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Chapter 1
Introduction

Computer graphics has always been a large field in computer science and is steadily advancing
from the research niche to commercial products in the entertainment industry, medicine, pro-
duction and simulation, advertisement, robotics. In contrast to other computer science fields,
computer graphics (CG) can be very appealing and challenging because of its beautiful and
satisfactory results. It comprises a large variety of knowledge from computer science, mathe-
matics, and physics. The probably largest clientele of CG is still the entertainment industry
consisting of movie and computer games companies. However also other branches have become
aware of the utility of computer graphics, for example the quality control and automatization
of production or the technical assistance in the medicine. New movies often make extensive use
of computer generated special effects or are even virtually rendered entirely from 3D computer
models. The entry of computer rendering to industry also opened a new era for arts: nowa-
days artists often do not work with brushes and paint but prefer the use of computer tablets
in combination with artistic software to simulate all kind of painting styles and instruments
in a clean and cheap manner. And the results are often indistinguishable from real drawings.
Besides the classic 2D drawing, the virtual 3D modeling and rendering is becoming an emerging
style in arts. In this thesis, we will not be concerned with 3D modeling or acquisition but only
with the realistic visualization of such, including all kinds of lighting effects. A 3D computer
graphics model alone, consisting of vertices and (textured) faces, is usually visually unpleasing.
This is because the human eye, which is used to see photo realism in a 3D environment, in-
herently detects the illumination error. Therefore, the ”final product” is often presented using
photo realistic rendering. Due to the explosion of graphics hardware performance in the last
few years, interactivity plays an important role in the 3D visualization. Computer games are
presenting increasingly realistic worlds in real-time and it is only a matter of time till realistic
global illumination effects are considered in games. Nevertheless, photorealism does not come
for free and is one of the toughest problems in computer science. Since the human eye is the
most significant and developed sense, it is difficult to mislead it and one has to simulate global
illumination which is very complex in realistic settings. Global illumination can be understood
as a gigantic parallel machine tracing a huge amount of photons simultaneously. This is im-
possible to simulate by nowadays computers. Therefore, clever algorithms were developed to
approximate reality efficiently, which we will briefly discuss in the next chapter. This thesis is
dedicated to one of these methods called photon mapping and includes two improvements of
the concept in more detail with the aim to give the reader some new insights.



2 1.1 Overview

1.1 Overview

The thesis is divided into four main topics:

1. background information about global illumination and density estimation,

2. photon mapping and photon map data structures,

3. reverse photon mapping,

4. and the ray map.

The thesis is organized in a way an uninitiated reader can understand and appreciate the two
new methods, reverse photon mapping and the ray map. The advanced reader may skip the next
two chapters, which are intended to provide the background information of global illumination
and density estimation. After a review of the physics of light and the basics of global illumi-
nation in Chapter 2, we continue with a rather theoretical introduction to statistical density
estimation in Chapter 3. Chapter 4 describes the fundamentals of photon mapping as a specific
application of density estimation in computer graphics. Besides the classical photon mapping
algorithm, several novel enhancements and ideas are discussed. Chapter 5 gives an overview and
a comparison of a variety of search data structures applicable to photon mapping and provides
a detailed description including pseudo code for our new proposed kd-tree structure. Chapter 6
presents a novel application of photon mapping combined with Monte Carlo ray tracing which
we designed to speed up the rendering of indirect illumination. This method named reverse pho-
ton mapping has been published to Eurographics in August 2005 [29]. Chapter 7 shows quite
a different approach to photon density estimation intended to overcome certain bias sources
inherent to photon mapping. This method has been published to Eurographics Symposium on
Rendering in June 2005 [28].



Chapter 2
Introduction to Global Illumination

Photorealistic rendering has been one of the driving forces in computer graphics over the last
decades. The probably most technical part of realistic image synthesis is global illumination. The
word ”global” refers to the fact that the illumination of an object depends on the light it receives
from all other (non-occluded) objects. In this sense, computing the illumination even at a single
point requires consideration of the entire scene model. Despite of this complexity of global
illumination, it is evolving quickly. Specially designed global illumination methods and hybrid
approaches make use of programmable graphics hardware, which allows global illumination,
once solely used for scientific simulation of single images, to open up for use in animations.
Nevertheless, including global illumination in complex scenarios is generally difficult and the
practical usage in industry is still moderate. Photon mapping in particular temporal photon
mapping is one method that opened the way for practical global illumination in animations. But
also radiosity related techniques especially instant radiosity are becoming popular again due to
the modern programmable graphics hardware. In recent years there have been many attempts
of real-time (partial) global illumination solutions which all have pros and cons. The trend
moves towards fast and interactive (hybrid) algorithms that are suitable for rasterization on
graphics hardware neglecting accuracy and bias in the results. We will not regard rasterization
methods although they have become more popular even in high-quality rendering due to the
rapidly increasing processing power and accuracy of commodity graphics accelerators. In this
thesis we will focus on the accurate and more general methods used for production rendering
in the industry. The theory induced by the nature of light stays the same for all algorithms
and cannot be tricked by simple heuristics aiming at interactivity. Therefore, it is necessary to
understand the nature of light in order to simulate global illumination correctly. First, we recall
the physical basics of light and global illumination before we proceed with specific algorithms.

2.1 The Nature of Light

Light is a complicated phenomena and it is still not completely understood. Since the earliest
days human beings have been fascinated by the perception of light because it is our most
powerful sense. Many theories explaining light have been proposed over the centuries. In former
days the Greeks believed that ”light” starts in our eye which is emanating rays that touch the
environment we see. Surprisingly, this idea has relived and is exploited in Computer Graphics as
we will see. It took about 1000 years before the scientist Alhazen (A.D. 956-1038) described the
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light by straight rays and modeled the eye with a pinhole camera called camera obscura. More
than 600 years later, Christiaan Huygens and Isaac Newton came up with two different novel
theories. Huygens demonstrated the wave optics of light whereas the more prominent Newton
supported his light particle theory and argued heavily against Huygens wave model. From
the 19th century on, researchers like Augustin Fresnel and Thomas Young studied effects as
polarization and diffraction. James Maxwell further described the properties of electromagnetic
waves and later on Albert Einstein introduced the photon and the photo-electric effect. At that
time it became clear that light could not be explained by either theory. Niels Bohr formalized the
dualism of light established by the field of quantum mechanics. Therein, light is classified into
ray/wave optics, and photon (particle) optics. In computer graphics we are mostly concerned
with a highly abstract model based on ray optics even for photon mapping. Furthermore, we
neglect the speed of light. Nevertheless, most light phenomena that we are able to see in our
daily life can be simulated in a realistic way by computer graphics.

2.1.1 Light Terminology

In order to describe light and the transport of energy, a basic terminology must be introduced.
There are two different terminologies, the radiometry which is physically based and the photome-
try, which was derived from the human perception of light. We will first introduce the radiometry
which is more accepted in science and generally used in computer graphics. The smallest quan-
tity in lighting is the photon. The energy of a photon with wavelength λ is eλ = h·c

λ where h is
the Planck’s constant h ≈ 6.63 · 10−34J · s and c is the speed of light.

2.1.1.1 Radiant Energy

Radiant energy Q is the total energy gathered from all photons of all wavelengths λ

Q =
∫ ∞

0
nλeλdλ [W · s] . (2.1)

2.1.1.2 Radiant Flux

Radiant flux Φ is defined as radiant energy per time

Φ =
dQ

dt
[W ] (2.2)

It represents the time rate of flow of radiant energy.

2.1.1.3 Irradiance/ Radiosity

The general terminology radiant flux area density is usually separated into irradiance E and
radiosity B, also known as radiant exitance. It represent the flux density on a surface which is
defined as radiant flux per differential area

E(x) =
dΦ
dA

[
W

m2

]
. (2.3)

The difference between irradiance and radiosity is that irradiance corresponds to the flux arriving
on a surface and radiosity corresponds to the flux leaving the surface.
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2.1.1.4 Radiant Intensity

Radiant intensity I represents the directional density of flux (i.e. the flux coming from a certain
direction) and is defined as flux per differential solid angle d~ω

I(d~ω) =
dΦ
d~ω

[
W

sr

]
(2.4)

The solid angle is explained in Section 2.1.2.

2.1.1.5 Radiance

Radiance L can be considered as a product of directional density and area density of flux which
is dependent on the surface orientation (therefore the division by the cosine of the azimuth angle
θ). It is probably the most important quantity in computer graphics because this is what we
measure with ray tracing. It is defined as radiant flux per differential solid angle per differential
projected area.

L(x, ~ω) =
d2Φ

cos θdAd~ω

[
W

m2 · sr

]
(2.5)

Informally, it can be understood as the number of photons per time arriving from a certain direc-
tion ~ω through the solid angle d~ω in a small area dA. Therefore, radiance is a five-dimensional
quantity. Another important aspect is that radiance stays constant along a line in vacuum. We
can also refine the radiance definition to include the wavelength, which gives us the spectral
radiance Lλ, the radiance for a certain differential wavelength.

2.1.1.6 The Relationship between Radiometric Quantities

From the definitions of the radiometric quantities, the following relationship can be derived:

Φ =
∫

A
E(x)dx =

∫
A

∫
Ω

L(x, ~ω)(~ω · ~n)d~ωdx, (2.6)

where ~n is the surface normal at x and ~ω · ~n = cos θ. If the complete radiance field on a surface
is available then the irradiance/radiosity can be computed by integrating the incident/exitant
radiance field over all directions. The incident/exitant flux is computed by integrating the
irradiance/radiosity over the area.

2.1.1.7 Photometry

The difference between radiometry and photometry is that photometric quantities include the
visual response of the average observer. For example, luminous flux Φv is the visual response to
radiant flux

Φv =
∫

Λ
ΦλV (λ)dλ, (2.7)

where V (λ) is the visual response of a standard observer and Λ is the visible spectrum (≈
380 nm – 780 nm). Illuminance, Ev, is the counterpart to irradiance and luminous exitance,
Mv, to radiosity or radiant exitance. Luminous intensity, Iv, is the photometric quantity that
corresponds to radiant flux and luminance is the photometric equivalent of radiance. The
radiometric quantities are often preferred in global illumination programs but the visual response
plays an important role for post-processing rendered images via tone mapping.
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Figure 2.1: (a) The area subtended by a differential solid angle d~ωθ is the product of the differential
length of the longitude arc dθ and the latitude arc sin θdφ. (b) The differential solid angle d~ω subtended
by a differential area dAy is equal to dAy cos θy/r2, where θy is the angle between dAy’s surface normal
and the vector to the point x and r is the distance from x to y. In other words, d~ω is the projection of
the differential area dAy onto the unit sphere around point x.

2.1.2 Solid Angle

In order to integrate functions over the hemisphere which becomes necessary for computing
radiometric quantities, a specific measure defined on the hemisphere is needed. This is the
solid angle. The finite solid angle Ω corresponds to the projection of an object onto the unit
(hemi-)sphere:

Ω =
A

r2
, (2.8)

where A is the projected area on the sphere with radius r. The solid angle is dimensionless but
is expressed in steradians [sr]. The differential solid angle can be thought of as a combination of
the direction of a beam and its angular size defined over the unit hemisphere. The direction is
expressed in spherical coordinates (θ, φ), corresponding to the azimuth and longitudinal angle.
The size of a differential solid angle is given by d~ω = sin θdθdφ, which is defined as the infinites-
imal area on the unit sphere computed as the product of the longitude arc dθ and the latitude
arc sin θdφ (see Figure 2.1 (a)). The term sin θ comes from the parameterization of the sphere
to spherical coordinates because the differential area dθ · dφ on the hemisphere decreases with
respect to the sine of the angle θ when it moves towards the pole. The transformation from
a differential surface with differential area dAy, distance ry and orientation θy to a differential
solid angle d~ωΘ is given by

d~ωΘ =
cos θydAy

r2
y

. (2.9)

This relationship is visualized in Figure 2.1 (b).
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2.2 Light-Matter Interaction

Light alone is not very valuable for us, but the interaction with the scene model (the illumination)
shows the variety of our environment. Looking at arbitrary real surfaces reveals the complexity
of such light interaction. In real world, light is reflected and transmitted in numerous ways
depending on its wavelength, the incident and reflected direction. This usually also varies
across the surface and depends on the incoming radiance point and even the reflection location.
The general light-surface interaction becomes a 10-dimensional problem. To describe this kind
of scattering by a mathematical function suitable for simulation with a computer is generally
difficult because of the high-dimensionality of the problem. Therefore, one reduces the dimension
from 10 to 8 dimension neglecting wavelength and time. Functions of this general type are still
inappropriate for efficient representation and simulation by a computer. Besides many materials
especially artificial ones do not change across the surface and very few materials exhibit sub-
surface scattering effects. Therefore, depending on the material context the general scattering
function is further reduced to 6 dimensions discarding either spatial variation or assuming that
incident and exitant location of the light scattering event are the same (i.e. no sub-surface
scattering). The former type of functions is called bidirectional texture function (BTF) and
the latter type is classified as bidirectional scattering surface reflectance distribution function or
short BSSRDF. So far little research has been done in direction of BTFs ([15, 56]) since the
acquisition of such 6D function is an expensive and time consuming process. The measured data
can become very large (several GBytes) for a single material but is often quite redundant, which
imposes various compression schemes.

The BSSRDF accounts for almost all scattering effects of light such as sub-surface scattering
in translucent materials (e.g. milk, skin, snow, alabaster) excluding time- (e.g. phosphorescence)
and wavelength-dependent effects (e.g. fluorescence). Nevertheless, it is hardly used in practice
since most materials are either opaque or transparent. BSSRDFs are still too complex for
efficient simulation and only addressed by a few papers.

In many cases the materials are invariant with respect to sub-surface scattering and the
two spatial degrees of freedom in the BTF can be solved by a surface subdivision to piecewise
constant materials. Another approach is to approximate the two spatial variation in the general
scattering function by the use of 2D textures approximating various spatial material properties
such as surface albedo, reflectance, transparency. In this case the scattering function is restricted
to 4 dimensions and a new name is assigned for this representation: bidirectional scattering dis-
tribution function (BSDF) or simply BDF. In lighting simulation it is a common practice to
separate reflecting and transmitting properties of a material. This is why BSDFs of reflected
and transmitted light are usually considered separately and are called BRDF Bi-directional Re-
flectance Distribution Function and BTDF Bi-directional Transmittance Distribution Function
respectively. However, we will not regard transmitting properties of a material.

