass

M
M

M
 190

 180

M

 170

 200

Figure 7: Cost reduction using a random selection and
the proposed node inefficiency measures on the Soda Hall
scene. Note that the area measure and the combined mea-
sure achieve very fast decrease of the expected cost from 216
to 165. In one pass we update k = 1% of nodes.

3.5. Terminating the BVH optimization

In the beginning of the optimization the vast majority of up-
dates lead to reduction of the BVH cost. Since the removal
operation removes two nodes from the tree and processes

submitted to COMPUTER GRAPHICS Forum (11/2012).

J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies 7

them sequentially (the first child is inserted in the tree while
the second child is still removed), however, it is possible that
after reinserting both nodes to the tree the BVH cost will in-
crease. This behavior becomes more apparent when the op-
timization converges and the BVH cost cannot be reduced
anymore. Then the BVH cost oscillates in a small range near
the reached minimum. Note that by a simple modification of
the method which would always remove just one child from
the tree we could ensure that the cost is either reduced in the
given step or it remains the same. However, our experiments
have shown that the BVH cost is reduced slightly more if
we use the method of removing both children, although tem-
porarily the optimization step might provide a small cost in-
crease.

As the optimization is progressively reducing the cost we
can use different termination criteria deciding when to stop
the optimization such as the maximum time or the number
of passes. The criteria can also be based on evaluating the
convergence of the cost. We propose to terminate the com-
putation when the cost does not improve within a given num-
ber of update passes pT (recall that each pass updates certain
number of nodes).

When using the combined inefficiency measure the cost
might stabilize at a slightly higher value than when using
random sampling as there are some nodes that are never se-
lected for optimization since their measure is low. To avoid
this behavior we switch to random sampling of nodes when
we detect that the cost reduction becomes very low or even
zero. Similarly to the termination of the whole computation
this decision is made not for a single node but for sequence
of processed nodes. We switch to the random selection if in
the given number of passes pR (pR ≤ pT) the cost of the
BVH does not reduce.

3.6. BVH Tree Compaction

We assumed that the BVH trees are constructed until each
leaf contains a single triangle (or a geometric primitive in
general). It is usually more beneficial to construct leaves
with more triangles (e.g. 8 to 10) following the actual traver-
sal and intersection constants (cT and cI) used in the SAH
cost model [ML03, HHS06, Wal07, WBS07].

To get the most benefit from our optimization method we
apply the method in two phases. First, we build the tree
so that each leaf contains a single triangle. Second, we run
the postprocessing phase using a post-order traversal of the
whole tree and evaluate the cost of each node using Eq. 1.
This requires also counting the number of triangles associ-
ated with the node during the post-order traversal. Whenever
the cost of an interior node N is larger than the cost for a leaf
created for the triangles contained in the leaves of the sub-
tree rooted in the node N, we collapse the subtree to a leaf
that references all the corresponding triangles. As a result
the cost of the compacted tree can be significantly reduced

compared to the tree with a single triangle per leaf (see the
ratios between the cost and ocost in Section 4). Note that
this postprocessing phase happens after the optimization and
prior to the use of BVH for ray tracing. The time needed for
this phase is linear with the number of nodes and presents
almost no computation time overhead.

Note that our tree optimization method can be easily ap-
plied even to BVHs with more triangles per leaf (i.e. those
compacted prior to the optimization). In this case we have a
lower number of nodes in the BVH which reduces the opti-
mization time. On the other hand the assignment of triangles
to the leaves will not be changed, although we could poten-
tially find a tree with better distribution of triangles to leaves
which reduces the tree cost.

3.7. Discussion

The idea of our optimization algorithm is to repeatedly op-
timize the BVH, which is similar to the paper of Kensler
[Ken08]. There are two major differences in the core of the
optimization procedure that result in a different behavior of
our method. First, Kensler’s method always traverses the
whole tree in a depth-first-search order to change the hierar-
chy around the traversed nodes. Our approach, on the other
hand, selects the nodes to be optimized either randomly
or using importance based decision. Second, the Kensler’s
method changes the topology of the tree only locally using
one of four possible rotations. Although the sequence of ro-
tations can principally lead to any BVH including the tree
with a globally optimized cost, the changes in a BVH for
one optimization step are much smaller than in our algo-
rithm, where the subtrees are removed and then reinserted
into the most appropriate position. That is, in our algorithm
one optimization step can change (and often changes) the
tree globally and hence has the potential of improving the
cost more efficiently.

Unlike Eisemann et al. [EGMM07] our search for the best
candidate to reinsert the node intentionally starts at the root
to find the best suitable position in the scope of the whole
tree. Using the upwards traversal in the method of Eisemann
et al. [EGMM07] reduces the number of traversal steps dur-
ing the optimization, but does not necessarily find a good
position for the inserted node.

4. Results

We have implemented the proposed algorithm in a single
threaded C++ application. The results of BVH optimization
and CPU ray tracing were evaluated on a PC with Linux OS,
Intel(R) Xeon(R) CPU E5440 with the frequency 2.83GHz
and 40GB of RAM, and GNU C compiler version 4.40. To
compute the cost according to equations 1 and 2 we used
cT = 3.0 and cI = 2.0. As termination criteria described in
Section 3.4 and 3.5 we used k = 1%, pT = 10, and pR = 5.

submitted to COMPUTER GRAPHICS Forum (11/2012).

8 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

We have evaluated the method on fourteen models of dif-
ferent complexity which we classify into two distinct groups:
(1) individual objects and (2) architectural scenes, i.e., mod-
els of larger spatial extent typically containing many objects.
We have constructed the initial BVH by top down recursive
procedure using a precise SAH builder which evaluates all
discontinuities (two positions for each triangle) in the cost
function for all three axes. The rendered images for objects
and scenes are shown in Figure 9 and 10.

4.1. BVH Cost Reduction

We discuss separately the results for BVH built for individ-
ual objects and architectural scenes. As a reference for com-
parison we use our reimplementation of the state of the art
BVH optimization algorithms of Kensler [Ken08] for both
hill climbing and simulated annealing. For all tested meth-
ods we evaluate the BVH cost (denoted as cost), BVH cost
optimized by compacting the tree with the method described
in Section 3.6 (ocost), the time for optimizing the tree until
predefined termination criteria (CPUupdate), the total build
time including the optimization (CPUbuild) and the times
for ray casting on the CPU and on the GPU for different ray
types (primary rays, random rays, ambient occlusion rays).

Individual objects. As individual objects we have used
five geometric data sets also used by Kensler’s paper. These
models exhibit relatively uniform distribution of triangles
and low depth complexity. Therefore the traditional top
down build algorithm with the SAH constructs a high qual-
ity BVH that is difficult to optimize. For these scenes the up-
dates provide practically no reduction of the BVH cost (see
Table 2). It is worth to mention the 5% cost reduction for
the Hairball scene, which results from its higher geometrical
complexity (and hence possible source of inefficiency).

For BVHs initially constructed using spatial median splits
our method optimizes the BVH cost close to the cost
achieved by the top down SAH algorithm. The results are
given in the Table 3. The final cost achieved by our algo-
rithm is decreased the same or more than in the reference al-
gorithm, the simulated annealing by Kensler [Ken08], how-
ever, the total build time achieves the great speedup, our al-
gorithm is up to 10 to 25 times faster.

Architectural scenes. The results for nine more com-
plex architectural scenes show our method can reduce the
initial cost of the tree constructed with the traditional top
down algorithm with SAH by 4% to 24% with an average of
17% (see Table 4). This cost reduction was achieved in time
which was about three times smaller than the time of the ini-
tial tree construction (albeit the implementation of the exact
SAH builder is not optimized). We can observe that the cost
reduction of the BVH optimized by our method is larger than
that of the current state of the art methods for high quality
BVH proposed by Kensler [Ken08]. The build time for the
hill climbing reference method is slightly lower than for our

method (note that this also depends on the particular termi-
nation criteria used in our method), but the hill climbing is
not able to reduce the cost more than by a few percent.

