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Figure 1: (left) A ray casted view of interior of a larger scene. (center) Visualization of the number of nodes traversed per ray for the traditional
traversal algorithm. (right) The same visualization for our new algorithm. The dark blue color corresponds to zero traversal steps, dark red
corresponds to 255 or more traversal steps per ray. Note that the new algorithm significantly reduces the number of traversals per ray.

Abstract

We present a new method for ray tracing acceleration by modifi-
cation of current spatial data structures. We augment a spatial hi-
erarchy such as kd-tree with sparsely distributed bounding boxes
that are linked from bottom to top. The augmented data structures
can be viewed as a hybrid between kd-trees and uniform grids. The
augmentation by boxes is used in new traversal algorithms, which
are not restricted to start the hierarchy traversal at the root node.
This is in particular efficient for short rays where we significantly
reduce the number of traversal steps through the hierarchy. Further
we make use of ray coherence as well as explicit knowledge of ray
distribution and initiate the traversal near the leaf nodes where the
intersection is expected.
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1 Introduction

Ray tracing forms a basis of many current global illumination al-
gorithms. Due to its logarithmic dependence on scene complexity
it also becomes popular for rendering huge data sets in interactive
applications.
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The fundamental task of ray tracing is to determine visibility along
a given ray, i.e. to find the closest intersection of the ray with
the scene. In order to find the intersection as fast as possible the
search must be limited only to the proximity of the ray. This can
be achieved by organizing the scene in a data structure such as
regular grid, kD-tree, octree, or bounding volume hierarchy. In
particular kD-trees have become very popular for handling static
scenes [Wald 2004] and bounding interval hierarchies for handling
dynamic scenes [Woop et al. 2006]. The major advantage of hier-
archies is their ability to adapt to irregular distribution of objects in
the scene [MacDonald and Booth 1990]. However there is a cost for
this ability: during ray tracing, every ray has to traverse the interior
nodes of the hierarchy in order to reach the leaf nodes where the ac-
tual objects are stored. The number of traversed leaves is typically
very small and thus the traversal of the interior nodes of the hier-
archy is often the bottleneck. This problem has been addressed by
using neighbor-links [MacDonald and Booth 1990; Havran et al.
1998]. However the neighbor-links have several issues which re-
duce or even eliminate their benefit: (1) They have considerable
memory footprint, which reduces the savings of the traversal due
to limited cache sizes, (2) every traversal step for neighbor-links
is slightly more costly than the traversal of interior nodes, (3) they
are costly to construct on the fly, which limits their usage to static
scenes.

Newer methods of ray traversal optimization exploiting traversal
coherence by casting whole packets of coherent rays. These meth-
ods rely on packets sharing a common origin [Reshetov et al. 2005]
or packets with well defined boundaries [Havran and Bittner 2000].

In this paper we propose a simple method which significantly re-
duces the number of traversal steps in spatial hierarchies. Com-
pared to neighbor-links the new method has significantly smaller
memory footprint and performs faster traversal steps. Compared to
ray bundle methods the proposed technique does not rely on well
defined bundles, however it can still make use of ray coherence.



2 Related Work

Ray tracing has been dealt extensively in the field of computer
graphics and computational geometry. Techniques aimed at the
worst case complexity have been shown to have pre-processing time
and storage O(n4+ε ) to achieve O(logN) query time [Szirmay-
Kalos and Márton 1998], where N denotes the number of objects
in the scene. These algorithms count for all the possible worst case
scenarios and provide theoretical guarantees [Agarwal 2004]. How-
ever, their space requirements severely restricts their use in practice.

The algorithms used in practical rendering packages try to reduce
average case time complexity without any guarantees on the worst
case scenarios. The algorithms are based on spatial decompositions
organized typically as a hierarchy. The ray then traverses a hierar-
chy from a root along the ray path and identifies all the leaf nodes
pierced by a ray. The objects in leaf nodes are tested against the ray
until the first intersection along the ray is found.

