
About the Relation between Spatial Subdivisions
and Object Hierarchies Used in Ray Tracing

Vlastimil Havran∗
Department of Computer Science and Engineering

Faculty of Electrical Engineering
Czech Technical University in Prague

Abstract

In this paper we study the relation between object hierarchies (such
as bounding volume hierarchies) and spatial subdivisions (such as
kd-trees and octrees) in the context of ray tracing for static scenes.
First, we recall the principles used in efficient ray tracing algorithms
and discuss the changes to the performance model more appropriate
to current computer architectures. Second, we show how kd-trees
can be emulated via bounding volume hierarchies. More impor-
tantly we show how bounding volume hierarchies can be emulated
via kd-trees in six-dimensional space. Through emulation of one
data structure via the second one we show that both data structures
are computationally equivalent, assuming that their construction is
carried out in top-down fashion.

CR Categories:
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

Keywords: ray shooting, ray tracing, hierarchical data structures,
spatial sorting, performance model

1 Introduction

Ray tracing based image synthesis algorithms are becoming more
and more popular thanks to several factors. First, the algorith-
mic progress allows us today ray tracing with expected logarithmic
complexity in the number of objects. Even if there are no practi-
cal worst case complexity algorithms in use while they have been
proposed [Szirmay-Kalos and Márton 1998], the algorithms aimed
at average case complexity achieve remarkable performance [Wald
2004]. Second, a key behind the success of ray tracing algorithms
is the performance increase of current CPUs compared to the end of
seventies when the first ray tracing papers were published. For ex-
ample, the performance gain can be estimated roughly by Moore’s
Law; for over last fifteen years a speedup factor is approximately
one thousand. Third, the implementations of the algorithms are
more efficient also thanks to the progress in compilers, computer
languages, and better fitting of implemented algorithms to the com-
puter hardware.

Unfortunately, there has been some confusion in the comprehen-
sion of concepts and performance of the ray tracing algorithms both

∗e-mail: havran@fel.cvut.cz

among users and researchers. An efficient algorithm requires algo-
rithmically efficient spatial data structures. Since there is a num-
ber of published algorithms and also data structures using different
computer hardware, it is uneasy for non-expert to select an appro-
priate algorithm. In order to find some conclusion to this problem
several experimental studies on the performance of ray tracing algo-
rithms were conducted, however, often with contradictory conclu-
sions. For example, Fujimoto et al. [Fujimoto et al. 1986] claims
the superiority of uniform grids over octrees for a couple of exam-
ple scenes. More recent studies [Endl and Sommer 1994; Havran
et al. 2000; Szirmay-Kalos et al. 2002; Chang 2004] show the op-
posite for the skewed distribution of objects in the scene. There is
a similar misunderstanding concerning the difference between the
concept and performance of bounding volume hierarchies and spa-
tial subdivisions such as kd-trees or octrees.

In this paper our concern is not to provide better or faster algorithm
for ray tracing but to give better insight into the problem of spatial
data structures used in this context. The paper is structured as fol-
lows. In Section 2 we recall the principles of efficient ray tracing
algorithms. In Section 3 we discuss the properties of the hierarchi-
cal data structures in the dependence on arity of the hierarchy. In
Section 4 we propose a novel performance model for ray tracing. In
Section 5 we discuss the relation between spatial subdivisions and
object hierarchies. In Section 6 we conclude the paper and propose
possible future work.

2 Principles

In this section we describe several key principles behind the effi-
cient ray tracing algorithms and how these relate to the used data
structures. We focus on the comprehension of the basic ideas since
most of them are known but often insufficiently understood in the
context of ray tracing algorithms in computer graphics community.