2.2.1 The BRDF

The BRDF, denoted by fr, describes the interaction of light with a surface neglecting sub-surface
scattering events. We simply assume the light is reflected at the same location it is arriving.
This is not always true and real objects such as human skin, milk, or alabaster reflect light in
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Figure 2.2: A geometric interpretation of the BRDF for a point on a surface. The BRDF function gives
the ratio of radiance Lo reflected in direction (θo, φo) to the differential irradiance Ei from differential
solid angle d~ω of direction (θi, φi). In case of an isotropic BRDF, only the difference ∆φ = φo − φi in
the longitudinal angles φi and φo is regarded.

the neighborhood of the incident illuminated point. The BRDF is defined as

fr(x, ~ωi, ~ωo) =
dL(x, ~ωo)
dE(x, ~ωi)

=
dLo(x, ~ωo)

Li(x, ~ωi) cos θid~ωi
(2.10)

and tells us what fraction of the incoming irradiance Ei from direction ~ωi over the infinitesimal
small solid angle d~ωi is reflected at surface point x towards ~ωo. The BRDF can be regarded as a
probability density function which describes the probability of a photon coming from direction
~ωi to be reflected in direction ~ωo. However, the difference is that it does not need to integrate
to one over the hemispherical directions but can rather yield any value between zero (= total
absorption) and one (= no absorption). Another important issue is that the BRDF can take any
positive value even approaching infinity in case of a perfect (however unnatural) mirror where
all but one infinitesimal small direction are zero resulting in a dirac impulse. Hence, having
the full (hemispherical) incident radiance field available, we can compute the local illumination
model, the reflected radiance for all directions ~ωo:

Lr(x, ~ωo) =
∫

Ω
fr(x, ~ωi, ~ωo)dE(x, ~ωi) =

∫
Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi) cos θid~ωi, (2.11)

where the cosine term is computed by a dot product of the normal at surface point x and the
incoming direction θi: cos θi = ~ωi · ~nx.

The BRDF has four dimensions and depends on four angles (θi, φi, θo, φo) giving 4 degrees
of freedom. However, for most materials the rotation around the surface normal is often su-
perfluous. In such case of isotropic materials only the relative longitudinal angle of incident to
reflected direction (φi − φo) is important (see Figure 2.2). Therefore, the BRDF of isotropic
materials can be reduced to three dimensions. Another simplification can be made for diffuse
surfaces because they are hardly view-dependent. We assume that all incident light is equally
distributed in all directions resulting in a constant BRDF at a surface point, which can easily
be modulated by a texture. Such a surface is called Lambertian. Most walls and wallpapers of
indoor environments are very close to be Lambertian.
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An important property of the BRDF is the Helmholtz law of reciprocity, which states that
the BRDF is independent of the light-flow direction:

fr(x, ~ωi, ~ωo) = fr(x, ~ωo, ~ωi) (2.12)

This is a fundamental law most global illumination algorithms make use of, since it enables to
trace light paths in both directions: from the eye and from the light source.

Because of the high-dimensionality of the BRDF (4D) a lookup table of real measured data
can be quite large and inefficient. On the other hand, many materials have low frequency BRDFs
with a simple shape that can be compressed using some hemispherical basis functions. Often
a BRDF can be decomposed into two components: a diffuse part which is almost equal for
all directions and a (narrow) specular lobe near the mirror direction of the view point. This
observation leads to the rise of several analytical BRDF models that approximate (e.g. matching
the model’s parameters using least squares optimization) the measured data. This is a very
common procedure and has the advantage of low storage costs and easier PDF approximation
for importance sampling the BRDF. Since most analytical BRDF models are separable to a
simple diffuse component and a more complex glossy component, it is also easier to compute
the reflected radiance: the integral of the rendering equation, which we will describe next, can
easily be split in two separate computations. This concept is exploited in all efficient algorithms
in particularly in radiosity-based finite element algorithms and photon mapping [33].

2.2.2 The Rendering Equation

The rendering equation introduced by Kajiya [37] is the basis for all global illumination methods
and will appear frequently further in the thesis. It is used to compute the outgoing radiance Lo

at any point in the scene model. Thereby, Lo is interpreted as the sum of self-emitted radiance
Le and the reflected radiance Lr. It is defined as:

Lo(x, ~ωo) = Le(x, ~ωo) + Lr(x, ~ωo)

= Le(x, ~ωo) +
∫

Ω
fr(x, ~ωi, ~ωo)Li(x, ~ωi)(~ωi · ~n)d~ωi,

where Li is the incident radiance from a certain direction in the hemisphere. Unless only the
direct illumination from the light sources is computed, we cannot reformulate this integral to
a smaller integration domain, since, at least for closed environments, Li(x, ~ωi) has a nonzero
value for all pairs (x, ~ωi). Therefore, a natural way to solve the integral is Monte Carlo sam-
pling (summarized in Section 2.3) using an appropriate hemispherical PDF p(~Ψ) to generate N

random directions ~Ψi. This results in the estimator:

Lo(x, ~ωo) = Le(x, ~ωo) +
1
N

N∑
i=1

fr(x, ~Ψi, ~ωo)Li(x, ~Ψi)(~Ψi · ~n)

p(~Ψi)
. (2.13)

In order to compute this estimator, N directions are generated from the PDF p(~Ψ). The
BRDF and cosine term also need to be evaluated. A ray is traced in direction ~Ψi where we
compute the outgoing radiance in direction −~Ψi from the closest ray intersection point. In
terms of variance reduction it is crucial to use a good PDF that is as close as possible to the
incident hemispherical radiance function.
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As one can easily see, the rendering equation is a recursive function because the radiance
value is on both sides of the equation. One way to stop the recursive evaluation is to apply
Russian roulette where the local hemispherical reflectance is taken as an appropriate absorption
probability. Another (faster) way to compute the recursive integral is to store an approximative
solution of the irradiance in the scene model and use it to compute the outgoing radiance in
a second pass rather than using recursive ray tracing. A popular method is photon mapping
which we will describe in Chapter 4.

It would be inefficient to compute the full reflected radiance via pure hemispherical Monte
Carlo ray tracing, since the incident radiance field as well as the BRDF contains high frequencies
which result in stochastic noise. Therefore, equation 2.13 is normally split into a sum of disjoint
light contributions for different BRDF components that are solved individually and summed at
the end. This is possible because light is additive and most BRDF models are separable into a
diffuse and a glossy part. Such an approach is described in Section 4.4.

One important contribution to the reflected radiance is the direct illumination from visible
light sources. Since only a few directions in the estimator 2.13 result in a nonzero contribution
to the direct light, Lr is split into direct and indirect light from which only the latter one is
computed by the integral over hemispherical directions. However, for the direct light as for all
finite element algorithms we transform the integral in equation 4.2 to an integral over surface
locations. This is done by replacing the differential solid angle:

d~ωi(x) =
(~ωi · ~ni)dAi

‖x− xi‖2
, (2.14)

where the index i denotes another surface with differential area dA, normal ~ni, and position xi.
Remember the solid angle is the projection of the surface area onto the unit hemisphere. This
leads to the rendering equation computed as the integral over all surface points:

Lo(x, ~ωo) = Le(x, ~ωo) +
∫

S
fr(x, xi → x, ~ωo)Lo(xi → x)V (x, xi)G(x, xi)dAi, (2.15)

where V (x, xi) is the visibility function:

V (x, xi) =

{
1 xi and x are mutually visible
0 otherwise,

(2.16)

G(x, xi) is called the geometry term comprising distance and orientation of two differential
surfaces:

G(x, xi) =
(~ωi · ~ni)(~ωi · ~n)
‖x− xi‖2

, (2.17)

and S is the set of all surface points from which we want to compute the radiance contribution
to point x. In case of the direct light computation it is obvious that equation 2.15 is more
appropriate since the area of all light sources is usually relatively small and covers only a small
solid angle on the hemisphere around x.

2.3 Monte Carlo Basics

In order to solve the rendering equation 2.13 by means of Monte Carlo ray tracing, one needs to
know some theory of Monte Carlo integration. We will not introduce the basics of probability
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theory here but assume the reader to be familiar with it. This section is only a summary of
Monte Carlo integration and variance reductions techniques. More information can be found
for example in Kalos and Whitlock [38], Hammersley and Handscomb [24], in the thesis of
Veach [83], and in Szirmay-Kalos’s script [48]. Monte Carlo integration is a powerful technique
that can handle arbitrary functions and multi-dimensional integrals at the same time. Let us
consider the integral for the reflected irradiance in the rendering equation expressed in spherical
coordinates (θ, φ):

Lr(x, ωo) =
∫

Ω
fr(x, ωi, ωo)L(x, ωi) cos θidωi

=
∫ 2π

0

∫ π/2

0
fr(x, θ, φ, ωo)L(x, θ) cos θ sin θdθdφ,

(2.18)

since dωi = sin θdθdφ. The estimator using Monte Carlo integration becomes:

〈I〉 =
1

NM

N∑
i=1

M∑
j=1

fr(x, θ, φ, ωo)L(x, θi, φj) cos θi sin θi

p(θi, φj)
, (2.19)

where p(θ, φ) is a 2D probability density function over the hemisphere.
Basically, Monte Carlo estimation works in the following way:

1. sampling according to a probability density function (PDF ),

2. evaluation of the function at that sample,

3. and averaging the weighted values.

2.3.1 Variance Reduction

One problem with ”blind” Monte Carlo integration is the slow convergence of the estimator to
the correct solution. As the number of samples (N) increases, the variance of the Monte Carlo
estimator decreases linearly with N . However, the error in the estimator is proportional to the
standard deviation σ. Thus σ decreases with rate

√
N . To achieve faster convergence various

methods have been developed, which we will briefly describe next.

2.3.1.1 Importance Sampling

The difficult part is the sampling of the probability density function. First of all, a ”good”
PDF p has to be found. A PDF is ”good” if it resembles the function to be integrated (f).
Intuitively, sampling a PDF can be understood as placing more samples in important regions
of the domain where the function is greater since those regions contribute more to the integral
resulting in a larger error. Because of that any knowledge about f is helpful. In the simplest
case p is chosen to be uniform, which means that the integration domain should be equidistantly
sampled. This is the best choice if no knowledge about f is given because if p is chosen badly
(i.e. very different from f) the convergence of the estimator gets worse! In the ideal case the
density p is proportional to f which completely eliminates the error:

popt(x) =
f(x)∫ b

a f(x)dx
⇒ 〈I〉 =

1
N

N∑
i=1

f(xi)/popt(xi) =
∫ b

a
f(x)dx (2.20)
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Paradoxically, this would require the knowledge of the quantity
∫

f we want to estimate. There-
fore, in practice, any function whose shape resembles f to a greater degree, is preferable to
uniform sampling. It is also important that the PDF can easily be evaluated and integrated to
build the CDF analytically.

To sample a PDF p we first need to compute the cumulative distribution function (CDF )
by integrating p: F (y) =

∫ y
−∞ p(x)dx, with 0 ≤ F (y) ≤ 1 or in the discrete case with a domain

beginning with a: F (y) =
∑y

i=a p(y). Next, the inverse of F is computed. This allows to draw
samples ξ that are distributed according to p by simply generating uniform random values u:
ξ = F−1(u).

In case that the PDF is too complex, rejection sampling can be applied. It increases the
dimension of the function by one. For instance, in case of a one-dimensional function two uniform
random variables (u1, u2) are needed, u1 samples the domain (x) and u2 is uniformly distributed
in the maximum range of the PDF (0 ≤ u2 < max(p)). Sample u1 is accepted if u2 < p(u1)
and rejected otherwise. However, rejection sampling is not very efficient if the PDF contains
high peaks resulting in many rejected samples in the rejection area above the PDF . Because the
dimension is increased by one, ”standard” sampling from the inverse CDF is preferable. More
efficient rejection sampling techniques have been proposed that try to reduce the rejection area
by using a ”tighter” shape on top of the PDF and hence increase the acceptance probability
which is proportional to the efficiency.

Another possibility to generate samples from a probability distribution is to build a discrete
CDF in form of a look-up table containing summed up precomputed PDF values. This repre-
sentation is costly and gives only a piecewise constant approximation to the ”real” PDF . For
instance, this is a common way if we are dealing with measured data (e.g. local photon/importon
distribution, BRDF data).

Importance sampling becomes indispensable for sampling of skewed functions such as glossy
BRDFs. Often a BRDF is modelled by a simple analytical function that can even be used as a
PDF itself (e.g. cosine power lobe). Most BRDF models are composed of a diffuse component
fd = ρd

π and a glossy/specular component fs, each sampled according to a different PDF . For the
diffuse component one usually chooses a uniform PDF since the whole hemisphere contributes
equally to the diffuse BRDF. Apart from the BRDF one can exploit one more fact hidden in the
transformed rendering equation shown in 2.18. The incident radiance along a ray is weighted by
the cosine of its azimuth angle. In addition, the sine of the azimuth angle is included as well due
to the transformation from the integral over the solid angle to the spherical coordinates sampled
from a unit square. This is why it is recommended to sample the diffuse BRDF according to
the following distribution:

pc(θ, φ) =
cos θ sin θ

π
=

1
2π
· 2 sin θ cos θ, (2.21)

where π in the denominator is due to the normalization of the PDF to integrate to 1. Since φ

and θ are independent, pc is separable to density functions for φ and θ with the corresponding
CDFs:

F1(φ) =
∫ φ

0

1
2π

dΦ =
φ

2π
and

F2(θ) =
∫ θ

0
2 cos θ sin θdΘ = sin2 θ.

(2.22)
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Both CDFs are easily invertible. After replacing F1(φ) by a uniform random variable u1 and
F2(θ) by u2 we obtain: φ = 2πu1 and θ = sin−1√u2. Using pc for Monte Carlo sampling of the
rendering equation with a diffuse BRDF the estimator in 2.19 becomes:

〈I〉 =
1

NM

ρd(x)
π

N∑
i=1

M∑
j=1

L(θi, φj)
pc(θi, φj)

cos θi sin θi =
1

NM
ρd(x)

N∑
i=1

M∑
j=1

L(θi, φj) (2.23)

This simple example shows the application of importance sampling in the rendering equation.
This is the best way to sample a diffuse BRDF. For sampling of specular and glossy BRDFs
several approaches have been proposed for various models [92, 59]. So far we have only spoken
about BRDF sampling. Another strategy is sampling according to the incoming illumination
(e.g. light source sampling [72]). An optimal importance sampling strategy requires the PDF
to be proportional to the product of the incoming illumination and the cosine weighted BRDF.
Unfortunately this is not trivial. First, the incoming indirect illumination part is not known
during the random walk. And second, the combination of (direct) illumination sampling and
BRDF sampling is quite difficult in practice. For the first problem, two approaches have been
proposed: storing an approximative illumination representation in a preprocessing phase, e.g.
photon map [34], or adapting the sampling to the history of previous results, e.g. 5D adaptive
tree [44].