The depth of the hierarchy is const · log2 N, where N is the num-
ber of objects. According to the experimental data the number of
visited leaves along a ray is 4 to 8 on average, and the number vis-
ited interior nodes is 20 to 200 on average (for scenes with 1,000
to 1,000,000 objects). While in the visited leaves actual intersec-
tions of the ray with scene objects are computed, the visited interior
nodes constitute an overhead following from the usage of spatial
hierarchy. MacDonald and Booth [MacDonald and Booth 1990]
proposed a method for reducing the number of traversal steps of
interior nodes for kd-trees. This method extends the original kd-
tree with the links from the faces of the cells corresponding to the
leaves to the neighboring leaves. The method is either referred to
neighbor-links or ropes. A traversal algorithm then does not re-
quire a traversal stack and it can follow the sequence of leaves
by repetitive point location of moving point along the ray path.
The properties of the traversal algorithm based on neighbor-links
and neighbor-link-trees have been further investigated by Havran et
al. [Havran et al. 1998].

3 Algorithm Overview

Our new method builds on two main ideas: (1) augmenting the spa-
tial hierarchy by sparse geometrical and topological information,
(2) using ray coherence together with the augmented information
to eliminate traversal of interior nodes of the hierarchy.

The augmentation of the spatial hierarchy consists of adding bound-
ing boxes for selected hierarchy nodes as well as links to parent
nodes which have also been augmented. This allows to initiate the
hierarchy traversal from bottom of the tree and thus to avoid much
of the traversal which would be performed when starting from the
root node.

The ray coherence is exploited in different ways. For rays sharing a
common origin we store a deepest augmented node containing the
origin of the ray. This node is then used to initiate the traversal of
the hierarchy. For secondary rays the traversal is initiated from the
node containing the termination point of the generating ray (as this
is the node containing the origin of the secondary ray). For shadow
rays we store the node of the last shadow caster and use it to initiate
the search for the shadow caster for subsequent shadow ray. For
general rays which are assumed to be coherent we aim to reuse the
sequence of deepest augmented node which have been traversed.

The paper is further organized as follows: Section 4 describes the
augmentation of the spatial hierarchy with sparse boxes. Section 5

presents the new traversal algorithms based on sparse boxes. Sec-
tion 6 contains the results from experimental measurements and
their discussion. Finally, Section 7 concludes the paper.

4 Sparse Boxes

Our new traversal algorithms make use of explicit information
about the geometry associated with nodes of a spatial hierarchy.
This idea is not new as it has been used in algorithms based
on neighbor-links [MacDonald and Booth 1990] (ropes) or rope-
trees [Havran et al. 1998]. However, the published methods require
significant memory footprint for storing both the geometrical and
the connectivity information. In particular storing a bounding box
requires 24 bytes and storing the neighbor-links another 24 bytes.
In total the memory overhead is 48 bytes per node. For interior
nodes this makes about 5 times more memory than required in the
basic representation (splitting axis + splitting plane + 2 pointers). In
turn the increased memory consumption negatively affects memory
cache utility when traversing through the hierarchy which degrades
the performance of the traversal algorithm.

Additional problem of neighbor-links is the setup-cost for the con-
struction of neighbor-links which becomes important in the case of
dynamic scenes.

In order to reduce the memory overhead, but keep the advantages of
explicit geometrical information we distribute the bounding boxes
over the spatial hierarchy only sparsely. We call the nodes aug-
mented by a bounding box augmented nodes. We do not use
neighbor-links between the augmented nodes, but instead we only
store a single pointer to the parent augmented node (see Figure 2).

The augmented nodes are placed in the tree during the construc-
tion. The augmented node is constructed if the distance to the last
augmented node is greater than dmin. If this criterion is not met,
we construct a simple interior node. In our experiments we used
dmin ∈ 〈1,3〉, see the results in Section 6.

Figure 2: A spatial hierarchy augmented with bounding boxes. The
bounding boxes are only stored at some levels of the hierarchy in
order to reduce their memory footprint.

5 Traversal Algorithms

In this section we first briefly recall the hierarchical traversal algo-
rithm, then we describe the extension that uses sparse boxes, and
finally we describe the algorithm that reads and saves the sequence
of boxes for coherent rays.