2.1 Sorting and Searching

The key issue relevant to the complexity of studied algorithms is
that ray tracing is a searching problem [Knuth 1998]. Given a set
of primitives and a query, find out the result of this query. In our
case, the set of primitives is a set of scene objects (such as triangles)
and the query is a ray. The ray tracing belongs to the category of
geometric range searching [Agarwal 2004]. In order to implement
an efficient searching algorithm we first have to organize the input
data by sorting. This paradigm is inherent to all searching prob-
lems including common life applications such as yellow pages that
organize telephone numbers. If we do not preprocess the data (the
preprocessing in our case equals to spatial sorting), the searching
has to be implemented in a naive way with O(N) time complexity
for N objects.

2.2 Hierarchical Organization:
Divide and Conquer

One general way to sort objects is a hierarchical organization of the
input data implementing powerful “Divide and Conquer” paradigm.
The resulting data organization is represented by hierarchical data
structures in form of a tree. The way of hierarchy creation is often
referred to as construction in a top-down fashion. The hierarchical
data structures are often distinguished according to the domain of
organization. If we organize the data in a spatial domain, we call
the resulting data structure a spatial subdivision. If we organize the
data in an object domain, we call this data structure usually an ob-
ject hierarchy. The link to the sorting is as follows: the creation of
hierarchical data structures corresponds to quicksort [Knuth 1998,
page 113] generalized to d-dimensional space. We pick up a pivot,
either an object or position in the space, and sort all the objects
either to left or to right. Then we recurse and continue the con-
struction until the leaves are created.

There are other ways to create hierarchies often referred to as con-
struction in bottom-up fashion or insertion one-by-one. The lat-
ter one has been used for bounding volume hierarchies (BVH) by
Goldsmith and Salmon in [Goldsmith and Salmon 1987], but with-
out comparison to top-down method. It has been shown experi-
mentally by two independent studies that ray tracing with Gold-
smith and Salmon’s method of BVH construction results in strong
penalty in performance compared to top-down methods [Masso and
Lopez 2003; Havran et al. 2000]. Not only the performance of data
structures constructed in bottom-up fashion is lower, but also the
time required to construct these data structures can increase signif-
icantly.

We offer the following analogy between the data structures and the
traditional sorting of numbers (in 1D). The top-down construction
of spatial hierarchies corresponds to quicksort. The construction
by insertion one-by-one corresponds to sorting by insertion [Knuth
1998, page 80]. The construction in bottom-up fashion corresponds
to mergesort [Knuth 1998, page 158]. The major difference be-
tween 1D sorting and sorting in N-dimensional space is exactly the
increase of data dimensionality. We make the following observa-
tion: only top-down construction algorithms keep during placement
of any interior node ν the data sorted with respect to already exist-
ing interior nodes and the “pivot” used for ν . The data structures
constructed this way keep the expected time complexity of their
construction O(N logN) with high probability, similar to quicksort.
This is very likely the reason why the hierarchical data structures
constructed in top-down fashion outperform the other two construc-
tion methods. According to experiments, the difference in per-
formance is significant in particular for a higher number of ob-
jects [Masso and Lopez 2003; Havran et al. 2000].

3 From Kd-trees to Uniform Grids via Ar-
ity

In this section we discuss the common properties of spatial sub-
divisions. Using any spatial subdivision we restrict the ray-object
intersection computations along the path of the ray. This requires
to identify the elements of the spatial data structures along the ray.
These elements are often referred to as spatial cells, while the iden-
tification of these data elements is called a ray traversal algorithm.

The way of organization of these spatial data structures has strong
impact on the performance of ray tracing with these data structures.
In principle both spatial subdivisions and object hierarchies can be
characterized by the number of children of a node that subdivides

either a spatial region into subregions or the set of objects into sub-
sets of objects. This is usually referred to as arity or branching
factor or fanout factor. Below we list elementary spatial subdivi-
sions according to their arity:

• kd-trees used in ray tracing [Kaplan 1985; MacDonald and
Booth 1990] have nodes with the arity two; a box associated
with a node is subdivided into two disjoint boxes. The split-
ting planes in the nodes are axis aligned. This allows for an ef-
ficient ray traversal algorithm, since there are only four cases
how the two child nodes of a node are traversed. In addition,
the positioning of the splitting planes represented in the in-
terior nodes has high flexibility. It has been shown that use
of surface area heuristics instead of spatial median positions
results in higher performance [MacDonald and Booth 1990;
Havran 2000].