2.3.1.2 Multiple Importance Sampling

The problem of combining illumination and BRDF sampling can be dealt with a linear com-
bination of the two estimators by choosing appropriate weights that add up to one and are
inversely proportional to the variance of their corresponding estimator. For example consider
the rendering equation for a ideal specular BRDF (i.e. dirac impuls). The variance for the
BRDF estimator is zero and thus its weight should be one whereas the weight for the incident
radiance estimator becomes zero. In this case we actually only need to sample the BRDF in
mirror direction. However in general it is not so simple and the variance is difficult to estimate
in advance. Consequently, local importance sampling strategies are often restricted to either
use the cosine weighted BRDF or the incoming illumination to identify important directions.
A robust strategy for multiple importance sampling was introduced by Veach [83]. He uses the
balance heuristic to determine the weights of individual samples from different estimators. For m

individual estimators with PDF pi and ni samples the combined estimator F using the balance
heuristic becomes:

F =
1
N

m∑
i=1

ni∑
j=1

f(Xi,j)∑
k nk/Npk(Xi,j)

, (2.24)

where N =
∑m

i=1 ni is the total number of samples. Note that the weights in the denominator
add up to one and the balance heuristic results in an unbiased estimator. Its variance is equal
to the ”optimal” estimator plus an additive error term.

2.3.1.3 Control Variates

Importance sampling is one way to reduce the variance in the estimate. Yet another possibility
are control variates. If a similar function g to the original function f to be integrated can be
found and if g can be integrated analytically, then we could reduce the variance by:

I =
∫

f(x)dx =
∫

g(x)dx +
∫

f(x)− g(x)dx. (2.25)
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Since
∫

g(x)dx is analytically solvable, this boils down to estimate
∫

f(x) − g(x)dx. Control
variates are very effective and should be used if f(x)/g(x) is almost constant.

2.3.1.4 Low Discrepancy Sampling

Last but not least, two important variance reduction techniques need to be mentioned: stratified
sampling and Quasi-Monte Carlo sampling. Both techniques reduce variance by avoiding the
clumping of samples. Stratified sampling divides the domain into M disjoint sub-domains called
strata each evaluating the integral separately with one or more uniformly distributed samples.
Quasi-Monte Carlo techniques replace randomness entirely by deterministic sequences called low-
discrepancy sequences (LDS) in order to minimize the discrepancy (measure for the clumping
of samples) on the expense of introducing correlation between samples. Many LDS based on
Quasi-Monte Carlo techniques have been developed. Popular ones are Halton, Hammersley,
Niederreiter, and Sobol. The results converge as fast as for stratified sampling without the
dependence on the number of samples. Furthermore, we inherently get stratification over several
dimensions. On the other hand, Quasi-Monte Carlo sampling can lead to visible artifacts due
to deterministic sampling patterns. Therefore, a combination of randomness and LDS, which
is called randomized Quasi-Monte Carlo (RQMC) is sometimes preferable. More details about
the Quasi-Monte Carlo method can be found in [60, 41].

2.4 Global Illumination Algorithms

In this section we give a summary of the most popular methods aiming at solving the rendering
equation. In general, rendering methods can be classified to finite element algorithms or random
walk algorithms. Finite element methods approximate the infinite-dimensional function space by
a finite-dimensional function space defined by a set of basis functions. Finite element methods
have been successfully applied to the diffuse global illumination problem and are referred to
as radiosity methods. The second class of random walk algorithms can be further specified to
shooting-type algorithms that start from the light sources, gathering-type algorithms that start
from the eye, and bi-directional (multi-pass) algorithms which exploit both types. A profound
description of global illumination algorithms can be found in [17, 48].

However, not all algorithms yield a complete global illumination solution. In order to describe
the possible light transport an algorithm is able to simulate, we will use some light transport
notation.

2.4.1 Simplified Light Transport Notation

When it comes to the classification of a rendering algorithm or when we want to split the
integral of the rendering equation 2.13 into separate components each solving a different light
contribution, it is useful to have a formal light path notation. Heckbert [30] has introduced a
compact description, where each light path vertex can be of the type:

• L point on a light source

• E location on the eye (or camera)

• D diffuse reflection
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• S specular reflection

• G glossy reflection

In reality a path always starts on a light source but in computer graphic algorithms it is preferable
to allow both directions: either from the light source L or from the eye E. In between can be
any combination of reflections which is described by using regular expressions:

• (r)+ at least one reflection of type r

• (r)∗ zero or more reflections of type r

• (r)? at most one reflection of type r

• (r|r′) either a reflection of type r or r′

A path L(S|G) + DE for example represents a caustic path that starts at the light source and
has one or more specular (or glossy reflection) before being reflected at a diffuse surface towards
the eye.

2.4.2 Finite Element Radiosity Techniques

The classical radiosity method is the most well-known and one of the earliest approaches for
solving the rendering equation. It is a finite element method and solves the rendering equation by
a discretization of the integral into a system of linear equations. A significant amount of research
has been devoted to radiosity techniques, in order to make them efficient and more adaptive.
A profound introduction would be out of the scope of this thesis. We will only give a rough
overview and derivation of the mathematical foundation since it might help in understanding
the problem of global illumination and the relation to the photon mapping concept. A good
description of the method can be found in [11, 12].

Radiosity algorithms rely on a mathematical simplification of the problem. The first sim-
plification is the restriction to surfaces in the model that are Lambertian (i.e. have constant
BRDF denoted by fr,d(x) = ρd(x)

π ). This allows to replace the directionally invariant radiance
L(x) in the rendering equation 2.15 by the radiosity (or radiant exitance) B(x) = πL(x)

L(x) = Le(x) +
∫

S
fr,d(x)L(y)V (x, y)G(x, y)dAy | fr,d(x) := ρd(x)/π

⇒ L(x) = Le(x) +
ρd(x)

π

∫
S

L(y)V (x, y)G(x, y)dAy | ∗ π | πL(x) := B(x)

⇒ B(x) = Be(x) + ρd(x)
∫

S

B(y)
π

V (x, y)G(x, y)dAy

(2.26)

The second simplification is the discretization of the scene surfaces to a finite set of N (small)
patches each with constant radiosity Bi. The average radiosity Bi for a patch i is then computed
by integrating over the patch area Ai

Bi =
1
Ai

∫
Ai

B(x)dx. (2.27)
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Now we can combine the two results by plugging equation 2.26 into equation 2.27 and assuming
constant reflectivity ρd(x) = ρi,∀x ∈ Ai for each patch, which results in

Bi =
1
Ai

∫
Ai

B(x)dx

= Be,i +
1
Ai

∫
Ai

ρd(x)
N∑
j

∫
Aj

1
π

B(y)V (x, y)G(x, y)dydx

= Be,i +
N∑
j

ρiBj
1
Ai

∫
Ai

∫
Aj

1
π

V (x, y)G(x, y)dydx

= Be,i + ρi

N∑
j

FijBj ,

(2.28)

where the first term Be,i is the average self-emitted radiosity of patch i and the second term
represents the irradiance received from all N patches of the model. The term Fij is called
the form factor and can be considered as a discrete probability density function where Fij

corresponds to the probability that a photon emitted from patch i lands on patch j. The
computation of form factors Fij between any two patches i and j is a four-dimensional integral
which is expensive to evaluate for thousands of patches in the model since it has quadratic
complexity and needs to evaluate the visibility term between any two patches. The form factor
is defined as

Fij =
1
Ai

∫
Ai

∫
Aj

V (x, y)G(x, y)
π

dydx. (2.29)

The form factor is the fundamental concept of radiosity methods and obeys the following rules:

1. ∀i, j.0 ≤ Fij < 1, no negative patches possible,

2. AiFij = AjFji, reciprocal when discarding the area of the patches,

3. Nij/Ni ≈ Fij , the ratio of the number of received photons Nij on patch j to the number
of emitted photons Ni from patch i corresponds to the form factor Fij ,

4.
∑N

j Fij = 1, no energy gets lost in closed environments (i.e. all emitted photons hit
another patch j)

5. Pi = AiBi ⇒ Pi = AiBe,i + ρi
∑N

j AiFijBj = Pe,i + ρi
∑N

j FjiAjBj = Pe,i + ρi
∑N

j FjiPj ,
the radiosity equation expressed in terms of power P : the power emitted from patch i

corresponds to the self-emitted power Pe,i and the reflected power received from all other
patches j. Here, Fji is reversed and represents the fraction of the power from patch j

arriving at patch i.

The classical radiosity equation in 2.28 boils down to a system of linear equations, which can
be solved by an iterative method such as Jacobi or Gauss-Seidel for example.

The radiosity method is based on a nice mathematical description and has the advantage
of view-independence. Once the form factors are computed for each pair of patches and the
radiosity is computed at each patch, it can be used to efficiently compute a camera walk through
the model. Therefore, its main application is the realistic rendering of indoor environments in



2 Introduction to Global Illumination 17
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Figure 2.3: Classic ray tracing: a deterministic algorithm that computes the direct illumination and
indirect illumination from ideal reflections or ideal transmissions.

architectural models. On the other hand, a discretization of the scene model is often difficult and
must deal with the adaptation to shadow boundaries and illumination gradients. Furthermore,
only Lambertian surfaces (i.e. diffuse light transport of type L(D) ∗ E) can be handled and
the combination with other methods is poor. This is one reason why the classical radiosity
algorithms have lost the attention in current research.

2.4.3 Classic Ray Tracing

Classic ray tracing was introduced to computer graphics by T. Whitted in 1980 [96]. It exploits
the fact that radiance is constant along a line in empty space and the BRDF is reciprocal.
Hence, we can reverse the computation by tracing rays from the camera into the scene rather
than photons from the light, which have little probability to reach the observer. This allows
to render sharp shadows and specular surfaces efficiently. The simplest method of this class is
ray casting which only computes the direct illumination from primary rays (E(D|G|S)?L). Ray
casting is easily extended to recursive ray tracing, which can compute multiple light bounces
of ideal reflection and refraction. However, we are limited to direct illumination at any point
on the path. Classic recursive ray tracing is only capable of computing light paths of the type
E(S) ∗ (D|G)?L, which represents all path from the light source to the eye that hit at most one
diffuse or glossy surface before they are specularly reflected (arbitrarily often) towards the eye.
If the eye is represented by a point and the surfaces are perfectly specular, then the probability
that a photon emitted by a light source reaches the eye becomes zero. Consequently, this kind of
light paths is best solved by recursive ray tracing starting from the eye. Nevertheless, recursive
ray tracing is a deterministic algorithms that can only handle perfectly specular BRDFs and
point light sources. Therefore, it cannot compute full global illumination.

An extension of recursive ray tracing to obtain a global illumination solution is the distri-
bution ray tracing algorithm suggested by Cook [13], which uses stochastic sampling to handle
effects as motion blur, soft shadows, and depth of field. Distribution ray tracing uses Monte
Carlo integration and can therefore solve the rendering equation.
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x
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x

Figure 2.4: Path tracing: computing full global illumination via random gathering walks starting at the
eye. The two typical methods are: (a) trace a random path and combine direct light and eye path only at
the end of the eye path (i.e. when stopped by Russian roulette) via one or more shadow rays to the light
source(s), (b) compute the direct illumination at each eye path vertex.

2.4.4 Monte Carlo Ray Tracing

Monte Carlo ray tracing based algorithms are probably the most general global illumination
methods, because they do not require any precomputation or simplification of the model. Monte
Carlo ray tracing reduces the problem of illumination computation to tracing rays through the
model and computing radiance along those. This way we can handle arbitrary topology (e.g.
procedural geometry) and any type of BRDF. The memory consumption is negligible and the
results are unbiased. However, the results converge very slowly to a ”noise-free” solution due to
the fact that the standard error in Monte Carlo integration is proportional to 1/

√
N . We will

summarize the most popular random walk algorithms but discard shooting-type algorithms that
start from the light sources. Shooting-type algorithms can be considered as the inverse of the
classic ray tracing and path tracing algorithm. An exhaustive survey of Monte Carlo methods
is given in the thesis of Veach [83].

2.4.4.1 Path Tracing

A more general version of the classic ray tracing is path tracing. Path tracing makes it possible
to compute a complete unbiased global illumination solution. It can simulate all possible light
paths: E(S|D|G) ∗ L and is therefore often used as a reference solution for comparison with
other more efficient (but biased) rendering algorithms. Path tracing was introduced by Kajiya in
1986 [37] as a solution to his proposed rendering equation [37]. Path tracing is a straightforward
extension to classical ray tracing. An important difference to distribution ray tracing is that it
only uses one reflected ray to estimate the indirect illumination. This ensures that the number
of primary rays is the same as for the reflected rays and we avoid the exponential growth in
the number of rays with increasing reflections. Path tracing makes use of Russian roulette to
stop the random walk and sample diffuse as well as specular or glossy surfaces in proportion to
their maximum reflected energy. For each reflection event a stochastic decision is made using
the surface properties, whether to continue by sampling a new direction or to stop. The samples
should be concentrated towards bright regions and the mirror direction of specular BRDFs.
The sampling direction is crucial because it strongly influences the variance of the estimate.
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Figure 2.5: Bidirectional path tracing: combining light path (y0, . . . , y3) and gathering path (x0, . . . , x4)
in bidirectional path tracing. The dotted lines represent all possible (non-occluded) links between both
paths. The weights of the links are denoted by wij. The paths can either be combined at only one link
according to the probability of the resulting path or as a weighted sum of all possible combinations using
multiple importance sampling. For example weight w11 and weight w24 should have a very low probability
due to the deviations from the glossy reflection, whereas a higher probability should be assigned to w02

and w34.

Since the probability for a path to hit a light source is low for small light sources, one either
shoots one or more shadow rays at each reflection event or only at the end of the random walk
(absorption by Russian roulette). To understand why this method works, it is necessary to
comprehend the concept of Monte Carlo integration (see Section 2.3). The only problem with
path tracing is variance in the estimates that is seen as noise in the final image. To compute
an accurate estimate for a pixel it is usually necessary to average the result of many paths. By
averaging a large number of sample rays for a pixel, we get an estimate of the integral over
all possible light paths through that pixel. Often, thousands of rays per pixel are necessary to
obtain an acceptable quality for the rendered image. This reveals the problem of simple path
tracing: it neither accounts for knowledge about the scene and illumination nor does it reuse
computed information from neighboring paths. Each path is computed individually. Therefore,
path tracing works poorly in case of high frequency indirect illumination such as caustics. To
make path tracing practical, efficient adaptive sampling techniques are necessary that sample
”important” paths more densely than paths with little contribution to the pixel. Such techniques
are briefly discussed in Section 2.3.

