
CACHE SENSITIVE REPRESENTATION FOR BSP

TREES

Vlastimil HAVRAN
Department of Computer Science and Engineering

Faculty of Electrical Engineering
Czech Technical University

Karlovo nám. 13
12135 Prague

CZECH REPUBLIC
havran@fel.cvut.cz

ABSTRACT

A binary tree is a common data structure used in many branches of computer science.
It is often used for solving various types of searching problems. In complexity analysis
we usually abstract from the real implementation and derive easily the time complexity
of traversal from the root of a balanced tree to any leaf in asymptotic time O(log(m)),
where m is the number of leaves. In this paper we propose a new method for memory
mapping of a binary tree aiming to improve spatial locality of data represented by binary
tree and to decrease traversal complexity.

Key Words: Ray-tracing, Binary tree, BSP tree, Cache, Spatial Locality.

MOTIVATION

The basic motivation for this research comes
from binary trees in computer graphics ap-
plications. In this paper we will refrain from
details of image synthesis concerning object
modeling and from the classification of ren-
dering algorithms. The significant part of im-
age synthesis is devoted to repeatedly com-
puting the ray-casting problem and visibility
between two points to determine the global
illumination of the resulting image. The spa-
tial data structures are used in order to re-
duce the time complexity of ray-casting or the
visibility problem. They are usually based on
space subdivision schemes [Watt-Watt92].

One scheme for space subdivision is based on
a binary space partitioning tree (BSP tree in
the following text). It was initially developed

as a means of solving the hidden surface prob-
lem in computer graphics [Fuchs et al. 80].

It is the analogue to the search binary tree,
but it works for three-dimensional data. A
BSP tree hierarchically subdivides a volume
of n-dimensional space scene containing a col-
lection of objects. The tree is formed by re-
cursively subdividing a space volume in two
sub-volumes, usually halves. The resulting
data structure is a binary tree, in which
each interior node represents a partitioning
hyper plane and its children represent con-
vex subspaces determined by the partition-
ing. The leaf nodes of the tree are convex
non-overlapping volumes.

The leaves of the tree are either occupied by
objects or vacant. The construction of the



Figure 1: Partitioning of space by BSP tree

tree is done by recursively subdividing node
volumes until the number of objects in nodes
is smaller than a given constant or the depth
of nodes in the tree is equal to a given con-
stant. The partitioning process is depicted in
Fig. 1.

An efficient algorithm for traversing a BSP
tree exists for ray-tracing [Sung-Shirley92].
The rendering consists of traversing the BSP
tree and performing the intersection tests.
Our measurements have shown that the time
of a ray-tracing algorithm devoted to BSP
traversing varies from 50% to 80% [Havran-
Žára97]. The total time for rendering a pic-
ture with resolution 512×512 for a scene with
hundreds of thousands of objects can reach
several hours. One way to decrease the time
is to optimize the BSP tree construction using
surface area heuristics [MacDonald-Booth90],
which on average decreases the total time by
up to 60%, whereas the time portion for BSP
traversal even increases. In this paper, we
propose a new technique to decrease the time
of traversal by representing the BSP tree in a
special way. It increases spatial locality and
improves the processor cache hit ratio during
the code execution. The technique is also ap-
plicable to binary trees used outside the area
of computer graphics.

MEMORY REQUIREMENTS

It is obvious, that an arbitrary BSP tree can-
not be efficiently represented by a heap struc-

ture. A common solution is to represent each
node in a specially allocated variable. Let SI

denote the size of memory for the information
in a node and SP denote the size of a pointer.
Then the size required to represent one node
of a binary tree is SN = SI + 2.SP .

Unfortunately, this is not true if we take into
account the strategy of allocation libraries of
current compilers. The data structures for a
memory allocation manager are depicted in
Fig. 2.

The memory is composed of allocated and
free blocks. These blocks are connected by
bidirectional links. Moreover, free blocks of
size belonging to a specific range < 2k +
1, 2k+1 > (k ∈ N) are connected by other
bidirectional links that are linked up with the
table of constant size. These data structures
enable us to allocate and deallocate the vari-
ables in O(1) time.