• octrees proposed to the use in ray tracing in [Glassner 1984]
have nodes with the arity eight. A spatial box associated with
a node of octree is subdivided to eight boxes of the same
size. This allows to represent more information about the
subdivision in a single node, but it requires more complex
ray traversal algorithm that gives the correct order of up to
four child nodes to be traversed. Several ray traversal algo-
rithms have been proposed, for a survey see [Havran 1999].
The extension to octrees based on surface are heuristics called
Octree-R [Whang et al. 1995] with higher flexibility of split-
ting planes positioning inside the octree node was proposed.

• EN-trees proposed by Hsing and Thibadeau [Hsiung and
Thibadeau 1992] have nodes with arity 64 or 512. The spatial
box associated with an interior node is subdivided to 4×4×4
or 8× 8× 8 spatial cells of the same size. Then the process
of tree creation recurses. The EN-trees offer an interesting
tradeoff between uniform grids and octrees.

• Uniform grid [Fujimoto et al. 1986] (regular subdivision) can
also be viewed just as a node with high arity. The arity is pro-
portional to the number of objects. The regularity of the sub-
division results in two contradictory impacts on the ray trac-
ing performance. Positively, the regularity of uniform grids
allows us to implement more efficient ray traversal algorithm
that steps from a cell to cell along the ray without necessity to
traverse any parental hierarchical nodes. The ray traversal al-
gorithm exploits the regularity of subdivision via 3D discrete
differential analyzer algorithm referred to as 3DDDA [Fuji-
moto et al. 1986]. On the negative side, the regularity of
the data structures does not allow any adaptability of the data
structure to distribution of objects in the scene. Therefore uni-
form grids are rather inefficient for scenes with moderately
and highly skewed object distributions. To reduces this prob-
lem several algorithms exploiting recursion and resulting in
recursive grids were proposed, however it is difficult to con-
trol the memory consumptions of the recursive grids [Chang
2004; Havran 2000].

The arity and flexibility of positioning subdivision elements such
as splitting planes has high impact on the performance of the data
structures. It is easy to show that the geometry of spatial sub-
divisions based on axis aligned splitting planes with arity greater
than two can be emulated by kd-trees. The possibility of emulation
raises the question which data structures are the most efficient and
why. We discuss below the impact of arity on performance.

Low arity. Kd-trees are highly adaptive to the distribution of ob-
jects in a scene and the tree has the depth in order of O(logN) for
N objects. Initially, a ray traversal algorithm has to descend to the
first leaf according to an input ray. The computation is finished af-
ter traversing several leaves when the ray intersects an object. A

relatively small number of traversed leaves on average is achieved
thanks to the high adaptability of splitting planes; the large spatial
regions without objects are covered by large empty cells and these
spatial regions are traversed quickly. The distribution of objects in
a scene has only a low impact on the algorithm performance. Since
an efficient ray traversal algorithm has to descend to the first leaf, a
ray tracing with kd-trees shows a logarithmic behavior.

High arity. Uniform grids are highly regular and an initial cell
where a ray meets the first leaf is computed in O(1) time unlike
O(logN) time required for kd-trees. However, the uniform grids
are very inefficient for scenes with skewed distributions of objects.
First, a ray has to traverse on average many empty cells before en-
tering a cell with objects, where the intersection can be found. If the
number of cells is O(N), the number of traversed cells is of order
O(3√N). Second, there are on average many references to objects
in a single non-empty cell. The ray has to be tested against all ob-
jects in the cell to find out the closest intersection. As a result, the
performance of ray shooting with uniform grids is rather low for
skewed object distributions, in practice sometimes by order(s) of
magnitude lower than the one achieved for kd-trees. In this case the
factor O(3√N) (the number of traversed leaf cells in uniform grids)
outweighs the factor O(logN). On the other hand, for uniform dis-
tribution of objects the performance of uniform grids is in practice
slightly higher than for kd-trees. The reason for that is that rays in
such scenes are short. In this case the location of the first cell along
the ray path computed in O(1) for uniform grid is faster than the
location of the first leaf in kd-trees which is computed in O(logN)
time.