2.4.4.2 Bidirectional Path Tracing

Bidirectional path tracing was introduced in 1993 by Lafortune and Willems [45] as an extension
to the path tracing algorithm. The algorithm traces paths starting from the eye as well as the
light sources and combines the information from both paths. The vertices along the light and
eye path are connected via shadow rays and the final pixel estimate is computed as a weighted
sum of all path combinations. However, it is also possible to sample only one combination. The
choice of the weights has a great influence on the variance of the combined estimate. By setting
all those path weights to zero, which include light path segments, we obtain standard path



20 2.4 Global Illumination Algorithms

tracing. A common choice for the weights is the power heuristic that sets the weights according
to the probability density of a path segment, which is proportional to the BRDF sampling
probability times the inverse of the squared distance between the two path vertices times their
orientation with respect to their normals (as in Equation 2.17). The weights can be defined by
various schemes. However, one necessary condition is that the weights corresponding to paths
of the same length must sum up to one. Bidirectional path tracing performs normally better
than standard path tracing especially when the light sources are small or the image contains
caustics.

2.4.4.3 Metropolis Light Transport

The Metropolis Light Transport technique (MLT) was introduced by Veach and Guibas [84] in
1997 as a method for exploiting the knowledge of the path space more efficiently. The key idea
of MLT is that paths are sampled according to their contribution to the final image. Metropolis
sampling was first introduced by Metropolis et al. [54] in 1953. The concept of Metropolis
sampling is different from stochastic path tracing. Instead of randomly sampling a function f

to compute the integral, the Metropolis method generates a sequence of samples distributed
according to the unknown function f . This results in a concentration of path in bright regions
of the image. First, MLT starts with random bidirectional path tracing of the space of all paths
in the model. These paths are then randomly cloned and mutated using several strategies:
bidirectional mutations randomly replace segments of a path to ensure the entire path space
is visited and the results are unbiased; pertubations try to make small changes to a path by
moving only a few vertices for example in order to focus on specific illumination effects such as
caustics. A mutated path y is accepted based on an acceptance probability a(y|x):

a(y|x) = min

{
1,

f(y)T (x|y)
f(x)T (y|x)

}
. (2.30)

Here a(y|x) is the acceptance probability of the path y given path x, f(y) is the resulting radiance
from path y, and T (y|x) is the transition probability density function for the mutation from path
x to path y. Given a uniform random number ξ, we decide whether we take the new mutated
path y (ξ < a(y|x)) or keep the old path x. The mutated paths are then distributed according to
the radiance. MLT is an unbiased technique and is efficient at computing difficult illumination
situations where few regions in the scene are responsible for most of the illumination (e.g. light
ports such as holes, windows) and caustics. For scenes where the entire space is equally important
for the indirect illumination, MLT is not much more efficient than bidirectional path tracing.
Furthermore, MLT is quite complicated to implement and the right choice of the mutation
strategies is highly scene-dependent. For instance, it is possible that mutations will result in
slower convergence when exploring only a few of many important paths.

2.4.5 Photon Mapping

Photon mapping is a two-pass algorithm introduced by Henrik Wann Jensen [35, 33]. Like bi-
directional path tracing, it traces illumination paths from the eye and from the light sources but
stores the information (the hit points) of the light paths in the first pass. In the second pass this
information is reused by all eye path vertices in the neighborhood. The illumination can then
be computed from the density of the neighboring light vertices (photons). Photon mapping is a
biased technique which trades bias with variance since it performs a convolution of the irradiance
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Figure 2.6: Photon mapping: all photons (discs) are stored in the global map, which is first queried after
final gathering (point C). Caustic photons (small discs) are stored separately in the caustic map. All
photons are only stored when they hit a diffuse or glossy surface. At point A and point B final gathering
via BRDF importance sampling is applied to compute the indirect illumination from the photon map. At
point B the caustic map is queried to compute the directly visible (here through 2 ideal reflections!) caustic
indirect illumination. Note that photons of all light paths are included in a global map query (point C).

(flux density) on a surface. Therefore, the photon map represents just an approximation to the
real irradiance. Except for caustic paths (L(S) + DE), it is commonly not used in a direct
visualization of the irradiance. The photon map is queried after a prepended Monte Carlo
sampling step called final gathering (see Figure 2.6). Photon mapping combined with Monte
Carlo sampling can simulate all light paths (L(D|G|S)∗E) in an efficient way. Photon mapping
is described in detail in Chapter 4. Its mathematical derivation is briefly discussed in the next
chapter.

2.4.6 Instant Radiosity

Instant radiosity is an elegant two-pass method introduced by Keller [42] in 1997, which is
related to bidirectional path tracing and photon mapping. The idea is simple though effective.
The indirect diffuse illumination is computed by direct illumination from a set of photons that
function as point light sources as shown in Figure 2.7. Therefore, a ”good” distribution (low
discrepancy) of the indirect point light sources is very important, which can be achieved with
Quasi-Monte Carlo sampling. Instant radiosity can be efficiently implemented using graphics
hardware for less complex scenes. However, its limitation is that it only computes diffuse indirect
illumination since it is restricted to view-independent diffuse surfaces. Thus, the computed light
transport is L(D|G|S) ∗DD(S) ∗ E.
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Figure 2.7: Instant Radiosity: diffuse indirect illumination computation using instant radiosity. Indi-
vidual photon hits on diffuse surfaces function as virtual point light sources. The illumination at point B
is computed by direct illumination of primary light source and virtual point light sources, e.g. by tracing
shadow rays (dotted lines). Note that the indirect illumination computed with instant radiosity needs to
be view-independent. Thus, specular or glossy BRDFs (point A) should be sampled using Monte Carlo
ray tracing (final gathering) before applying instant radiosity. A problem with instant radiosity is the
geometric term in the rendering equation (Equation 2.15). It can take on any value due to the squared
distance in the denominator (weak singularity). This happens for point light sources located in corners
where the distance to the illuminated point can become arbitrarily small. Such cases can only be dealt
with simple bias-introducing heuristics, e.g. culling if the distance of a point light source is below some
small threshold.



Chapter 3
Introduction to Statistical Density

Estimation

This chapter is intended to give an overview and understanding of statistical density estimation
and the involved difficulties. We will also present the most common methods used for density
estimation. However, for a profound mathematical survey of density estimation we refer to
standard text books on the topic [74] and [89].

3.1 Introduction

A fundamental concept in statistics is the probability density function (PDF). Given a random
variable X with PDF f , one can associate probabilities with X to be computed by

P (a ≤ X < b) =
∫ b

a
f(x)dx for all a < b. (3.1)

Intuitively it means that the probability to draw a sample in range a to b is given by the integral
(i.e. area under the graph of f) of f in range [a, b). This makes it clear that the probability
becomes zero if a and b converge to a point. Given a PDF f we can draw a sample whose data
points are distributed according to f .

Density estimation can be considered as the inverse approach. Now we are given a set of
observed data points that are distributed according to an unknown PDF. Hence, the goal of
density estimation is to estimate a probability density function f(·) of a random variable X.
This is a common problem in many contexts of statistics where we are interested in a human
readable visualization or a measurable function rather than a set of loose data points. Density
estimation is widely used in pattern recognition and classification, in computer graphics and
image processing, communication, signal processing and many other fields of computer science.
A distribution is not necessarily univariate. It can have arbitrary dimension although in statistics
the most attention is payed to the univariate case.

If a particular form of the density is assumed or known, then parametric estimation can be
used. For example if the data samples are drawn from a normal distribution with mean µ and
variance σ2, then we only need to estimate these two parameters and substitute them into the
formula for the normal density. On the other hand, nonparametric estimation is employed when
nothing can be assumed about the shape of the distribution. In computer graphics especially
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in global illumination we are mostly concerned with nonparametric density estimation in 2D
(bi-variate). However, for volumetric effects for instance, one must consider tri-variate density
estimation. In the following sections we will have a look at a few common estimation methods.
We will denote by f̂ the density function estimate, h the window width or bandwidth, and x

the density estimation point. We will assume that we are given a sample of n real observations
X1, ..., Xn drawn from a distribution function f that we want to estimate.

3.2 Histograms

The histogram estimator is the oldest and simplest density estimation method. In its simple
version it is non-adaptive and the domain is divided into a number of equal-sized bins with a
piecewise constant approximation in each bin. The density at a point x is then computed as

f̂(x) =
1

n · h
· ( no. of samples in same bin as x) (3.2)

Histograms can only provide a coarse representation of the density function and it is difficult
to find the globally optimal bin width h. In case of adaptive histograms the constant bin width
h is replaced by a variable width hi. Moreover, the density reconstruction also depends on the
discretization of the domain. For example, a translation of the bins can change the density
estimate. There are less biased estimators than histograms. Nevertheless, a histogram can be
useful as a pilot or plug-in estimate since it has the least computational complexity. Histograms
can be very efficiently implemented using summed area tables which allow the density estimate
to be computed in O(1) time.

3.3 Kernel Density Estimation

Kernel Density Estimation (KDE) introduced by Rosenblatt (1956) and Parzen (1962), has
been widely studied. It is the most common technique in statistics. It can be further classified
to parametric and nonparametric density estimation. In parametric approaches, one assumes
that the unknown function is of a particular family of distribution functions. KDE in form of
nonparametric density estimation has become popular for visualization of univariate data but not
so significant for multivariate data visualization due to numerical difficulties and computational
costs. For KDE we do not have fixed bins as for histograms but variable intervals centered
around the point in query and defined by the bandwidth h wherein we process the number of
samples. Intuitively speaking, it can be formulated as:

f̂(x) =
1

n · 2h
· (no. of samples within (x− h, x + h)) (3.3)

In this naive case, all samples in the interval are weighted equally. To have a more general
formulation, we can introduce a weighting function called kernel K that inherently counts the
number of samples falling in the interval and additionally weights them individually according
to their distance from x.

f̂(x) =
1

n · h

n∑
i=1

K
(

x−Xi

h

)
(3.4)

In order to make K independent from the bandwidth h, the distance between x and Xi is divided
by h and the result is scaled by 1/h: Kh(t) = 1

hK
(

t
h

)
. To simplify the scaled kernel expression,
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we denote it by Kh. Kh stays invariant under integration regardless of h. Kh is also a PDF
but its variance is V ar(Kh) = V ar(K) · h2. Hence, the smaller the bandwidth h the smaller the
variance of Kh since its density concentrates about its mean, zero. The kernel K can be any
symmetric non-negative function that satisfies the normalization condition:∫ ∞

−∞
K(x)dx = 1.

Since the density estimate f̂ is a linear sum of the translated and scaled kernel function Kh,
it inherits K’s continuity and differential properties. In case K is the box function, the result
will be a piecewise constant step function. On the other hand, if we choose K to be the normal
density (i.e. Gaussian) the resulting curve f̂ will be smooth everywhere having derivatives of all
orders.

3.4 K-Nearest Neighbors Estimator

The k-nearest neighbors (kNN) estimator is another important method for density estimation.
It is perhaps the simplest adaptive method and can be efficiently implemented. Therefore, it is
widely used for large data sets as in photon mapping. The key concept is that the amount of
smoothing adapts to the local density, more precisely the bandwidth is inversely proportional
to the density. Hence, the bandwidth is chosen as the distance dk(x) from x to the k-th data
point where k is the furthest point from x. Then the naive density estimate becomes

f̂(x) =
k

2 · n · dk(x)
(3.5)

The global degree of smoothing is controlled by a parameter k which requires k-median sorting
of the nearest neighbors. The nearest neighbor estimate is not a smooth curve and has discon-
tinuities in the first derivative because the distance function dk(x) does not have C1 continuity
properties. Furthermore, the kNN estimate can never be zero and suffers from ”heavy tails”
in regions where the density function f is (almost) zero (e.g. outside the domain) since the
bandwidth h = dk(x) is increased until the desired number of points k has been found. We
can also formulate a more general definition called the generalized nearest neighbor estimate
including an arbitrary kernel

f̂(x) =
1

n · dk(x)

n∑
i=1

K
(

x−Xi

dk(x)

)
, (3.6)

where K is a kernel function. This formula is closely related to the KDE if we replace the
constant bandwidth h by dk(x).

3.5 Variable KDE

The variable kernel density estimation is similar to the kNN estimation. It also adapts the
amount of smoothing to the local density. However, in contrast to the kNN estimation, the
adaptation is completely independent from the estimation point x. Instead of searching for the
k nearest data points around x, we search for the k nearest points in the neighborhood of every
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data point Xi and associate the distance di,k with the bandwidth of Xi. The variable kernel
estimate is then defined by

f̂(x) =
1
n
·

n∑
i=1

1
di,k
K
(

x−Xi

di,k

)
. (3.7)

The variable KDE is superior to the kNN estimation since the estimate is a probability density
function itself (provided K is one) with all the smoothness properties inherited by the kernel. It
does not suffer from ”heavy” tails since the bandwidth is independent from x. One drawback
that should be mentioned is that the computation is more expensive than kNN estimation due
to the individual bandwidth precomputation for each sample point Xi. This is in particular an
issue if the number of observations X1, ..., Xn is much greater than the number of estimation
points x.

3.6 Window Width and Kernel Choice

In this section we will give a theoretical introduction to density estimation for the kernel method
which is the basis of all density estimation techniques.

The key issue with kernel methods is how the window width h is chosen. If it is too wide, the
estimate will blur out relevant detail in parts of the domain with high density of samples, while
if it is too narrow, the estimate will be too noisy in particular in the tails of the distribution
where the density of points is sparse (see Figure 3.1).

Figure 3.1: The importance of the bandwidth in kernel density estimation: (left) The distribution of
points drawn from two translated point light sources, (middle) the 2D (noisy) kernel density estimate
using a small bandwidth (R = 1), (right) the (blurred) kernel density estimate using a large bandwidth
(R = 2)

This implies a trade-off between variance (random error) and bias (systematic error). Con-
sequently, one might assume that the density estimate should comprise a minimum number of
nearest samples. This intuitively leads to the assumption of coupling the bandwidth with the
number of neighboring samples which is known as k-nearest neighbors (kNN) density estimation
which we have already described. Soon it will become clear that this is not the best choice for
density estimation and we will present some alternative methods later on.