The disadvantage of this allocation strategy
is the additional memory consumed by every
allocated variable and by memory fragmen-
tation. The memory taken by a variable of
given size SV is ST = SV +2.SP . For one node
of the binary tree (SV = SN ) ST = SI +4.SP .

MEMORY HIERARCHY

The time complexity of the traversal algo-
rithm is connected with the hardware where
the algorithm is executed. For analysis we



Figure 2: Allocation data structure

suppose Harvard architecture with separated
caches for instructions and data. Let TMM

denote latency of main memory (time to
read/write one word of data).

The larger the memory and the lower the ac-
cess time, the higher the cost of the memory.
Since the instruction latency of processors is
smaller than TMM , between the memory and
the processor is placed the cache: smaller
memory with lower access time TC. This solu-
tion is economical, it uses temporal and spa-
tial locality for accessing the data. The data
between the cache and the main memory are
transferred in blocks corresponding to cache

line size SCL.

In this article, we denote the time consumed
by operations in terms of cycles. Let TW

denote the time of the operation performed
in a node during traversing. Typical values
for today’s superscalar processors are TMM =
55, TC = 4, TW = 5, SCL = 128 Bytes for
MIPS R8000 (taken from [SGI96]). Note that
TW ≪ TMM .

METHODS OF REPRESENTATION
FOR BINARY TREES

Binary trees can be either static or dynamic.
A static tree once constructed remains un-
changed during its use until its destruction.
A dynamic tree enables us to perform oper-
ations with nodes, e.g., to insert or delete a
node. We call a binary tree complete if all
leaves are positioned in the same depth d from
the root node and the number of leaves is 2d,
an incomplete tree is the tree, which is not
complete. The depth of the root node is zero.

Let hC define complete height of a tree A as
the maximal depth, for which the tree B con-
structed by the nodes of A with depth smaller
than or equal to hC is complete.

In this paper we deal only with static trees,
the BSP tree is its typical example. Let us
give the overview for the binary tree repre-
sentation.

Random Representation

A common way to store the arbitrary bi-
nary tree in the main memory is to repre-
sent each node as a special variable. The dis-
advantage of the method is additional mem-
ory consumed by pointers, which can be, e.g.,
four times greater than the actual informa-
tion stored in the node. The only advantage
is that it is simple to implement. The situa-
tion is depicted in Fig. 3 (a). The addresses of
the nodes in the memory have no connection
with their location in the tree. It corresponds
to the pseudo code given in [Sung-Shirley92].

Depth-First-Search (DFS)
Representation

We have not found any references to the DFS
method in bibliographies, but it can be the
result of using some allocation techniques for
size-equal objects, see [Stroustrup91]. The
nodes are put in the memory in the DFS or-
der they are constructed (see Fig. 3 (b) ). To
alleviate the problem of the memory size con-
sumed by pointers required for each allocated
variable, firstly a large block of memory can
be allocated and the nodes are then allocated
subsequently from such a memory block. The
size of the allocated block is expressed as
SO = (2+2.NNO).SP+SI .NNO, where NNO is



Figure 3: Binary tree representations (SCL = 3.size(node)) (a) Random (b) DFS (c) Subtree

the number of nodes to be stored in the block.
For big NNO nearly up to 2.NNO.SP of mem-
ory taken by pointers are saved in comparison
with random representation.

Subtree Representation

We propose the following data structure in
order to reduce the complexity of DFS order
traversal for binary tree. We suppose that we
allocate one big block of memory and then
we occupy it by the nodes - organized into
smaller subtrees with the size smaller than or
equal to SCL, see Fig. 3 (c). Once the subtree
is read to the cache, the access time to some
of its descendant nodes is equal to TC. The
subtree needs not be complete.

We distinguish between two ways for repre-
senting a subtree (Fig. 4). An ordinary sub-
tree has all the nodes of the same size, with
two pointers to two descendants, regardless
of whether the descendant lies in the subtree
or not. A Compact subtree has no pointers
among the nodes inside the subtree because
their addressing can be provided explicitly by
a traversal program. The leaves of an incom-
plete binary subtree have to be marked in a
special data variable (one bit for each node).