We summarize the impact of arity on performance as follows. The
low arity allows for high flexibility and adaptability of data struc-
tures to the input data. On the other hand, this induces a logarithmic
time complexity. In the opposite the high arity yields the regularity
of data structures which allows us to implement a very efficient ray
traversal algorithm. On the other hand, the resulting highly regular
data structures are not suited for irregular distributions of objects.
There is a clear correlation between the performance, uniformity of
data distribution, and the arity of used data structures.

4 Performance Model

In order to better understand and enumerate the performance of ray
tracing algorithms and hence data structures discussed above we
need a performance model. Recently, in years 2004-2006, the per-
formance of ray tracing is still often referred in the numbers of rays
that can be shot per second in some scenes to generate an image.
Optionally, the performance is given in frames per second. How-
ever, this quantification of performance is rather application depen-
dent and it does not document properly the qualitative properties of
the used data structures and/or ray traversal algorithm as we discuss
below.

The problem of an appropriate performance model is rather com-
plex since the model has to cover a number of issues. For example,
the primary rays induced by a perspective camera show high coher-
ence of rays(similar origin and direction of rays). Therefore, it is
more likely that the computation will be faster thanks to the data
coherence and branch prediction in CPUs. The performance gain
thanks to coherence of queries when ray tracing individual incoher-
ent rays achieves factor between 3 to 7 on current processors ac-
cording to our experiments. In our tests coherent rays were formed
by primary rays of a perspective camera directed towards the scene.
For incoherent rays we generated for each ray randomly one start-
ing point and one ending point on a sphere enclosing the scene. The

ray origin was at the starting point and the ray was directed towards
the ending point.

There exist algorithms that explicitly use the coherence of primary
or shadow rays [Reshetov et al. 2005; Wald 2004; Havran 2000].
They can be viewed as offline searching where we know the queries
in advance while for online searching we process queries one by
one without any knowledge of queries in advance.

The input data is given by geometric objects in the scene and rays.
In order to describe the performance model more accurately, we
have to consider an ordered sequence of rays with a particular
scene. We also need to distinguish if an algorithm may access
the rays in the sequence in online or offline mode of computation.
The strict equivalence of the input data is a necessary condition to
compare the algorithms in a fair way. An appropriate performance
model of ray tracing was sketched already by Kay and Kajiya [Kay
and Kajiya 1986] in the context of bounding volume hierarchies:

C = CIT ·NIT +CT ·NT , (1)

where C is the expected cost for ray tracing, CIT is the expected
cost of ray-object intersection, NIT is the average number of ray-
object intersections, CT is the expected traversal cost among the
data structure elements, and NT is the average number of traversal
steps per ray. The costs include the access time for the data stored in
the cache or the main memory. The performance model was further
elaborated in [Havran 2000, Chapter 2].

Since there has been an increasing bottleneck between performance
of a CPU core and latency of the main memory, we propose to
extend the above described performance model as follows:

C = C′
IT ·NIT +C′

T ·NT +C′
R ·N′

R, (2)

where C′
R is the cost of moving a data block from the main memory

to the CPU registers and N′
R is the average number of data block

moves per ray. C′
IT is an expected cost of ray-object intersection

assuming that the data is available in the cache. Similarly, C′
T is a

cost of traversal step assuming the data available in the cache.