In order to derive formulas for the optimal bandwidth and kernel, we will first describe a few
measures of the error we can minimize introduced by the kernel methods. A typical measure of
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an estimator f̂ is the mean squared error (MSE)

MSE(f̂) = E(f̂ − f)2 (3.8)

which can be decomposed into a sum of variance and squared bias

MSE(f̂) = V ar(f̂) + (Ef̂ − f)2. (3.9)

We can show that the bias in KDE arises from a convolution with a kernel Kh. Let us reformulate
the expectation of our estimator f̂ as follows

Ef̂(x, h) = E

(
1
n

n∑
i=1

Kh(x−Xi)

)
= EKh(x−X) =

∫
Kh(x− y)f(y)dy = (Kh ∗ f)(x), (3.10)

where X is a random variable with density f . Thus, the expectation of f̂ is simply a convolution
of f with a kernel Kh. This allows us to write the bias of f̂ as

Ef̂(x, h)− f(x) = (Kh ∗ f)(x)− f(x). (3.11)

In a similar way, we can express the variance as

V ar{f̂(x, h)} = E(f̂2)− (Ef̂)2 =
1
n
{(K2

h ∗ f)(x)− (Kh ∗ f)2(x)}. (3.12)

When we plug these results into the formula of the MSE, we obtain

MSEf̂(x, h) =
1
n
{(K2

h ∗ f)(x)− (Kh ∗ f)2(x)}+ {(Kh ∗ f)(x)− f(x)}2. (3.13)

Often it is preferable to estimate the error over the entire domain rather than a fixed point.
Therefore, the integrated square error (ISE) is given by ISE{f̂(·, h)} =

∫
{f̂(x, h) − f(x)}2dx.

However, more important is the mean integrated square error (MISE) since it measures the mean
error over more than just one sample drawn from f

MISE{f̂(·, h)} = E[ISE{f̂(·, h)}] =
∫

E{f̂(x, h)− f(x)}2dx =
∫

MSE{f̂(x, h)}. (3.14)

We could now insert the expression for variance and for bias into the MISE equation. The result-
ing formula however, is fairly complicated to solve for the optimal bandwidth hopt. Therefore,
one usually uses an approximative but simpler expression for bias and variance derived from a
Taylor expansion of the expected value of f̂ . First, we reformulate the estimation of f(x) from
Equation 3.10 by a change of variable t = x− hy ⇒ dt = −hdy:

Ef̂(x, h) = (Kh ∗ f)(x) =
∫

1
h
K
(

x− t

h

)
f(t)dt =

∫
K(y)f(x− hy)dy (3.15)

Expanding f(x− hy) in a Taylor series at x we obtain

f(x− hy) = f(x)− hyf ′(x) +
1
2
h2y2f ′′(x) + o(h2). (3.16)

Let us assume we have a symmetric kernel function that obeys the following properties∫
K(z)dz = 1, (PDF)

∫
zK(z)dz = 0, (symmetry) and

∫
z2K(z)dz <∞ (bounded).
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Inserting Equation 3.16 into 3.15 and using the assumed kernel properties, leads to the
following asymptotically unbiased expectation of f̂

Ef̂(x, h) = f(x) +
1
2
h2f ′′(x)

∫
y2K(y)dy + o(h2).

This yields the bias expression

Ef̂(x, h)− f(x) =
1
2
h2f ′′(x)

∫
y2K(y)dy + o(h2). (3.17)

Equation 3.12 for the variance can be rearranged in a similar way to

V ar{f̂(x, h)} = (nh)−1

∫
K(y)2f(x− hy)dy − n−1{Ef̂(x, h)}2. (3.18)

Assuming that h is small and the number of observations n is large, f(x− hy) can be approxi-
mated by f(x) + o(1) and {Ef̂(x, h)}2 by {f(x) + o(1)}2. This leads to

V ar{f̂(x, h)} = (nh)−1f(x)
∫
K(y)2dy + o{(nh−1}.

Adding the variance and the squared biased gives the MSE

MSE{f̂(x, h)} = (nh)−1f(x)
∫
K(y)2dy +

1
4
h4f ′′(x)2

(∫
y2K(y)dy

)2

+ o{(nh)−1 + h4}.

If we now integrate this term over x (assuming f integrates to 1), we obtain the asymptotic
MISE (AMISE) as a simpler approximation to the MISE in 3.14

MISE{f̂(·, h)} = AMISE{f̂(·, h)}+ o{(nh)−1 + h4} (3.19)

where

AMISE{f̂(·, h)} = (nh)−1

∫
K(y)2dy +

1
4
h4

∫
f ′′(x)2dx

(∫
y2K(y)dy

)2

. (3.20)

3.6.1 Optimal Bandwidth

In order to find the optimal bandwidth in terms of the AMISE definition, we need to minimize
Equation 3.20 by differentiating with respect to h and setting the result to zero. Then, solving
for h yields

hAMISE =
(

R(K)
n · µ2(K)2

∫
f ′′(y)2dy

)1/5

, (3.21)

where R(K) =
∫
K(x)2dx and µ2(K) =

∫
x2K(x)dx are constants that only depend on the shape

of the kernel K. The formula 3.21 shows that hAMISE is inversely proportional to the unknown
quantity

(∫
f ′′(y)2dy

)1/5, which is a measure of the total curvature of f . This reveals that for
densities with little curvature the bandwidth should be relatively large and vice versa. Moreover,
formula 3.21 shows that the ideal bandwidth converges to zero as the sample size approaches
infinity, but at a very slow rate of O

(
n−1/5

)
.
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3.6.2 The Optimal Kernel

Observing formula 3.21 shows that besides the bandwidth depending on the unknown curvature
f ′′ the AMISE error can also be reduced by an appropriate kernel function K. If we insert the
expression 3.21 for the ideal bandwidth hAMISE into the formula 3.20 for the AMISE error, we
can separate a constant factor C(K) that only depends on the kernel shape

AMISE{f̂(., h)} = C(K) ·

{(∫
f ′′(x)dx

)1/5

·
(

1 +
1

4n4/5

)}
, (3.22)

where
C(K) = µ2(K)2/5 ·R(K)4/5.

It can be shown that the constant C(K) is minimized if

K(t) =

{
3

4
√

5

(
1− 1

5 t2
)
−
√

5 ≤ t ≤
√

5

0 else.
(3.23)

This kernel is called the Epanechnikov kernel since it was first suggested in density estimation
by Epanechnikov (1969). It is optimal with respect to minimizing the AMISE and the efficiency
of various kernels is often compared relative to the Epanechnikov kernel. However, from those
efficiencies, one can observe that even for the simple Box kernel the efficiency is close to 1 (≈ 0.93)
which shows that the kernel function is less significant in terms of error reduction. Therefore, the
choice of the kernel is rather subject of other considerations such as the computational efficiency
or the required degree of differentiability of the estimate. For instance, the Gaussian kernel
(normal density) has derivatives of all orders but is one of the computationally most expensive
kernel functions since it has unbounded support and involves evaluation of the exponential
function. Figure 3.2 shows a density estimation sample for the most popular kernel functions in
1D.

3.6.3 Extension to Bivariate Density Estimation

The extension to two dimensions means that there are more degrees of freedom. First of all, a
bivariate kernel has to be selected and secondly, one has to decide on the particular smoothing
parametrization which is described by a symmetric 2× 2 bandwidth matrix H. This allows for
more flexibility and, if appropriately chosen, for faster convergence of the estimate f̂ . However,
it also introduces more complexity into the estimator since more parameters need to be chosen.
In case of a full bandwidth matrix, three parameters have to be selected, controlling not only
the amount of smoothing (i.e. bandwidth in x and y) but also the direction (i.e. orientation of
the kernel).

3.6.4 Bivariate Kernel Functions

Since we will deal with bivariate distributions throughout the thesis, we will describe several
kernel functions in 2D and investigate what effect and which properties has the shape of the
kernel function K. As for 1D kernels K is often chosen to be a symmetric, unimodal density
function. However, in 2D, the support of the kernel can have various shapes since we have
more degrees of freedom. It might be a uniform disc or an oriented scaled ellipsoid for example.
Therefore, it is common to use a symmetric 2 × 2 bandwidth matrix which is often simplified
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KDE: Effect of the kernel

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193

Box
Hat
Epanechnikov
Biweight
Gaussian

Figure 3.2: Results of bivariate density estimation for 200 query locations along a line in 2D using 5
different kernel functions. It clearly shows that for all kernels except for the Box function, the estimates
are very similar to the optimal Epanechnikov kernel!

to be a diagonal matrix whose diagonal contains the bandwidth vector. However, we will only
regard equally scaled kernels (disc support) with normalized bandwidth h ≤ 1 (i.e. area = π).
One is not only restricted to positive kernels but can also use kernels with negative tails such
as the Mitchell kernel [55] or the classical Sinc kernel, which has an optimal representation in
Fourier space (finite box). These kernels preserve or enhance edges and discontinuities. To our
experience, besides being more expensive to evaluate, they also enhance the low frequency noise
in the density estimates. Therefore, we will not regard such kernels.

3.6.4.1 Uniform (Cylindrical) Kernel

The simplest kernel is the uniform kernel, which has the shape of a cylinder in 2D. Because in
1D it is represented by a box, it is often referred to as box filter. It is defined by

Kb(t) =

{
1
π |t| < 1
0 else.
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The uniform kernel has the least variance among all kernel functions and allows for fastest
evaluation. However, the density estimation results exhibit staircase artifacts and do not have
continuous first derivatives.

3.6.4.2 Hat (Cone) Kernel

The linear hat (or cone) kernel is simple but effective kernel and is often used in computer
graphics. The efficiency with respect to the optimal kernel is ≈ 0.986. However, to calculate
the distance t, one normally needs to compute a square root.

Kt(t) =

{
3
π · (1− t) |t| < 1
0 else.

(3.24)

3.6.4.3 Gaussian Kernel

The Gaussian kernel (normal density) is the ”queen” of all densities. It has derivatives of
all orders and stays a Gaussian under Fourier transformation and convolution. However, it is
expensive to evaluate and has infinite support.

Kg(t) =
1
2π

exp−
1
2
t2 (3.25)

3.6.4.4 Epanechnikov

The Epanechnikov kernel is the optimal kernel with respect to minimizing the AMISE. It was
given for the univariate case in formula 3.23. Here is the 2-dimensional version

The evaluation of the Epanechnikov kernel is very efficient since we only need the squared
distance t2. Hence, an expensive square root computation to obtain t as it is necessary for the
triangular kernel is avoided.
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Ke(t) =

{
2
π · (1− t2) |t| < 1
0 else.

(3.26)

3.6.4.5 Biweight Kernel

The Biweight (also called Quartic or Bisquare) kernel is closely related to the Epanechnikov
kernel and has almost the same efficiency (≈ 0.994). However, it owns higher order smoothness
and hence the resulting density estimates have higher differentiability properties. Its bell-like
shape is somewhat similar to the normal density (Gaussian kernel) but the kernel is more
efficiently calculated.

Kb(t) =

{
3
π · (1− t2)2 |t| < 1
0 else.

(3.27)

3.7 Bias Reduction Techniques

How should the bandwidth be selected in practice? This is a difficult problem since it depends
on the unknown density function f that we are trying to estimate and whose second derivative
can take any value. Therefore, much research work has been dedicated to this subject. We can
see that Formula 3.21 also depends on the given parameter n and the values µ2(K)2 and R(K).
Both values depend only on the kernel K and can be solved analytically.

3.7.1 Rule-of-Thumb

One way of computing the optimal bandwidth h is by assuming a simple known density, which
often happens to be the normal density N(0, σ̂2) where σ̂2 is an estimate of the variance σ2.
This is known as the ”Rule-of-Thumb” proposed by Silverman[74]. Hence, h only depends on
n, K and an estimate of the standard deviation σ. Using this simple parametric rule, the choice
for h becomes

h = C(K) · σn−1/5,
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where C(K) is a characteristic constant analytically solved for each kernel. For example:

Gaussian: C(Kg) = 1.06
Epanechnikov: C(Ke) = 2.34
Biweight: C(Kb) = 2.78

Despite its simplicity, this method is inefficient if the density f is far from normal (e.g. multi-
modal) and may lead to oversmoothing of relevant features.

3.7.2 Plug-in Methods

A more general approach to the problem of bandwidth choice is to estimate the curvature∫
f ′′(x)2dx in a first step and then plug this estimate into the formula 3.21. This is referred

to as plug-in method. The difficulty arises from the initially chosen bandwidth for estimating∫
f ′′(x)2dx which is different from the optimal bandwidth for estimation of f(x).

3.7.3 Cross-Validation

Another common technique for bandwidth selection is known as cross-validation. It uses
the leave-one-out technique to estimate the MISE (or AMISE). Least-squares cross-validation
[65] is one popular method based on cross-validation. We will not derive the complete formula
here and give a reference to Silverman’s book [74] instead. The basic idea about least-squares
cross-validation is that we can split the integral of the integrated square error (ISE) into three
components

ISE(·, f̂) =
∫

(f̂ − f)2 =
∫

f̂2 − 2
∫

f̂f +
∫

f2. (3.28)

Now, minimizing the ISE boils down to minimizing
∫

f̂2− 2
∫

f̂f since the last term is indepen-
dent from f̂ and therefore regarded as constant. The middle term still contains the unknown f .
We define f̂−i to be the density estimate constructed from all data points except Xi

f̂−i(x) = (n− 1)−1
n∑

j 6=i

Kh(x−Xj). (3.29)

This is called the leave-one-out estimate. It can be shown that using the leave-one-out method,
we obtain an unbiased estimator for

∫
f̂f

E

(
n−1

∑
i

f̂−i(Xi)

)
= E

(∫
f̂(x)f(x)dx

)
.

Minimization with respect to h can now be done from the data points themselves regardless of
f by minimizing the score function

M0(h) =
∫

f̂2 − 2n−1
∑

i

f̂−i(Xi) (3.30)

or using the computationally simpler expression derived from M0

M1(h) = n−2
∑

i

∑
j

K∗h(Xi −Xj) + 2n−1Kh(0). (3.31)
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where K∗h is defined by K∗h(t) = K2
h(t)− 2Kh(t).

Least-squares cross-validation (LSCV) works fully automatically and is an unbiased estima-
tor. The drawback is the expensive computation. We need to perform n2 kernel evaluations
for a set of bandwidth values (or matrices) in order to minimize M1 over h. The advantage of
LSCV is that the computation is only dependent on the number of data points and therefore
not explicitly dependent on the dimension of the data. Furthermore, the relative rate of conver-
gence of LSCV improves for higher dimension [23]. On the other hand, a problem with LSCV
is that it suffers from discretization (i.e. misinterpretation of discretization artifacts as high
frequencies) and may select too small bandwidths leading to strongly undersmoothed estimates.
Therefore, other estimators also based on cross-validation have been proposed such as the biased
cross-validation (BCV) [70, 66] which attempts to minimize the AMISE instead of MISE. How-
ever, although asymptotically unbiased, BCV leads to more biased estimates than LSCV. As a
remedy, there is an estimator known as smoothed cross-validation [57] which can be considered
as a trade-off between both methods but is more complex and difficult to implement [89].