The simulated annealing of Kensler [Ken08] achieves bet-
ter cost reduction than the hill climbing, while the running
time of the method is about two order of magnitude higher
than for hill climbing. Our method however provides BVHs
with even lower cost (up to 10% difference) than the simu-
lated annealing by Kensler in computation time from 28 to
80 times smaller. This brings us to an observation that our
proposed technique is currently able to construct the best
known BVHs for the given scene and the cost model based
on SAH. The BVH quality improvement over the previous
state-of-the-art method is not dramatic, however the speed
in which we obtain these improvements is significant (al-
most two orders of magnitude compared to the simulated
annealing), which can actually lead to using the proposed
technique in practice as the BVH build time is only slightly
higher than without our method.

For BVHs built top down using a simple spatial median
split the cost reduction achieved by our algorithm is very
significant. The results are given in Table 5. Interestingly,
the BVH cost quickly converges almost to the same cost as
for the case when the BVH was built with top down build
algorithm with SAH and optimized by our algorithm, but
the optimization takes more computation time. This behav-
ior can be seen in Figure 8 where we show the optimization
process using 200 passes and when updating 1% of inner
nodes per pass. Again, the time needed for the build includ-
ing optimization is 25 to 147 times smaller than the time of
simulated annealing by Kensler.

In order to provide more compact overview of the results
we have summarized all results for the architectural scenes
in Table 1, where the cost without the reduction described in
Section 3.6 is reported. The cost and time for the top down
BVH build with SAH is taken there as a reference.

BVH structure analysis. In order to find out what par-
ticular changes to the BVH our algorithm does we calcu-
lated histograms of the surface areas of the nodes at differ-
ent depths of the tree for the initial BVH and for the BVH
optimized by our method. These histograms are shown in
Figure 11.

The plots show that our optimization method reduces the
sum of surface areas of inner nodes especially for the middle
range depths. We can also observe that this is achieved by
restructuring the tree so that certain nodes are placed deeper
in the tree.

BVH tree compaction. We also evaluated the contribu-
tion of the tree compaction described in Section 3.6. The
ocost after the compaction can be non-negligibly lower than
the initial cost before performing the tree compaction. In
particular, the ocost is by about 8% lower than cost for in-
dividual objects. For architectural scenes the difference is

submitted to COMPUTER GRAPHICS Forum (11/2012).

J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies 9

even more significant, for BVH top down build with SAH it
reaches 20% and for the BVH built with spatial median 17%
on average. Interestingly, the impact of our tree optimization
algorithm is typically a few percent larger when considering
the ratio of ocost than the ratio of cost before and after the
optimization. For example for the Soda Hall scene the cost
is reduced by 24% (ratio 0.76), while the ocost is reduced by
27% (ratio 0.73) (see Table 4).

4.2. Ray Tracing Performance

We have evaluated the optimized BVH using two different
ray tracers. The first one is a CPU based ray tracer with no
low level optimizations, the second one is a GPU ray tracer
derived from the implementation of Karras et al.’s [KAL09].
For the GPU ray tracer we have used an adaptor that converts
the main memory data structures to the data structures used
by the GPU application’s CUDA kernels.

CPU ray tracer results. The CPU ray tracing perfor-
mance of the constructed BVH has been evaluated for two
scenarios – casting primary rays and shooting random rays.
The figures computed for casting primary rays are shown in
Figure 10. Note that the time for tracing rays is in strong
correlation with the cost irrespective of the scenario for both
primary and random rays for all reported results.

GPU ray tracer results. The GPU ray tracing results
were evaluated using a modified version of the Karras et
al.’s [KAL09] GPU ray tracer. For measurements we have
used a PC with Intel Core i7-2600K 3.40GHz, NVIDIA
GeForce GTX 580 3GB GDDR5 and Windows 7 OS. The
application was built using Microsoft Visual Studio 2010,
version 64-bit, with CUDA Toolkit v3.2.

We have tested the performance of primary rays, random
rays, and ambient occlusion rays. We can see that the GPU
results correlate with the results from the CPU raytracer (see
Table 2 and Table 4). Karras et al.’s primary rays and ambient
occlusion rays generation and general tracing kernels were
used without changes. We have implemented a random rays
generation routine, casting 8 million rays for each scene,
where the rays are defined by generating two uniformly dis-
tributed points in the scene bounding box. For the ambient
occlusion test we spawn ten rays at each hit of the primary
ray.

There are scenes, where the GPU version does not provide
a performance gain comparable to the CPU implementation
particularly for primary rays (e.g. Conference - CPU primary
69%, GPU primary 98%), though in these cases the refer-
ence method of Kensler exhibits similar behavior. On the
contrary on a few tested scenes the optimized BVH provides
slightly higher performance gain for the GPU ray tracer than
for the CPU version (e.g. Sibenik - CPU primary 85%, GPU
primary 81%). The analysis why this happens is a matter of
future work when convenient profiling tools on a GPU will
become available.

5. Conclusion and Future Work

We proposed an algorithm for building a high quality BVH
by incremental updates of the BVH initially constructed by
a top down method with surface area heuristic.

The method is based on performing selective updates of
the BVH by identifying problematic nodes and reinserting
them back in appropriate positions in order to minimize the
total BVH cost. The updates are prioritized and the resulting
method is highly flexible in terms of the update time with
respect to the quality of the hierarchy.

We have shown that for complex scenes our method
achieves very good cost reduction in much shorter time than
previous methods. In fact the results indicate that the method
constructs the best currently known BVHs under the SAH
cost model and thus it has a potential to become a common
optimization technique, which further reduces the cost of the
SAH builders used in practical applications.

Currently, we work on a parallel version of the algorithm
on modern GPUs in CUDA, where both the update and the
rendering algorithms run solely on the GPU. We also want
to study the properties of the hierarchy for other visibility
computations such as occlusion and view-frustum culling for
large scenes. Another possible future work is to study other
types of bounding volume hierarchies such as those with ex-
plicit spatial splits or with higher branching factor.

Acknowledgements

We would like to thank the contributors of the scenes used
in our paper, Prof. C. Sequin for Soda Hall model, the Uni-
versity of North Carolina for the Power Plant model, Marko
Dabrovic for the Sponza and Sibenik models, Ingo Wald for
Fairy Forest, Greg Ward for the Conference model, Samuli
Laine and Tero Karras for Hairball model, and Stanford
repository for other models.

Further, we want to thank Andrew Kensler for providing
us with the source code for his paper [Ken08] that allowed to
reproduce the reference method exactly. We would also like
to thank Tero Karras, Timo Aila, and Samuli Laine for re-
leasing their GPU ray tracing framework. Our research was
supported by the Czech Science Foundation under research
programs P202/11/1883 (Argie) and P202/12/2413 (Opalis),
and the Grant Agency of the Czech Technical University in
Prague, grant No. SGS10/289/OHK3/3T/13, supported by
Ministry of Education of the Czech Republic.

References
[AL09] AILA T., LAINE S.: Understanding the Efficiency of Ray

Traversal on GPUs. In Proceedings of the Conference on High-
Performance Graphics (HPG’09) (Aug 2009), pp. 145–149. 2

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
Bounding Volume Hierarchies for Fast SIMD Ray Tracing of
Incoherent Rays. Computer Graphics Forum 27 (June 2008),
1225–1233(9). 2

submitted to COMPUTER GRAPHICS Forum (11/2012).