TIME COMPLEXITY AND CACHE
HIT RATIO ANALYSIS

In this section we are going to analyze the be-
havior of all the mentioned representations of
BSP trees. The analysis is performed under
the assumption that the data are in the main

memory and none is located in the cache, i.e.,
cache hit ratio CHR = 0.0 and assuming the
binary tree is complete. The analysis is based
on the height h of the complete binary tree,
for an incomplete binary tree we can compute
average depth of a tree hA and substitute it
for h.

These simplifications enable us to compute
the average time TA for a DFS traversal on
an binary tree of depth l from the root to a
leaf. We suppose that in each node the prob-
ability that we turn left is equal to pL = 0.5.

If some data are already located in the cache
(CHR > 0.0), the analysis can be very diffi-
cult or even infeasible, the interested reader
should follow [Arnold90]. Since the cache has
asynchronous behavior, we analyzed the case
by means of simulation.

Random Representation

As we suppose CHR = 0.0 during the whole
traversing, i.e., the access time to each node
during traversing is TMM , we can express TA

as follows:

TA
.
= (TMM + TW ).(l + 1) (1)

For TMM = 53, TW = 5, l = 23 we obtain the
time TA = 1392.0 cycles.

DFS Representation

The DFS representation increases the cache
hit ratio by reading the nodes for the next
traversal step if we continue the traversal to
the left descendant. Assuming the size of the



Figure 4: Subtree representation: (a) Ordinary (b) Compact

node is SIN , we derive the average access time
to a leaf TA as follows:

TA
.
= (l + 1).(pL.TMM .SIN/SCL + TW + TC .

(1− SIN/SCL) + (1− pL).TMM) (2)

For TMM = 53, TC = 4, TW = 5, l =
23, SIN = 12, SCL = 128, we get the time
TA = 859.1.

Ordinary Subtree Representation

Assume that SCL and SIN are given. For each
subtree we require to store SST bytes addi-
tionally, which are used as the identification
of the type of the subtree. Let us express the
size of memory taken by a complete ordinary
subtree with the height h:

M(h) = (2h+1 − 1).SIN + SST ≤ SCL (3)

From Eq. 3 we can derive the complete height
of the subtree hC as follows:

hC = ⌊−1 + log2[(SCL − SST )/SIN + 1]⌋ (4)

The number of nodes in the ordinary incom-
plete subtree with depth d = hC + 1 is then:

NODK = ⌊[SCL − (2hC+1 − 1).SIN

−SST ]/SIN⌋ (5)

The average height of the subtree hA ≥ hC

for NODK > 0 is computed as follows:

hA = −1 + log2(2
hC+1 +NODK) (6)

Finally, the total traversal time of the whole
tree with the depth l is:

TA = (l + 1). (TW + TMM/(hA + 1) +

TC.hA/(hA + 1)) (7)

For TMM = 53, TC = 4, TW = 5, l =
23, SIN = 12, SST = 4, SCL = 128, we get

hC = 2, NODK = 3, hA = 2.46, and TA =
555.9 cycles.

Compact Subtree Representation

Let SI denote the portion of the memory for
representation of the information inside the
node, SP the memory occupied by one pointer
SP . The size of memory taken by a complete
subtree with the height h is expressed as fol-
lows:

M(h) = (2h+1 − 1).SI + 2h+1.SP + SST

M(h) ≤ SCL (8)

A complete height hC of the compact subtree
is from Eq. 8 derived similarly to Eq. 4 as
follows:

hC = −1 + ⌊(SCL + SI − SST )/

(SI + SP )⌋ (9)

In the same way as for the ordinary subtree
we derive the number of node NODK with the
depth d = hC + 1:

NODK = ⌊(SCL − 2hC+1.(SI + SP ) + SI

−SST )/(SI + SP )⌋ (10)

The average height of the subtree hA and the
total access time TA is computed using Eq. 6
and Eq. 7. For TMM = 53, TC = 4, TW =
5, l = 23, SP = 4, SI = 4, SST = 4, SCL =
128, we compute hC = 3, NODK = 0, hA =
3.0, and TA = 510.0 cycles.