3.7.4 Computational Problems and Hints

In order to reduce the operations in the KDE formula, one should move the factor π · hd out of
the sum and multiply it at the end. Additionally, for kernels such as Gaussian, Epanechnikov,
and biweight we can use a slightly modified version of the kernel K(‖x − X‖2, h2) instead of
K
(
‖x−X‖

h

)
. For instance, the Epanechnikov kernel is then defined by

Ke(t2, h2) =

{
2
π ·
(
1− t2

h2

)
t2 < h2

0 else.

This way we avoid one multiplication, and more important one square root in the distance
computation between x and a data point Xi. In case of a constant bandwidth for all points Xi,
we can even avoid the division by h2 inside the sum if we multiply the kernel function K with
h2 and divide the result of the sum over all kernel evaluations by h2 at the end. Similarly, we
can reduce the number of low-level operations for the other kernels.

Another algorithmic optimization can be achieved by reversing the order of computation for
kernel density estimation. Instead of searching for each query location all nearest data points
within the maximum bandwidth and computing the sum of all kernel evaluations, we can search
for each data point all query locations within the local bandwidth (i.e. gather radius) of the
data point. This is algorithmically superior if we use a tree for searching and if we have more
query locations than data points. Moreover, it reduces the search footprint since we only need
to sum up points within the local bandwidth of the data and not within the maximum support
of all data points. This reduces the amount of kernel evaluation for the adaptive kernel density
estimation.



Chapter 4
Photon Mapping using Density Estimation

In the previous chapter we have introduced the basic principles of density estimation and we
have discussed various methods for density estimation used in statistics. We have shown that
density estimation is a non-trivial problem and still an active research area. Now, we will make
a connection to computer graphics. In this chapter we will focus on photon mapping. We
will introduce the basic concept in a chronological order and explain several optimizations that
can be made for photon mapping. First, we will start with photon emission, continue with
the photon storage and radiance estimation followed by some analysis about photon mapping
bias and several remedies. Finally, we will talk about the visualization of the photon map
accompanied with acceleration methods. In Chapter 6 and Chapter 7 we will introduce two
different variants of density estimation for global illumination that improve or accelerate the
algorithm.

4.1 Overview

For quite some time, full global illumination computation including caustics and diffuse inter-
reflection has been considered as too lavish and time-consuming especially in the production
rendering of animation. The unbiased algorithms such as path tracing [37] or Metropolis light
transport [84] suffer from high frequency noise in the image and the results converge very slowly.
Therefore, global illumination was either neglected or roughly approximated. For example,
artists have simulated global illumination by manually placing point light sources throughout
the scene1. Nowadays, the computational power has increased massively while the hardware
cost has reduced. Hence, global illumination becomes more and more an issue even in anima-
tion rendering. Nevertheless, unbiased algorithms are too expensive and biased algorithms are
preferred. There are several radiosity methods [11, 87, 21] that explicitly work over polygonal
representations and require an adaptation of the geometry to the illumination. Moreover, ra-
diosity methods are not general enough and do not handle caustics or glossy light transport.
What was needed was a method that could handle various BRDFs, complex models consisting
of different kind of geometry and all this in high quality with efficient computation. The proba-
bly most general technique fulfilling these requirements is photon mapping (PM) introduced by
Henrik Wann Jensen [33] in 1996. PM computes irradiance via density estimation of photons.

1The subjective approach of manually placing point light sources throughout the scene can be understood as

a manual variant of instant radiosity [42].
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Irradiance computation was shown to be a density estimation problem [30] and has become very
popular in computer graphics since the nineties because of its ability to efficiently render caus-
tics. With photon mapping global illumination became feasible, and since more memory was
available, one could also afford the storage of a high number of photons. PM is commonly used
as an extension of Monte Carlo ray tracing to efficiently simulate global illumination. Although
its analogy to quantum physics is striking and there have been attempts to physical based simu-
lations, the name ”photon” has a slightly different interpretation in computer graphics. Just the
fact that a photon carries radiant flux is equivalent to the physical photons. However, we will
neglect most quantum effects such as diffraction and polarization of light that are derived from
the wave properties of photons. Moreover the number of photons is immense. For instance, a
small light bulb (100 Watt) emits approximately 2 · 1020 to 3 · 1020 photons per second. We can
store in memory only in the order of a few million (≈ 106 . . . 108) photons. The disadvantage
of photon mapping is the same as for all density estimation problems. In order to diminish
the error in the irradiance computation, PM needs a huge number of photons and a robust
bandwidth selection.

4.2 Photon Tracing

Photon tracing is the process of emitting photons from the light sources and tracing them
through the scene. The photon hit points form the photon map that can be used for irradiance
computation in a second pass.

4.2.1 Emission

First of all photons must be emitted from a light source. There are different types of light sources:
point lights, area lights, directional lights, or physical correct lights with arbitrary geometry and
distribution (e.g. neon tubes, television). The power of a light source is distributed to a set
of photons. Each photon gets the same power (though different spectra) which is proportional
to the total number of emitted photons but not to the number of stored photons in the map.
Another important concept is that the photon’s power is independent from the power of a light
source. Instead the number of emitted photons from a light source is chosen to be proportional
to the light source’s power. However, this is not obligatory and even contradictory in the case
of importance sampling.

The simplest case of a light source though not physical plausible is the point light. For a
point light each photon gets the same origin and has only two initial degrees of freedom (i.e.
direction). A random direction is chosen via explicitly sampling a (hemi-)sphere or via rejection
sampling. The second kind of lights are the area light sources, which are physical plausible. For
an area light source in addition to the direction a random position on the light source (often a
quad) is chosen and the outgoing direction is proportional to the cosine of the outgoing angle
with the geometric normal. Area light sources can be simple quads or realistic 3-dimensional
light bulbs for example.

It is important to note that not the total number of emitted photons from all light sources
is user defined but the number of photon hits to be stored. The number of emitted photons and
stored photons in the photon map (see Section 4.2.3.1) can differ significantly. For example,
there might be only a few photons contributing to caustic light paths which may cause several
millions of photons to be traced until the required number of caustic photons has been stored.
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Moreover, the required photon density for caustics and thus the number of photons in the
caustic density estimation needs to be higher than for the ”all-light-transport” global photons.
Therefore, more photons need to be emitted for caustics. To do so the user specifies either a
certain total number of photons for each photon map Nmax driven by the memory limits or a
rendering accuracy and computation time. Then the photons are emitted in a few iterations
(3 to 5) with a fraction of Nmax photons in the first iteration (e.g. M1 = Nmax/ maximum
photon path length). For each following iteration i + 1 we compute the ratio Ni/Mi of stored
photon hits Ni to emitted photons Mi from the current and all previous iterations. Hence, for
the next iteration (Nmax − Ni) · Mi/Ni photons are emitted. The procedure continues until
Ni/Nmax > 0.95. To obtain a required number of caustic photon hits, it can happen that a
huge number of photons needs to be emitted. This is the case if the specular surfaces as seen by
the light sources are relatively small with respect to the whole model. In order to avoid many
useless ray intersection tests for the photon emission, projection maps [35] can be used to detect
initial caustic contributing directions. This however works only for direct caustics generation
(L(S) + D) where specular surfaces are directly seen by the light source.

4.2.2 Scattering

Once a photon has been emitted from the light source, it is traced through the scene as for
standard (bidirectional) path tracing. However, the difference is that the photon carries flux (i.e.
energy per time) whereas rays gather radiance. When a photon arrives at a scattering point on its
path, it is either absorbed, reflected, or refracted. This scattering event is decided probabilistically
based on the surface material. The decision is made by Russian roulette based on the surfaces’
material properties and the photon is scattered using BRDF importance sampling.

Russian roulette has the advantage that the mean power of a photon is not affected by the
reflectivity of the surface material as for normal sampling. Instead the power is only divided by
the probability density from BRDF importance sampling. Russian roulette reduces the number
of ”unimportant” photons with little contribution while still being unbiased. It does not induce
a dependence on the depth of the photon path as the exponential growth of the number of
scattered photons in normal sampling does. Instead, the number of stored photons decreases
with the depth (i.e. for each bounce). On the other hand, Russian roulette increases variance
in the photon density because unlikely sampled regions in the scene will get fewer but equally
powered photons. Most analytical BRDFs consist of a specular and a diffuse term which allows
us to further exploit Russian roulette to decide upon the type of a scattering event. Hence, given
a uniform random number ξ and material reflection coefficients for diffuseness ρd, specularity ρs

with ρd + ρs ≤ 1, we decide if a photon is scattered diffusely, specularly, or if it is absorbed

ξ ∈ [0, ρd] −→ diffuse reflection
ξ ∈ (ρd, ρs + ρd] −→ specular/glossy reflection
ξ ∈ (ρs + ρd, 1] −→ absorption

(4.1)

In case of a reflection, one can use a little trick to reduce the dimension in the random number
generator: if ξ is smaller than the (average) surface albedo σ = ρs + ρd, we can exploit ξ to
generate a ”new” random number by ξ′ = ξ/σ. Since σ and ξ are uncorrelated, ξ′ is also a
uniform random number between 0 and 1.

Russian roulette can also be used for reflection/transmission distribution given the material’s
transparency ρt < 1. It is also simple to extend the selection scheme to handle photons with
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multiple color bands where we need to consider the mean reflectance over all channels. A photon
is stored in the photon map when it hits a diffuse or moderately glossy surface and continues
the random walk until it is either absorbed or has experienced a maximum number of bounces.

4.2.3 Photon Storing

As mentioned before, photons are stored on diffuse and moderately glossy surfaces but not on
highly specular ones since the probability that a photon arrives from a contributing direction
within the narrow lobe of the specular BRDF is very low and zero for perfect mirrors. Instead,
specular surfaces are sampled in mirror direction via BRDF importance sampling. The difficulty
in the classification of the surface material which determines the photon storage is normally
addressed by simply thresholding the diffuseness and glossiness material coefficients of the surface
hit. A surface is then chosen to be either diffuse, glossy, or perfectly specular.

All useful photon hits are stored in the photon map by writing a photon hit record to the
linear array which is sorted afterwards. Note that storing the individual photon hits ”decouples”
the illumination from the scene model. A photon can be stored several times along its path,
however, the longer the path the higher the variance of a photon due to several BRDF scattering
events (in case of glossy BRDFs). A photon hit record can look as follows:

struct Photon
{

float position[3]; // position (12 Bytes)
float power[3]; // power in RGB or XYZ (12 Bytes)
char phi, theta; // compressed incident direction (2 Bytes)
short flag; // flags and offset for the kd-tree (2 Bytes)

};

A photon hit must store information of the hit point in 3D, and the flux it transports which
can be compressed to 4 Bytes if Ward’s shared-exponent RGBE-format [91] is used. However,
it is computationally more efficient to store the power uncompressed as one float for each band
(e.g. RGB) since the overhead for compressing and decompressing the power between float and
char can ruin the floating point pipeline of modern processors. It is also possible to store only
the power for one wavelength and each photons gets assigned a single wavelength that could be
encoded in flag. This approach would be physically correct but can cause uncorrelated noise
for each wavelength. In addition, more photons would be needed to get the same accuracy in
the color spectrum. Therefore, it is often preferable to use the artificial concept of ”colored”
photons. The previously shown representation of the photon record uses three color bands and
comprises 28 Bytes in total which is not desirable with respect to alignment in memory. A
size of 32 Bytes is preferable. However, the photon power uses 4 floats in our implementation
because it also encodes the type of the spectrum rather than just 3 fixed bands. Therefore, our
photon structure occupies 32 Bytes. As proposed by Jensen [33], the incoming direction of the
photon is compressed to 2 Bytes in spherical coordinates (φ is the longitudinal angle and θ is the
azimuth angle measured from the normal) allowing for 256×256 = 65536 directions. For diffuse
photon hits (Lambertian surfaces) the incoming direction is used to check whether a photon
arrived at the front (i.e. ~ωin · ~n ≤ 0) of the surface and for glossy surface hits it is used for
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BRDF evaluation. The compression to 2 Bytes seems to be sufficient for simple culling tests and
even acceptable for BRDF evaluation of photons on glossy surfaces. To avoid the computation
of cosine and sine for the decompression of the direction (θ, φ) to (x, y, z), four lookup tables for
cosine and sine of theta and phi each of 256 values are precomputed.

The flag field has different meanings depending on the data structure being used. It either
stores only the splitting plane dimension of a kd-tree node (3 dimension⇒ 2 bits) where 14 bits
are wasted or it is used as a counter for the number of photons in the leaf in the spatial kd-
tree. For reverse photon mapping described in Chapter 6 we also use it to store the bandwidth
compressed to 1 Byte for the adaptive kernel density estimation.

4.2.3.1 Photon Map

Obviously, for efficient searching of the nearest neighbors during density estimation, we need
to organize the array of photons in a more appropriate layout than an unsorted list. Several
data structures have been proposed among which the kd-tree is the most promising one since it
is both adaptive and efficient. Other tree data structures such as an octree or bsp-tree might
also be possible but were not employed in this work. The construction of the kd-tree involves
sorting of the photons and is of complexity O(n log n). The time spent for the construction
is often negligible compared to the rest of the computation and pays off during rendering. It
was proved that the complexity for searching the k-nearest neighbors in a balanced kd-tree is
O(k + log n) [4].

An alternative to the kd-tree is a regular grid. A grid allows for highly efficient nearest
neighbor queries in constant time and is also slightly faster to construct since fewer sort opera-
tions and no balancing needs to be performed. On the other hand, a grid is not adaptive and
it is difficult to choose the optimal grid resolution. If the resolution is to fine a lot of memory
is wasted since most of its voxels are empty and contain null pointers. If the resolution is to
coarse, we need to search within a large number of photons in voxels with a high photon density.
A remedy is the hybrid grid where we use a coarse resolution for the grid and store a pointer
to a sub-data-structure in each voxel which can be a simple list, a tree, or a grid itself (recur-
sive grid). The hybrid grid can be considered as a trade-off between efficiency and adaptation.
Naturally, the search efficiency is improved due to the decrease of the depth of the sub-trees in
the voxels compared to a single large tree. However, the spatial kd-tree proposed in this thesis
performs very similar to the hybrid grid but is more flexible as we will see in the next chapter
where we examine various search data structures.

4.3 The Radiance Estimate

Given the photon map from the first pass, we can compute different types of statistics of the
illumination in our scene. In the following, we will demonstrate how the photon map can be
used to estimate the irradiance at an arbitrary point in the scene and hence how we can obtain
an estimate for the reflected radiance.