10 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

cost[-] cost, our cost, cost, our time[s], time, our time, time, our
Scene SAH optimized spatial optimized SAH optimized spatial optimized

build SAH build median sp. median build SAH build median sp. median
Conference 130.30 (100%) 78.66% 646.38% 78.83% 3.45 (100%) 131.30% 12.75% 226.38%
Fairy Forest 95.10 (100%) 96.21% 194.52% 97.70% 1.96 (100%) 120.92% 12.24% 63.27%
Sibenik Cathedral 82.30 (100%) 84.45% 474.74% 86.60% 0.66 (100%) 209.09% 13.64% 175.76%
Sponza 220.20 (100%) 82.74% 571.25% 83.30% 0.56 (100%) 180.36% 12.50% 376.79%
Soda Hall 216.50 (100%) 76.40% 644.96% 76.61% 40.96 (100%) 137.60% 10.47% 187.26%
Power Plant, sec. 9 57.90 (100%) 89.46% 325.87% 90.33% 1.36 (100%) 119.12% 11.76% 205.15%
Power Plant, sec. 16 93.50 (100%) 85.35% 540.16% 85.24% 4.70 (100%) 159.57% 12.77% 378.51%
Power Plant 115.80 (100%) 84.46% 571.10% 85.16% 396.00 (100%) 121.46% 9.08% 71.90%
Pompeii Ten 252.90 (100%) 86.20% 303.24% 86.98% 102.00 (100%) 175.49% 10.76% 114.02%

Table 1: Summary results for our algorithm used for architectural scenes, where the reference method is SAH-based build
method in top down fashion without optimization of the tree (100%). The data are compacted from Tables 4 and 5.

COMB

COMB

 50

 200

 250

 300

 350

 400

 0 0.5 1 1.5 2 2.5

B
V

H
 c

os
t

Spatial median, random
SAH, random

Time [s]

SAH, M

 100

Spatial median, M

 150

COMB

COMB

 0

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200

B
V

H
 c

os
t

Time [s]

Spatial median, random
SAH, random

SAH, M
Spatial median, M

 100

 200

Figure 8: BVH cost optimization for BVHs built by spatial median and SAH. (left) Sibenik Cathedral, (right) Power Plant. Our
method can quickly optimize a tree, which was built either with spatial median or SAH. Note that both trees converge to very
similar costs and the convergence is significantly faster for the MCOMB metrics (the plots show 200 update passes with 1% of
updated nodes per pass).

[EG07] ERNST M., GREINER G.: Early Split Clipping for
Bounding Volume Hierarchies Early Split Clipping for Bound-
ing Volume Hierarchies. In IEEE Symposium on Interactive Ray
Tracing (RT’2007) (Sept 2007), pp. 73–78. 2

[EGMM07] EISEMANN M., GROSCH T., MAGNOR M.,
MUELLER S.: Automatic Creation of Object Hierarchies for
Ray Tracing Dynamic Scenes. In WSCG’2007 Short Papers
Post-Conference Proceedings (Jan 2007), Skala V., (Ed.),
WSCG, pp. 57–64. 7

[GPM11] GARANZHA K., PANTALEONI J., MCALLISTER D.:
Simpler and faster HLBVH with work queues. In Proceedings of
the ACM SIGGRAPH Symposium on High Performance Graph-
ics (HPG’11) (Aug 2011), pp. 59–64. 2

[GS87] GOLDSMITH J., SALMON J.: Automatic Creation of Ob-
ject Hierarchies for Ray Tracing. IEEE Computer Graphics and
Applications 7, 5 (May 1987), 14–20. 2, 5

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms. Ph.d.
thesis, Department of Computer Science and Engineering, Fac-
ulty of Electrical Engineering, Czech Technical University in
Prague, Nov 2000. 2, 3

[HHS06] HAVRAN V., HERZOG R., SEIDEL H.-P.: On the Fast
Construction of Spatial Data Structures for Ray Tracing. In Pro-
ceedings of IEEE Symposium on Interactive Ray Tracing 2006
(Sept 2006), pp. 71–80. 2, 7

[HMF07] HUNT W., MARK W. R., FUSSELL D.: Fast and
Lazy Build of Acceleration Structures from Scene Hierarchies.
In IEEE/EG Symposium on Interactive Ray Tracing 2007 (Sept
2007), pp. 47–54. 2

[HSZ∗11] HOU Q., SUN X., ZHOU K., LAUTERBACH C.,
MANOCHA D.: Memory-Scalable GPU Spatial Hierarchy Con-
struction. IEEE Transactions on Visualization and Computer
Graphics 17, 4 (Apr 2011), 466–474. 3

[IWP07] IZE T., WALD I., PARKER S. G.: Asynchronous BVH
Construction for Ray Tracing Dynamic Scenes on Parallel Multi-
Core Architectures. In Proceedings of the Eurographics Sympo-
sium on Parallel Graphics and Visualization 2007 (EGPGV’07)
(May 2007), pp. 101–108. 2

[KAL09] KARRAS T., AILA T., LAINE S.: Understanding the
Efficiency of Ray Traversal on GPUs; Google Code, 2009. 9

[Ken08] KENSLER A.: Tree Rotations for Improving Bounding
Volume Hierarchies. In Proceedings of the 2008 IEEE Sympo-
sium on Interactive Ray Tracing (Aug 2008), pp. 73–76. 1, 3, 7,
8, 9

[KK86] KAY T. L., KAJIYA J. T.: Ray tracing complex scenes.
In SIGGRAPH ’86 Proceedings (Aug. 1986), Evans D. C., Athay
R. J., (Eds.), vol. 20, pp. 269–278. 2

[KMKY10] KIM T.-J., MOON B., KIM D., YOON S.-E.:
RACBVHs: Random-Accessible Compressed Bounding Volume

submitted to COMPUTER GRAPHICS Forum (11/2012).

J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies 11

Figure 9: Snapshots of scenes representing individual objects: Happy Buddha, Dragon, Blade, Armadillo, and Hairball.

Figure 10: Snapshots of architectural scenes: Conference, Fairy Forest, Sponza, Sodahall, Sibenik Cathedral, Power Plant
section 9, Power Plant section 16, Power Plant, and Pompeii Ten.

Hierarchies. IEEE Transactions on Visualization and Computer
Graphics 16, 2 (March-April 2010), 273 –286. 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH Construction on GPUs.
Comput. Graph. Forum 28, 2 (2009), 375–384. 2

[LYTM06] LAUTERBACH C., YOON S.-E., TUFT D.,
MANOCHA D.: RT-DEFORM: Interactive Ray Tracing
of Dynamic Scenes using BVHs. In IEEE Symposium on
Interactive Ray Tracing (RT’06) (Sept 2006), pp. 39–46. 6

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Visual Computer 6, 6 (1990),
153–65. 3

[ML03] MASSO J. P. M., LOPEZ P. G.: Automatic Hybrid Hi-
erarchy Creation: a Cost-model Based Approach. Computer
Graphics Forum 22, 1 (2003), 5–13. 2, 7

[MW06] MAHOVSKY J., WYVILL B.: Memory-Conserving
Bounding Volume Hierarchies with Coherent Raytracing. Com-
puter Graphics Forum 25 (Jun 2006), 173–182(10). 2

[Omo89] OMOHUNDRO S. M.: Five Balltree Construction Algo-
rithms. Tech. Rep. TR-89-063, International Computer Science
Institute, Berkeley, Nov 1989. 5

[PGDS09] POPOV S., GEORGIEV I., DIMOV R., SLUSALLEK
P.: Object partitioning considered harmful: space subdivision for
BVHs. In Proceedings of the Conference on High Performance
Graphics 2009 (HPG ’09) (Aug 2009), pp. 15–22. 2

[PL10] PANTALEONI J., LUEBKE D.: HLBVH: hierarchical
LBVH construction for real-time ray tracing of dynamic geom-
etry. In Proceedings of the Conference on High Performance
Graphics (HPG’10) (Jun 2010), pp. 87–95. 2, 3