Figure 3: Comparison of hierarchical traversal algorithm and the new method. (left) Traditional traversal algorithm starts at the root node and
traverses the tree downwards to the leaf node. In this example it traverses 42 interior nodes. (center) The new traversal algorithm starts the
traversal at the nodes recorded for the previous ray. If a similar ray pierces the same sequence of nodes, most hierarchy traversal is avoided
(12 interior nodes traversed). (right) If another ray pierces different nodes, we need to traverse up in the hierarchy to find first valid starting
point for the down-traversal. In this example in total 22 interior nodes were traversed.

5.1 Traditional traversal algorithm

The traditional hierarchical traversal algorithm always starts from
the root node of a kd-tree. In each interior node (including root
node) the four cases are distinguished by two conditional opera-
tions:

1. traverse only to the left child node,

2. traverse only to the right child node,

3. first traverse to the left child node and then traverse to the right
child node,

4. first traverse to the right child node and then traverse to the
left child node.

If the two child nodes are traversed, the farther child is stored on the
stack together with the exit signed distance. When a child node is
visited, the ray is tested against the objects references in the leaves.
After the leaf is accessed we take the first node from the stack and
we continue the traversal until the ray-object intersection is found
or the stack is empty (= no intersection). When we access the aug-
mented interior nodes with the boxes, the information about boxes
can be simply ignored during the traversal. Further details and the
issue of robustness of traversal algorithms are elaborated in [Havran
2001].

5.2 Bottom-up traversal algorithm

The traditional hierarchical traversal algorithm described above al-
ways starts from the root node. If the hierarchy is deep, many
traversal steps are needed to reach leaf nodes which contain the
actual geometry.

The traversal algorithm with sparse boxes can start the traversal at
any augmented node in the hierarchy. This node can be determined
either by high-level knowledge (all primary or shadow rays start
at a common point, secondary rays start at the termination of the
generator ray) or by coherence (subsequent rays will likely start
the traversal from the same node). If this node is deep inside the
hierarchy and the number of traversed leaves is small, we can save
most traversal of the interior of the hierarchy.

The traversal algorithm proceeds as follows: push the node on the
traversal stack and perform the stack-based traversal. When the
traversal stack becomes empty and no intersection has been found
we need to determine the next node to continue the traversal from.

In order to do that we first compute an exit point with respect to the
last traversed augmented node. This exit point is treated as a new
origin of the ray. We follow the link to the parent augmented node
until we find a node whose box contains the new ray origin. This
node is used as a new starting node and the algorithm continues
until an intersection is found or the ray leaves the scene. The latter
case can be identified in a situation where the new origin of the ray
lies outside of the bounding box associated with the root node.

5.3 Coherence based traversal algorithm

The first ray starts the traversal from the root node using the hier-
archical stack-based traversal algorithm described in Section 5.1.
During this traversal we store a sequence of deepest augmented
nodes which have been traversed. These nodes are used to initi-
ate the traversal for the next ray.

The traversal of subsequent rays proceeds as follows: if the origin
of the ray lies inside the first node of the traversal sequence, we push
this node on the traversal stack and start the stack-based traversal.
If the origin does not lie inside the box or the sequence is empty, we
follow the link to the parent augmented node until we find a node
which contains the origin. The found node is pushed on the stack
and the stack-based traversal starts from this node.

When the traversal stack becomes empty and no intersection has
been found we need to determine the next node to continue the
traversal from. In order to do that we first compute an exit point
with respect to the last traversed augmented node. This exit point
is treated as a new origin of the ray. If the traversal sequence is
not empty, we remove the first node from the sequence. Then we
apply the traversal algorithm described above. An example of the
traversal using the hierarchical traversal algorithm as well as the
new traversal algorithm is shown in Figure 3.

Note that during the traversal we store a traversal sequence of aug-
mented nodes which will be used for the next ray. This is easily
achieved by maintaining double buffer for the traversal sequences.
Note that storing the traversal sequence can be relatively expensive
as it requires writing to the main memory. In order to amortize this
cost we can update the sequence with lower frequency, i.e. only for
every m-th ray. The optimal selection of m depends on the particular
hardware architecture as well as the scene properties. In our exper-
iments using m = 2 provided stable results. The pseudocode of the
coherence based traversal algorithm is outlined in Algorithm 1.