The data block is typically a cache line in L1 and L2 cache of size
between 64 and 256 Bytes on current CPUs. The data structure lay-
out in the main memory has already been used to optimize the per-
formance of the ray tracing algorithms [Havran 2000; Wald 2004].

The performance model proposed here has already been sketched
in [Havran et al. 2006; Yoon and Manocha 2006]. Note that the last
term in Eq. 2 is included in both two terms of Eq. 1. As we can
distinguish the cost of reading the data from main memory in the
cost model of Eq. 2, the new model is more accurate.

Sometimes it is also important to include the initial cost of precom-
putation required for each ray when this part cannot be considered
negligible. For already proposed data structures the precomputa-
tion time for each ray is not negligible for uniform and hierarchical
grids. The cost model should be then extended by precomputation
cost for each ray CPREP:

C = C′
IT ·NIT +C′

T ·NT +C′
R ·N′

R +CPREP, (3)

From the performance model it can be seen that the search for the
efficient ray tracing algorithm is implementation and hardware de-
pendent. We cannot minimize only one term in Eq. 3, but we want
to minimize the total cost to get an efficient ray tracing algorithm.
A particular algorithm has the same NIT and NT independent of the
implementation and computer architecture for a particular data. Ob-
viously, the algorithm itself has some intrinsic algorithmic proper-
ties (documented by NIT and NT). However, the actual performance

is significantly influenced by constants C′
IT , C′

T , C′
R, CPREP, and N′

R
that highly depend on the particular implementation and computer
architecture used. Therefore there is no winning algorithm when
we abstract from the implementation, computer architecture, and
the input data. However, the proper documentation of algorithmic
properties of published algorithms makes the experimental results
reproducible and verifiable.

5 Relation between Object Hierarchies
and Spatial Subdivisions

In Section 3 we have discussed the properties of spatial subdivi-
sions in dependence on their arity. Object hierarchies in ray trac-
ing known as bounding volume hierarchies (BVHs) are different in
principle. They do not organize the space into disjoint regions as
spatial subdivisions, but they hierarchically organize objects. Since
each object resides in a spatial region, the BVHs also organize the
space, however only indirectly. There are three major differences if
we compare BVHs to spatial subdivisions. First, the spatial regions
induced by child nodes and interior nodes of a BVH node can over-
lap in contrast to spatial subdivisions. Second, some empty spa-
tial regions need not be covered by elementary nodes of the BVH.
Third, the objects in a BVH are referenced only once in its leaves.
Practically, the representation of an interior node in the BVH has
higher memory consumption than spatial subdivisions, since the
geometry of spatial regions associated with BVH nodes has to be
described completely. The algorithm by [Kay and Kajiya 1986] cre-
ating BVHs using a “Divide and Conquer” paradigm has only two
children in interior nodes, similarly to kd-trees. Papers have been
recently published in which the light-weight version of BVH have
been studied [Havran et al. 2006; Woop et al. 2006]. Those contain
only a subset of six planes defining the box associated with a BVH
node.

Below we show that spatial subdivisions and BVHs are computa-
tionally equivalent since axis-aligned spatial subdivisions can be
emulated by BVHs and the other way round. By computationally
equivalent in this context we mean that the both data structures have
the same level of expressiveness for spatial sorting required by ray
tracing traversal algorithm. Since commonly used spatial subdivi-
sions (grids, octrees) can be emulated by kd-trees, we restrict our
discussion only to kd-trees.

5.1 Emulation of Kd-trees via BVHs

The emulation of kd-trees via BVHs is easy to describe and imple-
ment. In general, BVH interior nodes can represent any shape, for
example boxes, discrete orientation polytopes (k-DOPs), spheres,
ellipsoids. If we restrict BVH nodes to be represented by boxes,
then in both kd-trees and BVHs the interior nodes and leaves cor-
respond to axis aligned boxes. Obviously, the BVHs need more
memory than the kd-trees (increasing term CR ·NR in Eq. 2).