[RTN] Ray Tracing News, internet publications, put together and
edited by Eric Haines, since 1987. http://tog.acm.org/
resources/RTNews/html. 2

[RW80] RUBIN S. M., WHITTED T.: A 3-Dimensional Repre-
sentation for Fast Rendering of Complex Scenes. In SIGGRAPH
’80 Proceedings (July 1980), vol. 14, pp. 110–116. 2

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits
in bounding volume hierarchies. In proceedings of the con-
ference on High Performance Graphics 2009 (HPG’09) (Aug
2009), pp. 7–13. 2

[Smi98] SMITS B.: Efficiency issues for ray tracing. Journal of
Graphics Tools 3, 2 (1998), 1–14. 2

[Wal07] WALD I.: On fast Construction of SAH based Bound-
ing Volume Hierarchies. In Proceedings of the 2007 Eurograph-
ics/IEEE Symposium on Interactive Ray Tracing (Sep 2007),
pp. 33–40. 2, 3, 7

[Wal12] WALD I.: Fast Construction of SAH BVHs on the Intel
Many Integrated Core (MIC) Architecture. IEEE Transactions on
Visualization and Computer Graphics 18, 1 (Jan 2012), 47–57. 2

[WBKP08] WALTER B., BALA K., KULKARNI M., PINGALI
K.: Fast Agglomerative Clustering for Rendering. In IEEE

submitted to COMPUTER GRAPHICS Forum (11/2012).

http://tog.acm.org/resources/RTNews/html
http://tog.acm.org/resources/RTNews/html

12 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

CPU CPU CPU CPU GPU GPU GPU amb.
M cost ocost update build primary random primary random occlusion

[-] [-] [s] [s] [s] [s] [ms] [ms] [ms]
Happy Buddha (1,087k triangles)

1 165.3 (1.00) 156.5 (1.00) 0.00 15.78 (1.00) 0.20 (1.00) 2.71 (1.00) 0.94 (1.00) 165.5 (1.00) 6.45 (1.00)
2 161.9 (0.97) 154.2 (0.98) 26.35 42.14 (2.66) 0.20 (1.01) 2.66 (0.98) 0.97 (1.03) 163.3 (0.98) 6.49 (1.00)
3 163.2 (0.98) 155.3 (0.99) 15.04 30.82 (1.95) 0.20 (1.02) 2.72 (1.00) 0.95 (1.01) 163.0 (0.98) 6.48 (1.00)
4 164.2 (0.99) 156.3 (0.99) 2.58 18.37 (1.16) 0.20 (1.00) 2.71 (0.99) 0.94 (1.00) 164.7 (0.99) 6.51 (1.00)
5 165.3 (1.00) 156.5 (1.00) 1135.00 1151.00 (72.92) 0.20 (1.00) 2.71 (1.00) 0.94 (1.00) 165.5 (1.00) 6.45 (1.00)

Dragon (871k triangles)
1 145.4 (1.00) 138.1 (1.00) 0.00 11.96 (1.00) 0.26 (1.00) 2.37 (1.00) 1.00 (1.00) 156.8 (1.00) 8.80 (1.00)
2 144.5 (0.99) 137.9 (0.99) 6.21 18.18 (1.51) 0.27 (1.03) 2.41 (1.01) 1.07 (1.07) 155.9 (0.99) 8.92 (1.01)
3 145.4 (1.00) 138.1 (1.00) 1.21 13.18 (1.10) 0.26 (1.00) 2.38 (1.00) 1.08 (1.08) 155.6 (0.99) 8.88 (1.00)
4 144.7 (0.99) 138.0 (0.99) 1.80 13.77 (1.15) 0.26 (1.00) 2.37 (0.99) 1.01 (1.01) 156.4 (0.99) 8.85 (1.00)
5 145.4 (1.00) 138.1 (1.00) 911.00 923.00 (77.14) 0.26 (1.00) 2.37 (1.00) 1.00 (1.00) 156.8 (1.00) 8.80 (1.00)

Blade (1.765k triangles)
1 190.3 (1.00) 178.8 (1.00) 0.00 27.37 (1.00) 0.21 (1.00) 2.35 (1.00) 0.97 (1.00) 10.4 (1.00) 4.01 (1.00)
2 190.3 (1.00) 178.8 (1.00) 3.24 30.61 (1.11) 0.22 (1.00) 2.38 (1.01) 0.97 (1.00) 10.8 (1.03) 4.03 (1.00)
3 190.3 (1.00) 178.8 (1.00) 2.35 29.72 (1.08) 0.22 (1.00) 2.38 (1.01) 0.99 (1.02) 10.7 (1.02) 4.03 (1.00)
4 190.1 (0.99) 178.7 (0.99) 4.65 32.02 (1.16) 0.21 (1.00) 2.34 (0.99) 0.97 (1.00) 10.4 (1.00) 4.00 (0.99)
5 190.3 (1.00) 178.8 (1.00) 1835.00 1863.00 (68.05) 0.21 (1.00) 2.35 (1.00) 0.97 (1.00) 10.4 (1.00) 4.01 (1.00)

Armadillo (307k triangles)
1 86.3 (1.00) 82.5 (1.00) 0.00 3.35 (1.00) 0.22 (1.00) 1.53 (1.00) 0.99 (1.00) 56.7 (1.00) 6.81 (1.00)
2 86.3 (0.99) 82.5 (1.00) 0.33 3.69 (1.10) 0.22 (0.99) 1.52 (0.99) 0.97 (0.97) 57.7 (1.01) 6.94 (1.01)
3 86.3 (1.00) 82.5 (1.00) 0.34 3.70 (1.10) 0.22 (0.99) 1.52 (0.99) 0.94 (0.94) 57.1 (1.00) 6.91 (1.01)
4 86.2 (0.99) 82.5 (1.00) 0.52 3.87 (1.15) 0.22 (0.99) 1.52 (0.99) 0.97 (0.97) 56.8 (1.00) 6.81 (1.00)
5 86.3 (1.00) 82.5 (1.00) 316.00 319.00 (95.13) 0.22 (1.00) 1.53 (1.00) 0.99 (1.00) 56.7 (1.00) 6.81 (1.00)

Hairball (2,850k triangles)
1 1415.2 (1.00) 1057.1 (1.00) 0.00 48.75 (1.00) 1.01 (1.00) 7.30 (1.00) 5.55 (1.00) 180.1 (1.00) 43.70 (1.00)
2 1345.3 (0.95) 985.9 (0.93) 143.00 192.00 (3.93) 0.97 (0.96) 6.61 (0.90) 5.09 (0.91) 165.0 (0.91) 40.72 (0.93)
3 1345.7 (0.95) 986.0 (0.93) 131.00 180.00 (3.69) 0.99 (0.98) 6.82 (0.93) 5.01 (0.90) 165.1 (0.91) 40.89 (0.93)
4 1408.0 (0.99) 1052.2 (0.99) 10.09 58.85 (1.20) 1.05 (1.04) 8.99 (1.23) 5.54 (0.99) 179.8 (0.99) 43.70 (1.00)
5 1409.9 (0.99) 1052.8 (0.99) 2948.00 2996.00 (61.57) 1.05 (1.04) 8.76 (1.20) 5.73 (1.03) 185.0 (1.02) 45.07 (1.03)

Table 2: Results of the BVH optimization for individual objects. The base hierarchy for all methods (M) is created with a SAH
top down driven build (method 1). For methods 2 to 5 the initially constructed BVH is followed by an optimization phase using
different methods and settings: 2 - our method with random selection, 3 - our method with the combined measure of inefficiency,
4 - Kensler’s method, hill climbing, and 5 - Kensler’s method, simulated annealing. The values in brackets are the computed
ratios against reference values (1.00).