The functions hC, NODK , hA for the ordinary
and compact subtree and TA for all types of
representation in the dependence on the cache
line size are depicted in Fig 5.



Figure 5: The analysis: (A) TA = f1(SCL), (B) hA = f2(SCL), (C) NODK = f3(CL), (D)
hC = f4(CL); Representation (a) Random (b) DFS, (c) Ordinary subtree, (d) Compact subtree

Representation
Random DFS Ordinary subtree Compact subtree

tA (theoretical) 1392.0 859.1 555.9 510.0
t′A (simulated) 987.1 629.4 445.6 379.3
ratio = tA/t

′

A 1.41 1.36 1.24 1.34
CHR[%] 35.8 69.8 83.5 90.3

Table 1: The times computed theoretically and obtained by the simulation

RESULTS OF THE SIMULATION

We performed simulation in order to verify
the validity of theoretical derivations. The
simulation was realized as a special program
simulating the memory hierarchy of a com-
puter and the DFS traversal of a complete
binary tree in its main memory. The algo-
rithm for replacing the content of the cache
was equivalent to the algorithm used in to-
day’s computer systems. The simulation was
carried out for the same time values as in
the previous section: TMM = 53, TC = 4,
TW = 5, l = 23, SP = 4 Bytes, SI = 4 Bytes,
SST = 4 Bytes.

We chose the four–way set associative cache

with cache line size SCL = 128 Bytes, the size
of the cache was 220 Bytes. It corresponds to
the number of cache lines 213. The cache or-
ganization corresponds to that found in cur-
rent superscalar processors, e.g., MIPS R8000
or MIPS R10000 (see [SGI96]).

The theoretical, simulated times, and their
ratio are summarized in Table 1. The param-
eter CHR is the average cache hit ratio for
any node during the traversal. The cache hit
ratio for the node as the function of depth
of the node is in Table 2. Note that for
the compact subtree the values of CHR for
depth 12, 16, and 20 are quite different from
other values, because the node must be al-
ways read from main memory into the cache.



Depth 0 1 2 3 4 5 6 7 8 9 10 11
CHR (Random) 100 100 100 100 97 91 62 52 39 25 21 18

CHR (DFS) 100 100 100 100 100 93 79 84 58 56 63 51
CHR (Ordinary subtree) 100 100 100 100 100 100 97 73 90 85 53 79
CHR (Compact subtree) 100 100 100 100 100 100 100 100 69 100 100 100

Depth 12 13 14 15 16 17 18 19 20 21 22 23
CHR (Random) 21 19 19 0 0 0 0 0 0 0 0 0

CHR (DFS) 57 59 47 59 54 48 51 49 47 54 43 54
CHR (Ordinary subtree) 80 64 66 79 66 70 72 74 61 75 74 62
CHR (Compact subtree) 7 100 100 100 1 100 100 100 0 100 100 100

Table 2: The cache hit ratio for the node as the function of its depth

Scenes
balls gears mount rings tetra tree

#of objects 7382 9345 8196 8401 4096 8191
#of nodes 8469 20541 13369 23455 6011 5675
#of tr. steps [×106] 53.8 77.4 68.1 47.4 5.6 37.2
ttotal (Random) [sec] 87.0 314.6 53.0 102.4 7.41 92.6
ttraversal (Random) [sec] 42.1 59.8 22.9 21.5 4.09 18.6
ttraversal (DFS) [sec] 35.6 51.8 17.4 14.6 3.76 14.6
ttraversal (Ordinary subtree) [sec] 32.5 46.9 15.1 13.1 3.75 12.3
ttraversal(Random)
ttraversal(DFS)

[-] 1.18 1.15 1.31 1.47 1.09 1.27
ttraversal(Random)

ttraversal(Ordinarysubtree)
[-] 1.30 1.28 1.52 1.64 1.09 1.51

Table 3: The times obtained from ray-tracing on SPD scenes

The times obtained by simulation correlate
well with the times computed theoretically,
but are not equal, since the theoretical anal-
ysis supposes in each step an initial value of
CHR = 0.0. That is why the access times
obtained by simulation are smaller than the
theoretical ones.