Algorithm 1: Coherence based ray traversal

CastRay()
begin

current = 0 ; /* index in the input box sequence */
last = 0 ; /* index in the output box sequence */
tentry = 0 ; /* entry signed distance */
texit = 0 ; /* exit signed distance */
ComputeMinMaxT(ray, seq[0], tentry, texit);
ReadFromSequence();
while not(stack.empty()) do

while not(stack.empty()) do
stack.pop(node, lastAugmentedNode, tentry, texit);
if node.IsLeaf() then

if ComputeIntersections(node) then
return ”object intersected”;

end
tentry = texit + eps ; /* shift the ray origin */
WriteToSequence();

else
TraverseNodeDown(node);

end
end
ReadFromSequence();
if stack.empty() then

TraverseNodeUp();
end

end
return ”no object intersected”

end

WriteToSequence()
begin

if writeSeq[last] 6= lastAugmentedNode then
writeSeq[last++] = lastAugmentedNode;

end
end

ReadFromSequence()
begin

repeat
current++;
ComputeMinMaxT(ray, seq[current], tmin, tmax);

until tentry > tmax ;
; /* skip nodes which are before the ray origin */
if tentry ≥ tmin then

stack.clear() ; /* reset the stack (if any) */
stack.push(seq[current].node, seq[current].node, tmin+eps, tmax);

else
do nothing ; /* this entry is not usable (yet) */

end
end

TraverseNodeDown(node)
begin

t = Intersection(node.plane, ray);
if IsAugmented(node) then

lastAugmentedNode = node;
end
if Second Intersected Child then

stack.push(Second Intersected, lastAugmentedNode, t, texit);
end
stack.push(First Intersected, lastAugmentedNode, tentry, Min(texit, t));

end

TraverseNodeUp()
begin

/* Find the first parent augmented node containing the shifted ray origin */
node = lastAugmentedNode;
while node.parent do

ComputeMinMaxT(node.parent, tmin, tmax);
if tmin ≤ tentry < tmax then

stack.push(node.parent, node.parent, tentry+eps, tmax);
return true ; /* found an augmented node */

end
end
return false ; /* did not find an augmented node */

end

6 Results and Discussion

We have evaluated the new algorithms inside an optimized ray
tracer. In the evaluation we have used two different scenes: a model
of a sports stadium consisting of 1.5M triangles (arena) and a model
of a city containing 0.8M triangles (city). For all tests we have used
kD-tree constructed according to the surface area heuristics [Mac-
Donald and Booth 1990]. Note that the time required for the spatial
data structure construction is the same for the traditional algorithm
and as well as the new algorithm.

The first set of tests evaluated the reduction of traversal steps, the
speedup of the traversal and the speedup of the overall rendering
time. We have measured 10 representative viewpoints inside the
tested scenes. Table 1 summarizes the results for primary rays.

method rIT M NL NI TR ratio speedup
[-] [-] [-] [s] [-] [-]
arena, 1.4M triangles, 7.1M kD-nodes

HT R 25.4 6.8 70.77 1.69 1.0 1.0
BT R 25.4 6.8 50.76 1.47 0.72 1.15
ST R 25.4 6.8 16.99 1.25 0.24 1.35

city, 0.8M triangles, 4.0M kD-nodes
HT R 16.3 6.0 48.39 1.10 1.0 1.0
BT R 16.3 6.0 33.87 1.12 0.70 0.98
ST R 16.3 6.0 29.62 1.16 0.61 0.95

Table 1: Summary of results for different traversal algorithms.
HT R is the traditional hierarchical traversal algorithm described in
Section 5.1, BT R is the bottom-up traversal algorithm described in
Section 5.2, ST R is coherence based traversal algorithm described
in Section 5.3. rIT M is the number of ray-object intersections per
ray, NL is the number of traversed leaves per ray, NI is the number
of traversed interior nodes per ray, and TR is the computation time
in seconds. By ’ratio’ we denote the number of traversed interior
nodes for the proposed algorithm and for the original algorithm, by
’speedup’ we denote the speedup obtained from TR.