Symposium on Interactive Ray Tracing (RT’2008) (Aug 2008),
pp. 81–86. 3

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (Jan. 2007). 2, 7

[WHG84] WEGHORST H., HOOPER G., GREENBERG D. P.: Im-
proved computational methods for ray tracing. ACM Transac-
tions on Graphics 3, 1 (Jan. 1984), 52–69. 2

[WIP08] WALD I., IZE T., PARKER S. G.: Fast, parallel, and
asynchronous construction of BVHs for ray tracing animated
scenes. Comput. Graph. (Special Section: Parallel Graphics and
Visualization) 32, 1 (2008), 3–13. 2

[WK06] WÄCHTER C., KELLER A.: Instant Ray Tracing: The
Bounding Interval Hierarchy. In Proceedings of the 17th Eu-
rographics Symposium On Rendering (EGSR’06) (Jun 2006),
pp. 139–149. 2

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-KD Trees
for Hardware Accelerated Ray Tracing of Dynamic Scenes. In

Proceedings of conference on Graphics Hardware 2006 (Sep
2006), pp. 67–77. 2

[YM06] YOON S.-E., MANOCHA D.: Cache-Efficient Layouts
of Bounding Volume Hierarchies. Computer Graphics Forum 25
(Jun 2006), 507–516. 2

submitted to COMPUTER GRAPHICS Forum (11/2012).

J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies 13

CPU CPU CPU CPU GPU GPU GPU amb.
M cost ocost update build primary random primary random occlusion

[-] [-] [s] [s] [s] [s] [ms] [ms] [ms]
Happy Buddha (1,087k triangles)

1 275.6 (1.00) 269.1 (1.00) 0.00 1.89 (1.00) 0.34 (1.00) 4.83 (1.00) 1.64 (1.00) 278 (1.00) 12.37 (1.00)
2 166.4 (0.60) 158.7 (0.58) 37.82 39.71 (20.97) 0.21 (0.62) 2.78 (0.57) 0.97 (0.59) 167 (0.60) 6.59 (0.53)
3 168.9 (0.61) 161.4 (0.59) 43.62 45.51 (24.03) 0.21 (0.63) 2.83 (0.58) 1.08 (0.65) 170 (0.61) 6.83 (0.55)
4 217.5 (0.78) 211.4 (0.78) 7.88 9.77 (5.16) 0.27 (0.79) 3.79 (0.78) 1.34 (0.81) 220 (0.79) 9.07 (0.73)
5 179.4 (0.65) 171.8 (0.63) 1152.00 1154.00 (609.33) 0.24 (0.70) 3.14 (0.65) 1.14 (0.69) 181 (0.65) 7.18 (0.58)

Dragon (871k triangles)
1 232.9 (1.00) 227.6 (1.00) 0.00 1.49 (1.00) 0.46 (1.00) 3.95 (1.00) 2.05 (1.00) 246 (1.00) 16.01 (1.00)
2 146.2 (0.62) 139.6 (0.61) 32.58 34.07 (22.85) 0.29 (0.62) 2.44 (0.61) 1.17 (0.57) 158 (0.63) 9.06 (0.56)
3 149.3 (0.64) 143.0 (0.62) 39.50 40.99 (27.49) 0.29 (0.63) 2.53 (0.64) 1.19 (0.58) 160 (0.65) 9.26 (0.57)
4 189.3 (0.81) 184.2 (0.80) 7.14 8.63 (5.79) 0.38 (0.82) 3.31 (0.83) 1.57 (0.76) 207 (0.83) 12.44 (0.77)
5 157.1 (0.67) 150.5 (0.66) 927.02 928.51 (622.84) 0.33 (0.70) 2.73 (0.69) 1.30 (0.63) 173 (0.70) 10.05 (0.62)

Blade (1.765k triangles)
1 345.9 (1.00) 337.6 (1.00) 0.00 3.03 (1.00) 0.40 (1.00) 4.53 (1.00) 2.02 (1.00) 21.5 (1.00) 7.95 (1.00)
2 196.3 (0.56) 185.2 (0.54) 82.97 86.00 (28.34) 0.24 (0.60) 2.45 (0.54) 1.10 (0.54) 11.4 (0.53) 4.22 (0.53)
3 202.4 (0.58) 191.5 (0.56) 100.46 103.49 (34.10) 0.25 (0.61) 2.52 (0.55) 1.22 (0.60) 11.8 (0.54) 4.41 (0.55)
4 272.6 (0.78) 264.6 (0.78) 11.64 14.67 (4.83) 0.32 (0.80) 3.55 (0.78) 1.59 (0.78) 15.6 (0.72) 5.97 (0.75)
5 214.3 (0.61) 203.3 (0.60) 1872.49 1875.52 (618.05) 0.29 (0.73) 2.87 (0.63) 1.45 (0.71) 13.3 (0.61) 4.66 (0.58)

Armadillo (307k triangles)
1 143.5 (1.00) 140.73 (1.00) 0.00 0.47 (1.00) 0.40 (1.00) 2.63 (1.00) 1.88 (1.00) 95.8 (1.00) 12.23 (1.00)
2 89.7 (0.62) 85.87 (0.61) 6.21 6.69 (14.06) 0.25 (0.62) 1.64 (0.62) 1.03 (0.54) 60.1 (0.62) 7.24 (0.59)
3 91.4 (0.63) 87.82 (0.62) 7.06 7.54 (15.85) 0.25 (0.62) 1.67 (0.63) 1.10 (0.58) 61.5 (0.64) 7.53 (0.61)
4 116.5 (0.81) 113.67 (0.80) 1.68 2.15 (4.53) 0.32 (0.79) 2.18 (0.82) 1.48 (0.78) 77.5 (0.80) 9.53 (0.77)
5 95.2 (0.66) 91.39 (0.64) 321.23 321.71 (675.96) 0.28 (0.70) 1.80 (0.68) 1.13 (0.60) 65.3 (0.68) 7.78 (0.63)

Hairball (2,850k triangles)
1 2448 (1.00) 2114.84 (1.00) 0.00 5.24 (1.00) 2.04 (1.00) 17.00 (1.00) 15.23 (1.00) 476 (1.00) 110.03 (1.00)
2 1347 (0.55) 987.64 (0.46) 231.92 237.16 (45.22) 0.97 (0.47) 6.63 (0.39) 5.18 (0.34) 166 (0.34) 41.30 (0.37)
3 1362 (0.55) 1003.56 (0.47) 285.32 290.56 (55.40) 0.98 (0.48) 6.90 (0.41) 5.28 (0.35) 174 (0.36) 43.33 (0.39)
4 1892 (0.77) 1576.44 (0.74) 26.78 32.02 (6.10) 1.57 (0.76) 12.58 (0.74) 9.35 (0.62) 318 (0.66) 72.19 (0.65)
5 1473 (0.60) 1119.17 (0.52) 3053.79 3059.04 (583.31) 1.20 (0.58) 8.34 (0.50) 6.28 (0.42) 202 (0.42) 48.47 (0.43)

Table 3: The results for individual objects where the base hierarchy for all methods is created with a spatial median top down
driven build (method 1), which for methods 2 to 5 is followed by an update phase. These are as follows: 2. our method with
random selection, 3. our method with the combined measure of inefficiency, 4. Kensler’s method, hill climbing, and 5. Kensler’s
method, simulated annealing. The values in brackets are the computed ratios against reference values (1.00).

submitted to COMPUTER GRAPHICS Forum (11/2012).