MEASUREMENTS

We verified the contribution to the accelera-
tion on real implementation of a ray-tracer
for Random, DFS, and Ordinary Subtree
representation recently. The algorithm for
building-up of Compact Subtree representa-
tion is more complex and requires also a spe-
cial algorithm for its traversal. We suppose
on the basis of simulation, that it should
not bring a significant improvement of per-

formance in comparison with Ordinary Sub-
tree representation. The tests were performed
on scenes taken from Standard Procedural

Database [Haines87] and the results of mea-
surement are summarized in Table 3.

The contribution to the performance of the
ray-tracer is not so significant as expected
from simulation. It is because the simula-
tion was performed the traversal down the
tree with probability 50% to turn left in each
node of the binary tree. It is true no more if
we realize the subsequent primary rays gen-
erated in scanline order are likely to hit the
same nodes of the BSP tree (rays coherence,
see [Groeller 93]). The second reason for
smaller improvement of performance is the
rather smaller number of nodes of the BSP
tree for given test scenes.

The properties of BSP tree representations



for such operations as range-search queries
[Samet90] are guaranteed to stay in the range
given by theoretical derivation and thus the
simulation given in the previous section.

CONCLUSIONS

We improved time complexity of traversing
of a binary tree by organizing its inner rep-
resentation so that it matches the memory
hierarchy. We showed and analyzed four
methods for binary tree memory mapping
- one traditional and three non-traditional.
The proposed methods decrease the traver-
sal time for traversal by 62% and increase
hit ratio from 30% to 90%. Moreover, the
memory required for storage is decreased by
57%. The properties of tree representation
proposed by us cannot be for n-dimensional
data (n > 1) replaced by one used in the con-
text of external-memory data structures, for
example B-tree [Cormen et al. 90]. It is be-
cause B-trees cannot represent n-dimensional
data.

We plan in the future to use a cache-sensitive
approach for other recursive data types and to
analyze the methods for dynamic cache sen-
sitive data structures.

ACKNOWLEDGMENTS

I would like to thank Jan Hlavička for deliv-
ering the subject of Advanced Computer Ar-

chitectures and enabling me to write a report
on this topic within this subject. Further, I
thank Pavel Tvrd́ık and all the anonymous
reviewers for their remarks on the previous
version of this paper.

REFERENCES

Arnold, O.A. 1990 Probability, statistics,

and queuing theory with computer sci-

ence applications, Second edition, Aca-
demic Press, San Diego.

Cormen, T.H., Leiserson, C.H., Rivest, R.L.
1990 Introduction to Algorithms, The MIT
Press, Cambridge, Massachusetts.

Fuchs, H., Kedem, M.Z., Naylor, B. 1980
On Visible Surface Generation by A Pri-
ori Tree Structures, Proceedings of SIG-

GRAPH’80, Vol. 14, No. 3, July, pp. 124-
133.

Groeller, E. 1993 Coherence in Computer

Graphics, Dissertation Thesis, Technical
University in Vienna.

Haines, E. 1987 A proposal for standard
graphics environments, IEEE Computer

Graphics and Applications, Vol. 7, No. 11,
pp. 3–5.

Havran, V., Žára, J. 1997 Evaluation of BSP
properties for ray-tracing, Spring Confer-

ence on Computer Graphics 1997, Slo-
vakia, June 5-8, pp 155–162.

MacDonald, J.D., Booth, K.S. 1990 Heuris-
tics for ray tracing using space subdivision,
The Visual Computer, Vol. 6, Toronto,
June, pp. 153–166.

Samet, H. 1990 The Design and Analysis

of Spatial Data Structures, reprinted with
corrections in 1994, Addison-Wesley.

Sillicon Graphics 1996 Power Challenge,
Technical Report.

Sung, K., Shirley, P. 1992 Ray Tracing with
the BSP Tree, Graphics GEMS III, in
David Kirk editors, ACM PRESS, pp 271-
274.

Stroustrup, B. 1991 The C++ Programming

Language, 2nd ed., Addison-Wesley, pp.
176–178.

Watt, A., Watt, M. 1992 Advanced Ani-

mation and Rendering Techniques, ACM-
PRESS, Addison-Wesley.