4.3.1 Density Estimation

We already know that the photon map represents incoming flux and that a photon transports
a fraction of the light source power. Therefore, a photon hit with the model indicates direct
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or indirect illumination received from a certain light source. However, a single photon has very
little impact on the illumination. What matters is the number of photon hits per surface area
(i.e. the density of photons). This leads to the definition of irradiance. The first methods based
on photon tracing used illumination maps where the photon hits were accumulated in bins
corresponding to texels of a textures [30]. Later on, adaptive approaches where published using
tessellated geometry [61]. These method can be seen as histogram based density estimation
which is known to be inferior to kernel density estimation (KDE) because KDE operates on
the individual elements and yields smooth, continuous results whereas histogram results are
piecewise constant (or piecewise linear if linear interpolated). Moreover histogram approaches
have the problem of being dependent on the scene model (e.g. there might be regions in the
scene where there are fewer photon hits than bins). Hence, the error is not eliminated if we
increase the number of photons to infinity as for photon mapping with adaptive bandwidth
selection (e.g. kNN density estimation).

Besides better density estimation, keeping the individual photon hits has also the advantage
that we are able to estimate the density not only on diffuse surfaces (i.e. constant BRDF) but
also on glossy surfaces since we store the incoming direction of photons and can evaluate the
BRDF.

4.3.1.1 Relation to the Rendering Equation

To compute the reflected radiance from the photon density we need to derive a formula from
the original rendering equation

Lr(x, ~ωo) =
∫

Ω
fr(x, ~ωi, ~ωo)Li(x, ~ωi)(~nx · ~ωi)dωi, (4.2)

where Lr is the reflected radiance at x in direction ωo which is computed as the integral of
the incoming radiance Li modulated by the BRDF fr over the hemisphere Ω, as described in
Section 2.2.2. However, the photon map provides information about the incoming flux (i.e.
energy per time) and we need to modify the formula. Since radiance is defined as

Li(x, ~ωi) =
d2Φi(x, ~ωi)

(~nx · ~ωi)dωidAi
, (4.3)

we can rewrite the integral as

Lr(x, ~ωo) =
∫

Ω
fr(x, ~ωi, ~ωo)

dΦi(x, ~ωi)
dAi

. (4.4)

What is shown on the right hand side of formula 4.4, is simply the definition of irradiance
and that’s what we can compute by density estimation using the photon map. The incoming
flux Φi at x can be approximated by the photon map using the nearest photons within radius
r in the neighborhood of x. Each photon p has power ∆Φp( ~ωp) and we can approximate the
integral by a finite sum

Lr(x, ~ωo) ≈
n∑

p=1

fr(x, ~ωp, ~ωo)
∆Φp(~ωp)

∆A
. (4.5)

This formula is more convenient with respect to computation since the rendering equation 4.2
boils down to a simple sum of photon flux modulated by the BRDF. The cosine term cancels out,
which is intuitively clear since the density of photons is inherently determined by the orientation
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of the surface to the incoming photon direction due to the photon-ray shooting. For example,
if the surface normal is perpendicular to the photon’s direction, then obviously the probability
that this photon hits the (piecewise planar) surface is zero. The constant area ∆A can be
moved out of the sum. For exact reconstruction one needs infinitely many photons. Otherwise,
we just get a noisy or blurred version of the original integral depending on the finite area ∆A

which is normally chosen to be a disc (πr2) of radius r. We also see that the density from the
photon hits can be considered as the estimation of the unknown irradiance since the photon
hits are distributed according to the irradiance function. However, the irradiance and hence the
density function is complex and in general unknown which restricts the computation to non-
parametric density estimation. Formula 4.5 clearly shows the relationship to density estimation
if we consider a simple box filter (1/π) and discard the BRDF in the sum. The difference to
statistical density estimation is that photons may have different contributions (i.e. flux) and
that outliers among the photons, mostly resulting from importance sampling, can spoil the
density estimation as they increase variance. This often leads to disturbing low frequency noise
(i.e. blurry speckles). On the other hand, the original function is usually smooth and does not
contain high frequencies which keeps the error introduced by convolution of the density function
low and in addition makes the function suitable for interpolation (e.g. irradiance caching).
Remember that the optimal bandwidth depends on the second derivative of the function, which,
in most cases, is very low resulting in a large optimal bandwidth for r.

The difficulty with the photon map is that the photon hits are distributed in three dimension
but the density estimation is two-dimensional since the irradiance is measured on a surface.
However, in statistical bivariate (2D) density estimation the domain is usually assumed to be
uniform and continuous. For a bivariate distribution this means, we can assume that all data
points lie on an unbounded plane. This is not the case for photon mapping. The domain contains
high frequencies and discontinuities and is difficult to separate. There are usually two ways to
deal with that problem: one either has to discretize the domain into different photon maps
according to surface and geometric normal or one must detect and exclude ”wrong” photons
from the estimate. The former policy is similar to radiosity approaches. The latter is more
general and is inherently achieved by using better kernel functions as described in statistical
density estimation Section 3.6.4. Using standard symmetric kernels will not solve the problem
completely but can significantly reduce the bias since photon hits from ”wrong” surfaces are
normally farther away from the density estimation point and therefore less weighted by the kernel
(unless a box kernel is used). Another attempt to partially solve the problem is to compute the
convex hull of the neighboring photon hits. This does not help for the ”wrong-photon-inclusion”
problem but helps to deal with discontinuities at the boundaries.

4.3.2 Bias in Density Estimation

In Section 3.6 we have already emphasized the difficulty with density estimation and derived
expressions for bias and variance that merely depend on the bandwidth and the number of
data points. This however is not the only source of bias in the photon mapping. As we have
mentioned in the previous section, the domain in photon mapping is highly complex and we have
to deal with various problems which are listed below. An illustration can be seen in Figure 4.1.
More details on bias in photon mapping consolidated with an experimental analysis for several
test cases can be found in Section 7.4.1 and in the recent paper by Schregle [69].
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Figure 4.1: Visualization of the bias sources in photon mapping: proximity bias (a), boundary bias (b),
topological bias (c), and occlusion bias (d). The fat red line indicates the source of bias!

4.3.2.1 Proximity Bias

Proximity bias is the most difficult form of bias in photon mapping and inherently exists in
any density estimation method due to a convolution of the original irradiance function with the
kernel function. It arises from including a finite number of photons in the vicinity of the actual
query center (Figure 4.1.a). This leads to visible blurring of sharp details in the illumination such
as caustics and shadow boundaries. Proximity bias cannot be avoided but reduced by increasing
the number of samples (photons) and using adaptive bandwidth selection which however is often
complex and computational expensive (e.g. cross-validation). However, bandwidth selection is
a non-trivial problem and the number of samples is limited by the memory and processing time.

4.3.2.2 Boundary Bias

Boundary bias can be considered as not so severe as proximity bias though it is not trivial in the
general case. Its source is the bounded domain which leads to underestimation of density due
to overestimation of the surface area. The darkening on the visible surface boundaries is highly
visible, hence final gathering is normally necessary. Boundary bias on flat convex surfaces can
be handled via convex hull estimates. But the convex hull method fails on concave or curved
surfaces because it assumes that the domain is planar and convex. Hence, we obtain a 2D
projection of the convex hull. Other attempts to the boundary problem are the elongation of
surface primitives, the mirroring of photon hits at the boundary. A more advanced possibility
is the application of (non-symmetric) oriented kernel functions using 2x2 bandwidth matrices,
which has been used in statistics. However, to our knowledge, there have been no attempts to
apply such a method to photon mapping.

All these methods have drawbacks and are not robust enough for arbitrary topology and
complex geometry. The most difficult type of boundary bias are high frequencies in the size
of the geometry (tiny objects) which do not account enough photon hits to give a reasonable
estimate. Even if we adapt the kernel support to the surface area as with convex hull estimate,
in the limit, regarding infinitesimal small objects, we will not obtain any photon hits at all and
therefore cannot tell anything about the density. Fortunately, there is a method that tackles the
problem from another point of view. This method stores the photon paths rather than hits in
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a data structure called ray map and is therefore not bounded to surfaces as photon mapping is.
The ray map proposal is part of this thesis and is described thoroughly in Chapter 7.

4.3.2.3 Topological Bias

Topological bias is related to boundary bias in the sense that the surface area is incorrectly
approximated by a disc which assumes the surface to be planar in the neighborhood of the
estimation query. This often leads to overestimation of photon density due to underestimation of
the surface area on curved objects as shown in Figure 4.1.c. This form of bias is less problematic
in the mesh-based approaches where photon hits are stored with the geometry since the density
estimation area is computed from the primitives (e.g. triangles, quads) that build up the surface
and can have any shape. Topological bias is partially solved using ray maps (Chapter 7).

4.3.2.4 Occlusion Bias

Occlusion bias can be seen as part of the topological bias and boundary bias. Thus, it is
commonly not mentioned. However, we prefer to separate this kind of bias as it must be solved
differently. The problem arises with including ”wrong” photon hits that are not visible at the
estimation point and are separated by thin objects such as walls. The bias becomes visible as
”light leakage” through thin objects in particular for caustics. The example shown in Figure 4.1.d
shows two classes (marked as I. and II.) of occlusion bias. Photons in group II. can be excluded
by a simple heuristic that computes the dot-product of normal ~n with the incoming photon
direction and discards all such photons that yield a positive dot product. This effectively culls
all photons arriving at the back-side of the surface because they could never possible contribute
if the surface is opaque. The second class of photons (I.) that are occluded by a thin wall is more
difficult to detect since not just the azimuth angle (θ) with respect to the normal is decisive but
also the longitudinal angle (φ) of the incoming photons. Trying to classify a single photon hit
will not work because two photons hits, one on the ”correct” side and the other on the ”wrong”
side, can obviously have the same incoming direction. In order to separate those groups, we need
to consider the context of nearby photon hits and search for the discontinuity in the incoming
photon direction and in the photon density.

Another possibility for detection of occlusion bias, is to test for occlusion via ray tracing [32].
This will remove all photons that are not visible to the density estimation point. However, there
is also a drawback. What happens if photons are located on a curved surface? In this case
there would be no visible photon at all (depending on the floating point data type precision).
Therefore, one must either store the origin of the photons and compute the visibility via ray
tracing from the origin to the density estimation point or one moves the photon hit point and
the density estimation point a small distance back to where they came from (i.e. along their
incoming direction) before testing the visibility. This way of occlusion testing is naturally more
robust but also quite expensive and therefore, a better and simpler approach is to avoid occlusion
bias already during scene modeling by increasing the thickness of walls.

4.4 Visualization

We have shown that the photon map can be used to approximate the local irradiance at a
point in the model. As we have observed from the analysis of the photon map, the results
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are quite biased unless we emit a huge number of photons and use sophisticated bandwidth
selectors. Therefore, one usually does not use the photon map directly for computing the visible
irradiance from all contributing sources but merely splits the lighting integral of the rendering
equation 2.2.2 into four disjoint light components [34], that are individually computed by either
the photon map, by Monte Carlo sampling, or by a combination of both techniques.

Assume that we can separate the BRDF fr into two terms. This is possible for most analytical
BRDF models (e.g. Phong, Lafortune, Ward, Cook-Torrance) which consist of a simple diffuse
component fr,d (normally Lambertian) and a (more complex) term fr,s for the specular lobe.

fr(x, ~ωi, ~ωo) = fr,d(x, ~ωi, ~ωo) + fr,s(x, ~ωi, ~ωo). (4.6)

Since light is additive, we can split the incoming radiance Li into a sum of three components

Li(x, ~ωi) = Li,l(x, ~ωi) + Li,d(x, ~ωi) + Li,c(x, ~ωi), (4.7)

where

• Li,l is the direct illumination from the light sources,

• Li,d is the indirect diffuse illumination from the light sources that has been scattered
diffusely at least once,

• Li,c is the indirect specular illumination (caustics) from the light sources that has only
been specularly reflected or transmitted.

Using the sum of BRDF components and the sum of incoming radiance contributions, we
can reformulate the rendering equation by splitting the integral into:

Lr(x, ~ωo) =
∫

Ω
fr(x, ~ωi, ~ωo)Li(x, ~ωi)( ~nx · ~ωi)d~ωi

=
∫

Ω
fr(x, ~ωi, ~ωo)Li,l(x, ~ωi)(~nx · ~ωi)d~ωi (4.8)

+
∫

Ω
fr,s(x, ~ωi, ~ωo) (Li,c(x, ~ωi) + Li,d(x, ~ωi)) (~nx · ~ωi)d~ωi (4.9)

+
∫

Ω
fr,d(x, ~ωi, ~ωo)Li,c(x, ~ωi)(~nx · ~ωi)d~ωi (4.10)

+
∫

Ω
fr,d(x, ~ωi, ~ωo)Li,d(x, ~ωi)(~nx · ~ωi)d~ωi. (4.11)

(4.12)

The first integral in 4.8 is the direct illumination computation and is computed via (im-
portance) sampling of the light sources. The second integral in 4.9 represents the specular
reflection/refraction of light in direction to the observer (camera) and is computed via Monte
Carlo ray-tracing. The third integral in 4.10 computes the diffuse reflection of all incoming
specular light paths which are called caustics. Caustics are best solved by the photon map. And
the last integral in 4.11 represents all indirect diffuse illumination that is diffusely reflected in
direction of the observer.

The first two integrals are solved via Monte Carlo ray-tracing from the camera since they
contain high frequencies in the illumination due to occlusion (such as shadow boundaries) and
in the BRDF (specular reflection/refraction). The integral for caustics also contains higher
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frequencies because the light path consists of specular BRDFs. Nevertheless, the caustics integral
should be solved with the photon map since all other approaches converge too slowly to a ”noise-
free” visualization. Since caustics are the only contribution that use the photon map directly to
compute the visible radiance, it is very important to have enough caustic photons in the map.
Therefore, one splits the photon map into two separate maps: one that only stores caustic path
photon hits and a second that stores all sorts of photon hits. We will refer to this later.

The photon map is not only useful for estimating irradiance but also to direct the costly
Monte Carlo sampling to important locations in the scene in order to obtain a faster convergence
of the integral as for example in the direct illumination.

4.4.1 A Two-Pass Algorithm

The sum of integrals in 4.12 was not derived by chance but as a better starting point for using the
photon map. The first two integrals are still computed via Monte Carlo ray tracing. However,
the last two integrals of equation 4.12 are the most time-consuming ones if solved by pure Monte
Carlo sampling. Therefore, using the photon map, we can rapidly accelerate the computation
of caustics and indirect diffuse illumination.