14 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

CPU CPU CPU CPU GPU GPU GPU
M cost ocost update build primary random primary random occlusion

[-] [-] [s] [s] [s] [s] [ms] [ms] [ms]
Conference (283k triangles)

1 130.3 (1.00) 110.5 (1.00) 0.00 3.45 (1.00) 0.56 (1.00) 2.05 (1.00) 1.31 (1.00) 17.5 (1.00) 20.45 (1.00)
2 103.8 (0.79) 85.0 (0.76) 5.56 9.01 (2.60) 0.40 (0.72) 1.48 (0.72) 1.31 (1.00) 13.5 (0.77) 18.91 (0.92)
3 102.5 (0.78) 83.7 (0.75) 1.07 4.53 (1.31) 0.39 (0.69) 1.47 (0.71) 1.29 (0.98) 13.4 (0.77) 18.56 (0.90)
4 122.9 (0.94) 105.5 (0.95) 1.16 4.62 (1.33) 0.51 (0.91) 1.92 (0.93) 1.42 (1.08) 16.2 (0.92) 20.36 (0.99)
5 104.1 (0.79) 85.7 (0.77) 299.00 303.00 (87.50) 0.40 (0.71) 1.50 (0.72) 1.34 (1.02) 14.0 (0.80) 18.99 (0.92)

Fairy Forest (174k triangles)
1 95.1 (1.00) 79.4 (1.00) 0.00 1.96 (1.00) 0.62 (1.00) 1.41 (1.00) 1.68 (1.00) 19.7 (1.00) 31.64 (1.00)
2 92.5 (0.97) 76.8 (0.96) 1.39 3.36 (1.70) 0.62 (1.00) 1.39 (0.98) 1.62 (0.96) 19.0 (0.96) 30.91 (0.97)
3 91.5 (0.96) 75.8 (0.95) 0.40 2.37 (1.20) 0.61 (0.98) 1.33 (0.94) 1.63 (0.97) 19.1 (0.97) 30.63 (0.96)
4 93.9 (0.98) 78.2 (0.98) 0.60 2.57 (1.30) 0.65 (1.04) 1.38 (0.97) 1.71 (1.01) 19.5 (0.99) 32.07 (1.01)
5 93.8 (0.98) 78.0 (0.98) 179.00 181.00 (91.80) 0.67 (1.07) 1.42 (1.00) 1.94 (1.15) 20.6 (1.04) 32.92 (1.04)

Sibenik Cathedral (80k triangles)
1 82.3 (1.00) 71.5 (1.00) 0.00 0.66 (1.00) 0.55 (1.00) 1.19 (1.00) 1.73 (1.00) 8.7 (1.00) 25.59 (1.00)
2 70.2 (0.85) 61.6 (0.86) 1.19 1.85 (2.79) 0.48 (0.87) 1.00 (0.84) 1.42 (0.82) 7.1 (0.81) 20.93 (0.81)
3 69.5 (0.84) 61.1 (0.85) 0.72 1.38 (2.08) 0.47 (0.85) 0.96 (0.81) 1.41 (0.81) 7.1 (0.81) 22.32 (0.87)
4 77.9 (0.94) 68.7 (0.95) 0.22 0.88 (1.33) 0.55 (1.00) 1.15 (0.96) 1.72 (0.99) 8.5 (0.97) 25.48 (0.99)
5 70.8 (0.85) 62.0 (0.86) 79.12 79.79 (120.00) 0.52 (0.94) 1.00 (0.84) 1.73 (1.00) 8.3 (0.95) 25.49 (0.99)

Sponza (76k triangles)
1 220.2 (1.00) 189.7 (1.00) 0.00 0.56 (1.00) 0.61 (1.00) 2.83 (1.00) 1.34 (1.00) 25.4 (1.00) 26.26 (1.00)
2 183.3 (0.83) 156.6 (0.82) 0.95 1.52 (2.70) 0.42 (0.70) 2.16 (0.76) 1.10 (0.82) 18.9 (0.74) 22.76 (0.86)
3 182.2 (0.82) 155.2 (0.81) 0.44 1.01 (1.79) 0.39 (0.65) 2.09 (0.73) 1.10 (0.82) 18.6 (0.73) 22.86 (0.87)
4 206.1 (0.93) 178.2 (0.93) 0.22 0.78 (1.39) 0.47 (0.78) 2.61 (0.92) 1.33 (0.99) 24.1 (0.94) 26.14 (0.99)
5 188.1 (0.85) 161.3 (0.85) 80.70 81.27 (144.40) 0.46 (0.76) 2.27 (0.80) 1.36 (1.01) 22.9 (0.89) 26.60 (1.01)

Soda Hall (2,169k triangles)
1 216.5 (1.00) 188.9 (1.00) 0.00 40.96 (1.00) 0.64 (1.00) 1.44 (1.00) 1.13 (1.00) 11.3 (1.00) 6.02 (1.00)
2 167.1 (0.77) 141.4 (0.74) 99.41 140.00 (3.42) 0.50 (0.77) 1.16 (0.80) 0.98 (0.86) 8.6 (0.76) 4.95 (0.82)
3 165.4 (0.76) 139.7 (0.73) 15.39 56.36 (1.37) 0.50 (0.77) 1.22 (0.84) 0.96 (0.84) 8.7 (0.76) 4.94 (0.82)
4 203.1 (0.93) 177.2 (0.93) 12.53 53.49 (1.30) 0.62 (0.97) 1.41 (0.97) 1.21 (1.07) 10.8 (0.95) 6.00 (0.99)
5 180.5 (0.83) 154.8 (0.81) 2570.00 2611.00 (63.70) 0.59 (0.92) 1.38 (0.95) 1.12 (0.99) 10.6 (0.93) 5.73 (0.95)

Power Plant, section 9 (122k triangles)
1 57.9 (1.00) 38.7 (1.00) 0.00 1.36 (1.00) 0.16 (1.00) 0.75 (1.00) 0.86 (1.00) 4.5 (1.00) 1.33 (1.00)
2 51.8 (0.89) 32.8 (0.84) 2.78 4.14 (3.04) 0.14 (0.86) 0.64 (0.85) 1.08 (1.25) 4.2 (0.92) 1.26 (0.94)
3 51.8 (0.89) 32.6 (0.84) 0.26 1.62 (1.19) 0.15 (0.88) 0.64 (0.84) 1.12 (1.30) 4.2 (0.93) 1.26 (0.94)
4 54.9 (0.94) 36.1 (0.93) 0.59 1.96 (1.43) 0.16 (0.99) 0.72 (0.96) 1.11 (1.29) 4.3 (0.96) 1.29 (0.96)
5 51.9 (0.89) 32.8 (0.84) 124.00 125.00 (91.50) 0.15 (0.89) 0.64 (0.85) 0.98 (1.13) 4.2 (0.93) 1.28 (0.96)

Power Plant, section 16 (366k triangles)
1 93.5 (1.00) 74.1 (1.00) 0.00 4.70 (1.00) 1.20 (1.00) 0.86 (1.00) 2.98 (1.00) 5.7 (1.00) 7.60 (1.00)
2 80.2 (0.85) 61.5 (0.82) 8.71 13.41 (2.85) 1.00 (0.83) 0.72 (0.84) 2.68 (0.89) 4.8 (0.85) 6.62 (0.87)
3 79.8 (0.85) 60.9 (0.82) 2.80 7.50 (1.59) 1.07 (0.89) 0.71 (0.82) 2.93 (0.98) 4.8 (0.84) 6.83 (0.89)
4 89.3 (0.95) 70.7 (0.95) 1.29 6.00 (1.27) 1.19 (0.99) 0.81 (0.94) 2.99 (1.00) 5.5 (0.96) 7.71 (1.01)
5 83.4 (0.89) 64.9 (0.87) 420.00 424.00 (90.20) 1.14 (0.95) 0.77 (0.90) 3.25 (1.09) 5.3 (0.92) 7.40 (0.97)