The leaves of BVH can contain references to only a single object,
whereas the leaves of kd-trees can contain references possibly to
several objects. Another possibility is that a leaf of a kd-tree is
empty, i.e., it does not contain any object. All the cases are easy
to implement in BVHs. First, empty leaves of a kd-tree need not
be included, since empty spaces are cut away already in parental
nodes. Second, the kd-tree leaves with a single object are directly
mapped to BVH leaves. Third, the kd-tree leaves with multiple
references (say n) to objects are emulated by a small linear structure
of completely overlapping n−1 interior BVH nodes. The structure
is depicted in Fig. 1. Each interior node has at least one leaf with

a reference to an object. Since the boxes associated with interior
BVH nodes completely overlap, we have to traverse them all and
compute ray-object intersections with all n objects.

Figure 1: Emulation of kd-tree leaf with four objects in BVH - a lin-
ear tree with four child nodes, each child node contains a reference
to a single object. The BVH interior nodes overlap completely.

5.2 Emulation of BVHs via Kd-trees

Much less obvious is the feasibility of emulation BVHs via kd-
trees, since the spatial regions of two child/interior nodes of BVHs
can overlap. This is clearly impossible if we stick to common kd-
trees used for ray tracing in 3D space [Havran 2000; Wald 2004]
with three types of interior nodes where a splitting plane is perpen-
dicular to one of x, y, and z axis. The nodes of the kd-tree form a
spatial subdivision in 3D and therefore BVHs cannot be emulated
by the 3D kd-trees.

However, we can increase the dimensionality of the kd-trees and
solve the problem in a different way. In order to emulate BVH
via kd-trees we propose to use six-dimensional kd-trees and change
the meaning associated with the dimensions. Recall that a 3D axis
aligned box is described by min and max values for all three axes,
in total by six values. We can then interpret the box as a point in six-
dimensional space and construct a kd-tree in this “six-dimensional
min-max space”. A min–A node (A ∈ {x,y,z}) of the 6D kd-tree
with a single splitting plane at V says that a minimum value in axis
A is at most V in the left child and at least V in the right child. Sim-
ilarly, a max–A node (A ∈ {x,y,z}) of the 6D kd-tree with a single
splitting plane at V says that a maximum value in axis A is at most
V in the left child and at least V in the right child. The geometrical
interpretation of the min–A and max–A nodes is depicted in Fig-
ure 2. In total, the proposed 6D kd-trees have seven types of nodes;
three nodes to limit minimum in either x, y, or z axis, three nodes to
limit maximum in either x, y, or z axis, and a single leaf node. Any
BVH node can be emulated by at most 6 interior nodes of the 6D
kd-tree.

Changing the dimensionality of kd-trees requires only small
changes to the ray traversal algorithm. Upon accessing an interior
node there are four cases as for traditional 3D kd-trees:

1. we traverse only the left child,

2. we traverse only the right child,

3. we traverse first the left child and then the right child,

4. we traverse first the right child and then the left child.

These four cases are distinguished in the ray traversal algorithm
using two subsequent IF commands. A difference is that for min–
A nodes we limit the value of signed distance from below (“tmin”
value) and for max–A nodes we limit the value of signed distance
from above (“tmax” value).

Special nodes can be used to optimize the kd-trees traversal if one
child of interior node is empty. For min–A nodes then the left child

Figure 2: Visualization of six-dimensional kd-tree interior nodes for a single axis with a splitting plane placed at P. From left to right: min–A
node with two children, max–A node with two children, min–A node with one child, max–A node with one child.

is empty and for max–A nodes the right child is empty. The pro-
posed optimized 6D kd-trees have then thirteen types of nodes:

• three min–A nodes with both children (one for each axis
x,y,z),

• three max–A nodes with both children (one for each axis
x,y,z),

• three min–A nodes with only the right child (one for each axis
x,y,z),

• three max–A nodes with only the left child (one for each axis
x,y,z),

• leaf node containing reference to the object.