The second set of tests analyzed the behavior of the method with
respect to its parameters. In particular we have changed the number
of bounding boxes distributed inside the spatial hierarchy and the
update rate of the traversal sequences. The results for primary rays
are summarized in Table 2.

The results show significant reduction of traversal steps for inte-
rior nodes of the hierarchy. However the savings in total rendering
time do not directly correspond to the saved traversal steps. This
follows from the induced overhead of the new traversal algorithm
since traversing the augmented nodes is more costly. In particular
restarting the traversal in the augmented nodes requires computa-
tion of the exit point and the verification of the position of the exit
point with respect to the next candidate node (parent node or the
next node from the traversal sequence).

In the arena scene the new algorithm achieves a total speedup of
rendering up to 1.35. This scene has a very high depth complex-
ity and many views with relatively short rays, which create a good
potential for the new method. The profiling indicates that in this
scene about 40% of time for rendering is spend in the actual traver-
sal routine (the rest of the time corresponds to computing ray tri-
angle intersections and shading). The speedup of rendering of 1.35
thus means that the actual speedup of the traversal is 1.6.

The city scene has a smaller depth complexity and longer rays and
for this scene the new method actually results in a slowdown of
0.98. This indicates that the current version of the algorithm brings
speedup only for scenes with very high depth complexity and short
rays.



Figure 4: The view of the ’arena’ scene and the ’city’ scene.

dmin NB MKD NL NI TR

arena – HT R
– 0 89MB 6.8 70.77 1.69

arena – BT R
1 3.6M 231MB 6.8 50.25 1.75
2 2.0M 171MB 6.8 50.76 1.47
3 0.84M 122MB 6.8 53.48 1.50

arena – ST R
1 3.6M 231MB 6.8 15.54 1.28
2 2.0M 171MB 6.8 16.99 1.25
3 0.84M 122MB 6.8 23.93 1.32

city – HT R
– 0 42 MB 6.0 48.39 1.10

city – BT R
1 2.0M 122MB 6.0 32.98 1.16
2 0.86M 76MB 6.0 33.87 1.12
3 0.66M 68MB 6.0 35.63 1.13

city – ST R
1 2.0M 122MB 6.0 28.21 1.16
2 0.86M 76MB 6.0 29.62 1.16
3 0.66M 68MB 6.0 32.38 1.16

Table 2: The results for the traversal algorithm for different distri-
bution of boxes in the kd-tree. The dmin shows the depth difference
between the augmented nodes used in the kD-tree construction al-
gorithm, NB is the number of boxes stored in kd-tree, MKD is total
memory required for the kd-tree in MBytes, NL is the number of tra-
versed leaves per ray, NI is the number of traversed interior nodes
per ray, and TR is the computation time in seconds.

7 Conclusion

We presented a method for ray tracing acceleration, which speeds
up the traversal of the spatial hierarchy. In particular the proposed
method reduces the overhead of traversing interior parts of the hi-
erarchy. The method is based on augmenting the hierarchy by
sparsely distributed bounding boxes of hierarchy nodes and link-
ing these augmented nodes together. The sparse distribution of the
boxes reduces the memory cost for the augmented data, while still
allowing significant reduction of the traversal steps.

We proposed new traversal algorithms which exploit the sparse
boxes and their topology. These algorithms are not restricted to
traversal starting at the root node of the hierarchy and thus they can
make use of various types of ray coherence. The major advantage to
the already published algorithms is that the additional data storage
is very low and that there is no need of pre-processing.

We discussed algorithms for coherent rays sharing a common origin
or more general coherent rays. The implementation of the method
is straightforward. We have shown that the method brings a small
improvement of ray tracing performance especially for short rays.

In the future we want to focus on analysis of the behavior of the

method in dependence on the distribution of the bounding boxes
inside the hierarchy. Additionally, we want to modify the algorithm
for tracing packets of rays in a single traversal pass.
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