Power Plant (12,748k triangles)
1 115.8 (1.00) 85.7 (1.00) 0.00 396 (1.00) 1.55 (1.00) 0.86 (1.00) 4.52 (1.00) 6.2 (1.00) 9.00 (1.00)
2 98.3 (0.84) 68.8 (0.80) 808.00 1204 (3.04) 1.03 (0.66) 0.68 (0.79) 4.37 (0.96) 4.9 (0.79) 6.86 (0.76)
3 97.8 (0.84) 68.3 (0.79) 85.52 481 (1.21) 1.12 (0.72) 0.68 (0.79) 4.19 (0.92) 5.0 (0.80) 6.74 (0.74)
4 110.9 (0.95) 81.5 (0.95) 72.29 468 (1.18) 1.49 (0.96) 0.82 (0.95) 4.54 (1.00) 5.8 (0.94) 8.75 (0.97)
5 102.5 (0.88) 73.1 (0.85) 13468.00 13863 (35.00) 1.38 (0.88) 0.75 (0.87) 4.48 (0.99) 5.4 (0.87) 8.20 (0.91)

Pompeii Ten (5,646k triangles)
1 252.9 (1.00) 190.5 (1.00) 0.00 102 (1.00) 0.74 (1.00) 3.57 (1.00) 3.90 (1.00) 44.0 (1.00) 19.54 (1.00)
2 218.8 (0.86) 159.1 (0.83) 267.00 369 (3.61) 0.61 (0.81) 2.81 (0.78) 3.76 (0.96) 34.2 (0.77) 18.10 (0.92)
3 218.0 (0.86) 158.2 (0.83) 77.38 179 (1.75) 0.61 (0.81) 2.92 (0.82) 3.74 (0.95) 33.9 (0.76) 18.05 (0.92)
4 237.5 (0.93) 178.6 (0.93) 25.30 127 (1.24) 0.71 (0.95) 3.35 (0.94) 3.98 (1.02) 41.3 (0.93) 19.64 (1.00)
5 225.9 (0.89) 166.6 (0.87) 6049.00 6151 (60.30) 0.67 (0.90) 3.09 (0.86) 5.25 (1.34) 39.1 (0.88) 19.19 (0.98)

Table 4: The results of the BVH optimization for architectural scenes. The base hierarchy for all methods (M) is created with a
SAH top down driven build (method 1). For methods 2 to 5 the initially constructed BVH is followed by an optimization phase
using different methods and settings: 2 - our method with random selection, 3 - our method with the combined measure of
inefficiency, 4 - Kensler’s method, hill climbing, and 5 - Kensler’s method, simulated annealing. The values in brackets are the
computed ratios against reference values (1.00).

submitted to COMPUTER GRAPHICS Forum (11/2012).

J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies 15

CPU CPU CPU CPU GPU GPU GPU
M cost ocost update build primary random primary random occlusion

[-] [-] [s] [s] [s] [s] [ms] [ms] [ms]
Conference (283k triangles)

1 842.2 (1.00) 789.5 (1.00) 0.00 0.44 (1.00) 5.56 (1.00) 16.55 (1.00) 11.00 (1.00) 198.6 (1.00) 172.03 (1.00)
2 103.4 (0.12) 84.7 (0.10) 15.05 15.50 (34.76) 0.39 (0.07) 1.49 (0.09) 1.32 (0.12) 13.8 (0.06) 19.74 (0.11)
3 102.7 (0.12) 84.1 (0.10) 7.37 7.81 (17.53) 0.38 (0.06) 1.53 (0.09) 1.38 (0.12) 13.7 (0.06) 19.27 (0.11)
4 213.7 (0.25) 197.4 (0.25) 2.74 3.19 (7.16) 1.39 (0.25) 4.43 (0.27) 2.97 (0.27) 41.7 (0.21) 47.43 (0.27)
5 105.2 (0.12) 86.6 (0.10) 307.87 308.32 (691.42) 0.39 (0.07) 1.51 (0.09) 1.27 (0.11) 13.8 (0.06) 19.41 (0.11)

Fairy Forest (174k triangles)
1 185.0 (1.00) 171.3 (1.00) 0.00 0.24 (1.00) 1.95 (1.00) 3.16 (1.00) 4.73 (1.00) 50.1 (1.00) 93.52 (1.00)
2 93.8 (0.50) 78.1 (0.45) 4.13 4.38 (17.55) 0.66 (0.34) 1.42 (0.44) 1.76 (0.37) 20.0 (0.39) 32.83 (0.35)
3 92.9 (0.50) 77.3 (0.45) 0.99 1.24 (5.00) 0.65 (0.33) 1.39 (0.44) 2.23 (0.47) 20.2 (0.40) 38.28 (0.40)
4 123.5 (0.66) 110.5 (0.64) 0.91 1.16 (4.65) 1.04 (0.53) 2.10 (0.66) 2.91 (0.61) 30.7 (0.61) 53.06 (0.56)
5 95.6 (0.51) 80.0 (0.46) 182.62 182.87 (731.61) 0.68 (0.35) 1.48 (0.46) 1.88 (0.39) 20.7 (0.41) 33.71 (0.36)

Sibenik Cathedral (80k triangles)
1 390.7 (1.00) 380.4 (1.00) 0.00 0.09 (1.00) 4.14 (1.00) 7.61 (1.00) 10.11 (1.00) 75.0 (1.00) 188.32 (1.00)
2 71.1 (0.18) 63.0 (0.16) 2.38 2.47 (26.92) 0.50 (0.12) 1.00 (0.13) 1.50 (0.14) 7.5 (0.09) 25.17 (0.13)
3 71.3 (0.18) 63.3 (0.16) 1.07 1.16 (12.75) 0.53 (0.12) 0.98 (0.12) 1.68 (0.16) 7.3 (0.09) 27.98 (0.14)
4 121.1 (0.31) 113.7 (0.29) 0.96 1.05 (11.51) 1.43 (0.35) 2.17 (0.28) 4.04 (0.40) 17.7 (0.23) 69.68 (0.37)
5 72.6 (0.18) 63.5 (0.16) 81.62 81.71 (888.42) 0.56 (0.13) 1.01 (0.13) 1.53 (0.15) 7.6 (0.10) 26.48 (0.14)

Sponza (76k triangles)
1 1258 (1.00) 1205.4 (1.00) 0.00 0.07 (1.00) 7.25 (1.00) 22.45 (1.00) 14.40 (1.00) 288.2 (1.00) 295.31 (1.00)
2 185.5 (0.14) 158.8 (0.13) 3.00 3.08 (39.14) 0.45 (0.06) 2.24 (0.10) 1.20 (0.08) 20.5 (0.07) 25.08 (0.08)
3 183.4 (0.14) 156.7 (0.12) 2.03 2.11 (26.81) 0.39 (0.05) 2.17 (0.10) 1.19 (0.08) 19.7 (0.06) 24.16 (0.08)
4 498.4 (0.39) 476.5 (0.39) 0.74 0.82 (10.47) 3.25 (0.44) 8.88 (0.41) 6.29 (0.44) 112.0 (0.38) 121.37 (0.40)
5 196.5 (0.15) 169.1 (0.14) 83.73 83.81 (1061.12) 0.49 (0.06) 2.49 (0.11) 1.35 (0.09) 22.5 (0.07) 28.71 (0.09)

Soda Hall (2,169k triangles)
1 1396 (1.00) 1355.7 (1.00) 0.00 4.29 (1.00) 11.82 (1.00) 18.09 (1.00) 21.58 (1.00) 261.8 (1.00) 86.88 (1.00)
2 168.2 (0.12) 142.6 (0.10) 198.90 203.20 (47.33) 0.62 (0.05) 1.29 (0.07) 1.16 (0.05) 9.4 (0.03) 5.45 (0.06)
3 165.8 (0.11) 140.2 (0.10) 72.41 76.70 (17.91) 0.52 (0.04) 1.21 (0.06) 1.17 (0.05) 8.7 (0.03) 4.77 (0.05)
4 486.7 (0.34) 468.9 (0.34) 27.63 31.93 (7.48) 3.25 (0.28) 5.27 (0.29) 10.31 (0.48) 60.1 (0.22) 24.68 (0.28)
5 195.4 (0.13) 170.2 (0.12) 2399.95 2404.29 (560.03) 0.69 (0.05) 1.64 (0.09) 1.41 (0.06) 12.9 (0.04) 6.75 (0.07)