We have implemented the optimized 6D kd-trees with the thirteen
types of nodes and tested their performance for 42 scenes of vari-
ous complexity and object distributions. We only present the main
result here; the cost overhead of emulating BVHs by 6D kd-trees
yields from 20 to 40% for our implementation. Clearly, 6D kd-
trees are slower, but by a constant factor compared with BVHs, as
the memory requirements of 6D kd-trees are higher than for BVHs,
where the information about the 6D spatial extent is more com-
pactly represented in every node.

Further we note that the construction of the 6D kd-trees and BVHs
is faster than the construction of traditional 3D kd-trees used for
ray tracing, since the number of references to objects equals to the
number of objects.

Obviously, we cannot claim that kd-trees are (algorithmically)
equivalent to BVHs in the context of ray tracing, since there are
clear differences between these structures such as the number of
references to objects in the data structure. However, we can say that
kd-trees and BVHs are computationally equivalent, as they have the
same ability to address the searching problem with respect to their
time complexity. The difference in performance of the data struc-
tures can be expressed by constant multiplicative factor regardless
the number of objects in the scene.

6 Conclusions and Future Work

In this paper we have discussed the key principles behind the per-
formance of data structures for ray tracing. First, we have unified
spatial subdivisions such as uniform grids and kd-trees via arity.
Second, we have discussed the dependence of spatial data struc-
tures properties on their arity. Third, we have proposed a modifi-
cation of the performance model. Fourth, we have shown how kd-

trees can be emulated via BVHs and more importantly, how BVHs
can be emulated via kd-trees in a six-dimensional space. Even if
clearly kd-trees and BVHs are not algorithmically equivalent data
structures, the feasibility of their mutual emulation shows the com-
putational equivalence of these data structures.

As far as the principles behind the construction of data structures
for ray tracing follow “Divide and Conquer” paradigm, the question
which data structures are the best is a matter of their practicality and
implementation on a particular hardware. We cannot claim that kd-
trees are more algorithmically efficient than BVHs, since BVHs can
be (with some constant overhead) emulated by kd-trees and simi-
larly kd-trees (also with some constant overhead) can be emulated
by BVHs. We can only say that this particular implementation of
BVHs is more efficient or less efficient than this implementation
of kd-trees. The algorithmic properties should be documented by
number of traversal steps and ray-object intersection tests and the
implementation quality by timings. We can assume that the pub-
licly available scene data are used and the sequence of rays (hence
their distribution) is fully described. In this way we yield repro-
ducibility and verifiability of results on a different hardware and/or
using a different implementation.

There is in principle no need to restrict hierarchical data structures
for ray tracing only to spatial subdivisions or object hierarchies. We
can combine in our hierarchical data structures the nodes of tradi-
tional 3D kd-tree, 6D kd-tree, and bounding volume nodes, or any
other types of hierarchical nodes. An interesting research direc-
tion assuming top-down construction is to combine traditional 3D
kd-tree nodes with 6D kd-tree nodes, bounding volume primitives
using the local greedy heuristics based on the cost model with the
surface area heuristics. A particular node to be constructed is se-
lected based on the estimated cost of traversing this node, selecting
such a node with minimum estimated cost. Such a hybrid hierar-
chy can be tuned to either minimize memory consumption or per-
formance on that particular hardware or the time required for the
construction of data structures or any other objectives required by
an application.

Acknowledgments

We would like to thank anonymous reviewers for their comments.
This research work has been partially supported by MŠMT under
research program MSM 6840770014 and LC-06008 (Center for
Computer Graphics).

References

AGARWAL, P. 2004. Range Searching. In CRC Handbook
of Discrete and Computational Geometry (J. Goodman and J.
O’Rourke, eds.), CRC Press, New York.