Power Plant, section 9 (122k triangles)
1 188.7 (1.00) 169.6 (1.00) 0.00 0.16 (1.00) 1.03 (1.00) 3.54 (1.00) 4.95 (1.00) 22.0 (1.00) 3.28 (1.00)
2 52.1 (0.27) 32.9 (0.19) 4.04 4.21 (24.82) 0.15 (0.14) 0.65 (0.18) 1.13 (0.22) 4.3 (0.19) 1.27 (0.38)
3 52.3 (0.27) 33.1 (0.19) 2.62 2.79 (16.57) 0.15 (0.14) 0.66 (0.18) 1.21 (0.24) 4.3 (0.19) 1.28 (0.39)
4 77.8 (0.41) 60.8 (0.35) 1.05 1.22 (7.18) 0.33 (0.32) 1.43 (0.40) 1.82 (0.36) 8.3 (0.37) 1.77 (0.53)
5 51.9 (0.27) 32.8 (0.19) 128.18 128.35 (755.12) 0.15 (0.14) 0.65 (0.18) 1.21 (0.24) 4.2 (0.18) 1.27 (0.38)

Power Plant, section 16 (366k triangles)
1 505.1 (1.00) 476.3 (1.00) 0.00 0.60 (1.00) 10.11 (1.00) 6.32 (1.00) 27.74 (1.00) 49.1 (1.00) 44.03 (1.00)
2 80.2 (0.15) 61.5 (0.12) 20.81 21.41 (35.21) 1.03 (0.10) 0.73 (0.11) 2.84 (0.10) 5.0 (0.10) 7.01 (0.15)
3 79.7 (0.15) 61.1 (0.12) 17.18 17.79 (29.28) 0.98 (0.09) 0.69 (0.11) 2.82 (0.10) 4.8 (0.09) 6.88 (0.15)
4 176.9 (0.35) 161.4 (0.33) 3.67 4.28 (7.03) 3.04 (0.30) 1.97 (0.31) 6.94 (0.25) 13.9 (0.28) 16.70 (0.37)
5 87.1 (0.17) 68.6 (0.14) 458.93 459.53 (754.25) 1.32 (0.13) 0.84 (0.13) 3.13 (0.11) 5.5 (0.11) 8.48 (0.19)

Power Plant (12.748k triangles)
1 661.3 (1.00) 612.8 (1.00) 0 36 (1.00) 12.73 (1.00) 6.23 (1.00) 45.93 (1.00) 56.0 (1.00) 74.42 (1.00)
2 97.8 (0.14) 68.3 (0.11) 1958 1994 (55.51) 1.05 (0.08) 0.67 (0.10) 4.45 (0.09) 5.0 (0.08) 6.80 (0.09)
3 98.6 (0.14) 69.0 (0.11) 249 285 (7.92) 1.09 (0.08) 0.69 (0.11) 3.65 (0.07) 4.9 (0.08) 6.70 (0.09)
4 205.5 (0.31) 179.9 (0.29) 258 294 (8.18) 5.00 (0.38) 1.96 (0.31) 16.10 (0.35) 16.0 (0.28) 29.13 (0.39)
5 108.7 (0.16) 79.5 (0.12) 13809 13845 (385.23) 1.46 (0.11) 0.83 (0.13) 4.82 (0.10) 6.0 (0.10) 9.34 (0.12)

Pompeii Ten (5,646k triangles)
1 766.9 (1.00) 703.8 (1.00) 0 11 (1.00) 3.00 (1.00) 17.65 (1.00) 17.79 (1.00) 276.3 (1.00) 81.87 (1.00)
2 220.3 (0.28) 160.7 (0.22) 416 427 (38.92) 0.63 (0.20) 2.92 (0.16) 4.05 (0.22) 35.3 (0.12) 18.51 (0.22)
3 220.0 (0.28) 160.3 (0.22) 105 116 (10.63) 0.63 (0.20) 2.97 (0.16) 4.27 (0.24) 34.5 (0.12) 18.98 (0.23)
4 316.5 (0.41) 268.1 (0.38) 68 79 (7.20) 1.28 (0.42) 6.08 (0.34) 7.02 (0.39) 89.1 (0.32) 31.84 (0.38)
5 229.5 (0.29) 170.4 (0.24) 6203 6214 (565.91) 0.69 (0.22) 3.20 (0.18) 4.26 (0.23) 39.7 (0.14) 19.71 (0.24)

Table 5: The results for architectural scenes where the base hierarchy for all methods is created with a spatial median top
down driven build (method 1), which for methods 2 to 5 is followed by an update phase. These are as follows: 2 - our method
with random selection, 3 - our method with the combined measure of inefficiency, 4 - Kensler’s method, hill climbing, and 5 -
Kensler’s method, simulated annealing. The values in brackets are the computed ratios against reference values (1.00).

submitted to COMPUTER GRAPHICS Forum (11/2012).

16 J. Bittner & M. Hapala & V. Havran / Fast Insertion-Based Optimization of Bounding Volume Hierarchies

cost[-] ocost[-] cost ocost[-]

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 0 5 10 15 20 25 30 35 40

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 0 5 10 15 20 25 30 35 40

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45

SA
 (

le
av

es
)

 0

Depth

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

SA
 (

le
av

es
)

 0

Depth

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

SA
 (

le
av

es
)

 0

Depth

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

SA
 (

le
av

es
)

 0

Conference (283k triangles) Sibenik Cathedral(80k triangles)

Depth

 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30

SA
 (

in
ne

r
no

de
s)

 0

Depth

 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 0 5 10 15 20 25 30 35

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 0 5 10 15 20 25 30 35

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 5 10 15 20 25 30

SA
 (

le
av

es
)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 5 10 15 20 25 30

SA
 (

le
av

es
)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 5 10 15 20 25 30 35 40

SA
 (

le
av

es
)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 5 10 15 20 25 30 35

SA
 (

le
av

es
)

 0

Sponza(76k triangles) Fairy Forest(174k triangles)

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 0 5 10 15 20 25 30 35

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 0 5 10 15 20 25 30

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 5 10 15 20 25 30 35

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 5 10 15 20 25 30 35

SA
 (

in
ne

r
no

de
s)

 0

Depth

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35

SA
 (

le
av

es
)

 0

Depth

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

SA
 (

le
av

es
)

 0

Depth

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35

SA
 (

le
av

es
)

 0

Depth

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35

SA
 (

le
av

es
)

 0

Dragon (871k triangles) Happy Buddha(1,087k triangles)

Figure 11: Histograms showing the sums of surface areas of inner nodes and leaves at different depths of the tree. The figures
in the odd columns correspond to a tree with leaves representing individual triangles (cost in Table 2, 3, 4, and 5), the figures in
even columns to compacted trees with more triangles per leaf (ocost in Table 2, 3, 4, and 5). The odd rows show the sum of costs
for interior nodes and the even rows the sum of costs for leaves in the dependence on the depth. The results for trees constructed
by top down building algorithm with surface area heuristic are in red colour, the results for the trees after optimization by our
algorithm are in green colour.

submitted to COMPUTER GRAPHICS Forum (11/2012).

	Introduction
	Related Work
	Selective BVH Updates
	Algorithm Overview
	Cost model
	Updating Nodes
	Selecting Nodes For Update
	Terminating the BVH optimization
	BVH Tree Compaction
	Discussion

	Results
	BVH Cost Reduction
	Ray Tracing Performance

	Conclusion and Future Work
	References