CHANG, A. Y.-H. 2004. Theoretical and Experimental Aspects of
Ray Shooting. PhD thesis, Politechnic University, USA.

ENDL, R., AND SOMMER, M. 1994. Classification of Ray-
Generators in Uniform Subdivisions and Octrees for Ray Trac-
ing. Computer Graphics Forum 13, 1 (Mar.), 3–19.

FUJIMOTO, A., TANAKA, T., AND IWATA, K. 1986. ARTS: Ac-
celerated Ray Tracing System. IEEE Computer Graphics and
Applications 6, 4, 16–26.

GLASSNER, A. S. 1984. Space Subdivision For Fast Ray Tracing.
IEEE Computer Graphics and Applications 4, 10 (Oct.), 15–22.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic Creation of
Object Hierarchies for Ray Tracing. IEEE Computer Graphics
and Applications 7, 5 (May), 14–20.

HAVRAN, V., PRIKRYL, J., AND PURGATHOFER, W. 2000. Statis-
tical comparison of ray-shooting efficiency schemes. Tech. Rep.
TR-186-2-00-14, May.

HAVRAN, V., HERZOG, R., AND SEIDEL, H.-P. 2006. On the fast
construction of spatial data structures for ray tracing. 71–80.

HAVRAN, V. 1999. A Summary of Octree Ray Traversal Algo-
rithms. Ray Tracing News 12, 2 (Dec.), cca 10 pages.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. PhD thesis,
Czech Technical University in Prague.

HSIUNG, P.-K., AND THIBADEAU, R. H. 1992. Accelerating
ARTS. The Visual Computer 8, 3 (Mar.), 181–190.

KAPLAN, M. R. 1985. The Uses of Spatial Coherence in Ray
Tracing. In ACM SIGGRAPH ’85 Course Notes 11.

KAY, T. L., AND KAJIYA, J. T. 1986. Ray Tracing Complex
Scenes. Computer Graphics (Proceedings of ACM SIGGRAPH)
20, 4, 269–278.

KNUTH, D. E. 1998. The Art of Computer Programming, Volume 3
Sorting and Searching. Addison-Wesley.

MACDONALD, J. D., AND BOOTH, K. S. 1990. Heuristics for
Ray Tracing using Space Subdivision. Visual Computer 6, 6,
153–65.

MASSO, J. P. M., AND LOPEZ, P. G. 2003. Automatic Hybrid
Hierarchy Creation: a Cost-model Based Approach. Computer
Graphics Forum 22, 1, 5–13.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
Level Ray Tracing Algorithm. ACM Transaction of Graphics 24,
3, 1176–1185. (Proceedings of ACM SIGGRAPH).

SZIRMAY-KALOS, L., AND MÁRTON, G. 1998. Worst-Case Ver-
sus Average Case Complexity of Ray-Shooting. Computing 61,
2, 103–131.

SZIRMAY-KALOS, L., HAVRAN, V., BALÁZS, B., AND SZÉCSI,
L. 2002. On the Efficiency of Ray-shooting Accelera-
tion Schemes. In Proceedings of SCCG, ACM Siggraph,
A. Chalmers, Ed., 89–98.

WALD, I. 2004. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group, Saarland
University.

WHANG, K. Y., SONG, J. W., CHANG, J. W., KIM, J. Y., CHO,
W. S., PARK, C. M., AND SONG, I. Y. 1995. Octree-R: an
Adaptive Octree for Efficient Ray Tracing. IEEE TVCG 1, 4
(Dec.), 343–349.

WOOP, S., MARMITT, G., AND SLUSALLEK, P. 2006. B-
KD Trees for Hardware Accelerated Ray Tracing of Dynamic
Scenes. In Proceedings of Graphics Hardware (2006), 67–77.

YOON, S.-E., AND MANOCHA, D. 2006. Cache-Efficient Layouts
of Bounding Volume Hierarchies. In Proceedings of the 2006
Eurographics Conference, 507–516.