Because caustics are estimated directly from the photon map, they need a higher density of
photons. Therefore, one splits the photon map into two separate maps, one for caustic photons
only and one for all photons.

Although for caustics, the ”best” known way to compute the radiance contribution is by
using the photon map directly, it is recommended to prepend an initial Monte Carlo sampling
step for the diffuse indirect illumination computation. This step is called final gathering since
we gather energy from the photon map.

4.4.2 Final Gathering

We have discussed that photon mapping exhibits low frequency noise and several forms of bias
in the estimate. Although it is practically possible to reduce this error with several heuristics,
there will always be a certain setting where such algorithms will fail. Therefore, in order to
reduce the visible error, we take another way and seize the problem by ”averaging” the error
over many density estimation points in the scene. Since the error of density estimation is low in
planar almost uniform regions, which is usually the largest part of the surface of most scenes, we
reduce the overall error and balance it across all radiance computation points. To do so, we start
with importance sampling the associated BRDF at the point visible to the camera and shoot
several final gather rays (FGR) across the hemisphere. At each FGR hit point we compute the
radiance estimated from the global photon map. Since Monte Carlo importance sampling is a
random process, we will exchange the bias artifacts arrising from the photon map with random
noise, which is less disturbing to the eye and vanishes with the number of samples.

Final gathering does not suffer from boundary bias and averages the error from density
estimation between many radiance samples. However, the error does not vanish but stays
mostly constant across the image. Final gathering can also easily handle complex BRDFs (e.g.
glossy material) which is difficult (or impossible) using only density estimation from the photon
map. The covered eye paths by final gathering are E(S) ∗ (D|G)(S) ∗ (D|G) and the complete
final gathering light paths are L(D|G|S) ∗ (D|G)(S) ∗ (D|G)(S) ∗ E.

The difficulty using a two-pass Monte Carlo approach arises in the context of combining
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both methods: density estimation from the global photon map and final gathering. A common
approach is to shoot a large number of final gather rays across the hemisphere whenever a ray
on the eye path hits a diffuse surface. In most cases this ray is a primary ray and is directly seen
by the eye. In order to suppress the noise to an imperceptible level, the number of final gather
rays should to our experience be set from 400 up to 6000 samples per hemisphere. The number
depends strongly on the frequency of the indirect light in the model which is unknown during
rendering. High local densities in the photon distribution and indirect caustics often lead to poor
estimates. To choose a (locally) sufficient number of final gather rays is still an open problem
in photon mapping. Often it is addressed by simple assumptions or initial test renderings of the
scene. A more advanced approach is to query the photon map at the final gather location to
direct the final gather rays in important directions with radiance contribution [34]. These are
sampled from a discrete cumulative distribution function which is constructed over the incoming
photon directions.

For diffuse surfaces naive Monte Carlo sampling over the hemisphere is the standard ap-
proach. However, for glossy surfaces we need to take care when to combine the photon density
estimation with final gathering. For example consider a highly glossy surface with a narrow
specular lobe. If we shoot final gather rays via BRDF importance sampling, most of these final
gather rays will eventually land in a small neighborhood in particular if the hit point is very
close to the origin of the final gather. Thus, the radiance estimate from the photon map will
be almost the same for all rays and the resulting radiance for the pixel will still contain the low
frequency noise from the photon density estimation. As a simply solution we accumulate the
diffuseness of the surface BRDFs (ρc) along the eye path and use the photon map only when a
user-defined threshold (e.g. ρc > 0.7) is reached.

In order to render indirect caustic paths L(D)+(S)+(D|G)(S)∗E) it is important to note that
final gather rays should be reflected/transmitted whenever they hit a specular surface. Indirect
caustics can have an important contribution in reality. For example consider the indirect light
coming through a window at noon when the sun is not directly visible through the window. This
light is mostly diffusely reflected in the outdoor environment and illuminates the entire room.

4.4.2.1 Tricks and Hints

Here we present a few improvements for final gathering concerning the density estimation at the
final gather ray hit point. First of all, for final gathering a smaller bandwidth (gather radius)
should be used than for the direct visualization of the photon map because we do not see the
low frequency noise from single final gather rays but we do see the light leakage in corners if the
radius is too large. To our experience 30 to 100 nearest neighbors are sufficient. Actually, the
number of nearest neighbors (i.e. the bandwidth of a final gather ray) should depend on four
criteria:

1. the total number of photons np,

2. the fluctuations in the density of photons (rather than the density itself!),

3. the number of final gather rays per pixel,

4. and the distance the FGR traveled.

The first and second criteria are obvious since the number of samples and the second derivative
of the density are included in the formula for the optimal bandwidth with respect to the AMISE
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minimization (Section 3.6.1). Corresponding to the AMISE the bandwidth should decrease with
a very slow rate proportional to 1/ d+4

√
np, where d is the dimension, hence, in our case (for d = 2)

with 1/ 6
√

np. The number of nearest neighbors (k) is then proportional to (1/ 6
√

np)2 = 1/ 3
√

np

since k is proportional to the gather area (i.e. squared bandwidth). Hence, we propose to use
k = 3
√

np, which yields about 30 to 100 nearest neighbors for about 30,000 to 1,000,000 photons.
This has also worked well according to our practical observation.

The second point is the fundamental problem of density estimation and should not be ad-
dressed by final gathering because it is the reason why we need to apply final gathering before
the actual density estimation. Furthermore, it is already roughly approximated by the kNN
technique.

The third point says that the gather radius (or the number of nearest neighbors) should
decrease with the number of final gather rays N . Otherwise, we will hardly reduce the bias (due
to a too large bandwidth) from density estimation but only reduce the noise. It is well-known for
Monte Carlo integration that the error σ is proportional to 1/

√
N . Hence, more final gather rays

decrease the variance (i.e. noise) with rate σ2 ∝ 1/N . On the other hand, a smaller bandwidth
R increases the variance in the bi-variate (2D) density estimate with 1/R2 [74]. This means
if we want to reduce the variance by a factor of 2, we can either double the number of final
gather rays or increase the gather radius by a factor

√
2, hence double the gather area. The

relation between the number of final gather rays and the gather radius is not trivial and we do
not explicitly induce a dependence in the implementation but leave it to the user who should
appropriately set the number of nearest neighbors to be used for final gathering. Moreover,
according to our experience, the performance of final gathering depends strongly (≈ linearly)
on the average k nearest neighbor photons found per final gather ray. If it is set too high, cache
misses are more likely to occur which will decrease the performance.

Figure 4.2: The area covered by stratas (black thick lines) for final gathering of diffuse indirect illumi-
nation (in 1D) depends on the distance and orientation of the surface hit by a FGR. Note how the density
estimation area of nearby FGR hits overlap yielding a similar (biased) radiance estimate.



48 4.4 Visualization

How the traversal distance of a FGR depends on R is difficult to state. But it is intuitively
clear that close surfaces should be assigned a smaller R since the density of FGR hits decreases
quadratically with the distance of the surface (assuming same orientation). Keeping a constant
R (or kNN number) for all FGRs yields in a significant fraction of FGR hits on close surfaces
using almost the same set of photons since the distance between the FGR hits is much smaller
than R (see Figure 4.2). Consequently, neighboring FGRs will get a similar (biased) radiance
estimates. Therefore, the error is much larger in corners or nearby surfaces than for open areas.
(This is also the reason why irradiance caching uses the harmonic mean distance for spacing
the irradiance cache locations.) We tackle the problem of final gathering from close surfaces
(e.g. corners) by utilizing a secondary final gathering pass. If the hit distance of a primary FGR
is below some scene size dependent threshold, we initiate a secondary final gather with fewer
rays. The number of secondary FGRs (N2nd) should decrease exponentially with the depth (D)
of the final gather. A depth of 2 is sufficient since everything beyond this level would be too
expensive to compute. In our implementation we set N2nd = N1st/2D, where N1st is the number
of primary final gather rays. Additionally, N2nd is bound to have at least 20 and at most 50
secondary final gather rays.

Since the number of kernel evaluations is very high even for normal rendering settings (see
Section 6.6.1), it is recommended to use only simple kernels for density estimation, for example
the uniform kernel (Section 3.6.4.1) or the Epanechnikov kernel (Section 3.6.4.4).

4.4.2.2 Choosing the Gather Radius

At each final gather ray hit point the neighboring photons have to be searched in order to
compute the irradiance by density estimation. This is usually the most expensive procedure
during final gathering. The search domain is often constrained to a sphere (a box is also
possible) and the gather radius corresponds to the bandwidth in density estimation. For the
classic k-nearest neighbors density estimation, the bandwidth is automatically determined by
the local density of photons. However, searching naively the entire domain for the k-nearest
photons is an overkill. Therefore, an upper bound for the initial radius is chosen in which we
search for the k-nearest photons. The choice for the initial radius strongly influences the search
performance. Often a constant radius is selected that is either set manually by the user or
computed heuristically from the average photon density in the whole scene [9]. We propose to
use an adaptive initial radius derived from a precomputed estimate of the local density in a
spatial kd-tree. Such a spatial kd-tee is described in Section 5.2.1. We compute a pessimistic
estimate of the density in each leaf/sub-tree of the kd-tree using the diagonal of the associated
bounding box and the number of photons in the sub-tree’s bounding box. This approach is
described in Section 6.5.2. Additionally, the resulting gather radius is clipped by a maximum
bound which is set manually by the user but could be derived heuristically from the size of the
scene. We obtain a tight gather radius and the expensive kNN search is accelerated. The final
gathering process is modified as follows: for each FGR we search for the leaf in the kd-tree where
the FGR hit point is located in and return the initial gather radius stored in the leaf. This is
done in O(log(n/m)), where m is the number of photons per leaf. In the next step we gather the
k-nearest neighbor photons starting with the initial radius. The achieved speedup for various
scenes is between 10% and 25% compared to a constant initial radius and includes the search
for the tree leaf to obtain the initial radius. In both cases the maximum bound for the initial
radius is set to the same value (5% of the scene diameter) for fair comparison and the resulting
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number of found nearest neighbors per FGR is the same. For the k-nearest neighbors search we
use a fast heap implementation to quickly remove the farthest photon (i.e. (k + 1)-th photon)
from the center of the query.

4.4.3 Direct Illumination

The direct illumination integral is usually computed analytically given the position and power
of all light sources and their visibility is computed by Monte Carlo sampling. It would not be
sensible to apply importance sampling of the BRDF to compute the direct illumination since the
probability of a ray, chosen randomly across the hemisphere, to hit a small light source would
be very small and zero in case of a point light. Therefore, the direct illumination is computed
by sampling the area of all light sources according to their power. This is the common way
if we are dealing with a couple of small light sources. However, for large complex scenes with
many light sources, sampling all of them one by one would be too exhaustive since most of them
are perhaps not contributing (e.g. many rooms). Fortunately, the photon map can help in the
evaluation of the ”importance” of a light source since it can provide us information about the
contribution of all light sources to a certain location in the scene. This can be done by searching
the nearest hits from all ”first-bounce” photons in the neighborhood of the point of interest [43].
If we know from which light sources the photons came from, we can quickly determine the energy
contribution of every light source and eliminate the ones that are occluded. It requires only a
small extension to the standard photon mapping algorithm: the photon structure must include
an index to the light source and a flag to indicate if it is a direct photon hit (first bounce).
Alternatively, direct photon hits could also be stored in a separate photon map.

4.5 Acceleration and Approximation Methods

This section shows a few important techniques for making photon mapping implementa-
tions more efficient. In general, one can classify these methods into interpolating algorithms
such as irradiance caching [95], piecewise approximating algorithms (e.g. irradiance pre-
computation [8, 10], and simple heuristics. Interpolation is used in global illumination where
there is an assumption of smoothness in the radiometric quantity. For instance, all radiosity
methods use interpolation in the form of surface discretization. They adapt to the irradiance
smoothness by adaptive geometric subdivision, e.g. [25]. Ward et al. [95] propose irradiance
caching as a means of computing indirect diffuse inter-reflections in a distribution ray tracer [93].
They exploit the smoothness of the indirect illumination by sampling the irradiance sparsely
over surfaces, caching the results and interpolating them. For each ray hitting a surface, the
irradiance cache is queried. If one or more irradiance records are available, the irradiance is
interpolated. Otherwise a new irradiance record is computed by sampling the hemisphere and
added to the cache. In this way, the cache gets filled lazily, progressively in a view dependent
manner. As it gets filled, more and more irradiance computations can be carried out by interpo-
lation. Ward uses an octree for storing the irradiance records. In [94] the interpolation quality
is improved by the use of irradiance gradients. Recently, the irradiance caching algorithm has
been partially re-implemented on graphics hardware [19] resulting in a speedup of about two
orders of magnitude compared with the Radiance rendering system [93].
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4.5.1 Irradiance Caching

Irradiance Caching is a widely used method to reduce the amount of expensive final gathering for
the diffuse lighting computation. It builds on the observation that diffuse indirect illumination
changes usually slowly across surfaces. Hence, it is a good candidate for interpolation. Another
observation is that illumination changes faster in regions with nearby objects yielding in color
bleeding or shadowing due to occlusion. Putting these together, one can build a formula that
estimates whether a point in the scene visible through a pixel should be re-computed via final
gathering or interpolated by surrounding samples while keeping the error on constant level. The
difficulty in this approach is how to efficiently find the surrounding samples for interpolation
and what formula and parameters to choose for the irradiance estimation. Several methods have
been proposed mostly based on some heuristics. One of the most commonly used models is
the model of the split sphere [95]. It assumes a hemisphere above point xi that is black on one
side and white on the other representing the worst case change in the irradiance as we move
away from xi. There are two possible causes: a change in surface location and a change in
surface orientation (i.e. normal variation). From this principle one can derive the following
error estimation [95]:

εi(x, ~n) =
{

4
π
· ‖x− xi‖

Ri
+
√

2− 2~n · ~ni

}
, (4.13)

where x is the current surface location, ~ni is the normal at position xi. Ri is the harmonic mean
distance to the objects seen from xi. It is defined as:

Ri =
M ·N∑M

θ

∑N
φ

1
‖RT (xi,θ,φ)−xi‖

, (4.14)

where RT (xi, θ, φ) is the first hit location for the final gather ray shot from xi through the
hemisphere strata defined by θ, φ (in the sense of stratified sampling). The weight for the
contribution of xi to x is inversely proportional to the error computed by equation 4.13:

wi(x, ~n) =
1

εi(x, ~n)
(4.15)

The value of this weight tell us if the irradiance at point xi can be re-used for interpolation at
point x. The higher the weight the better the estimate. The user provides an upper threshold
for the error (referred to as a) and the weight has to be greater than its reciprocal:

wi(x, ~n) >
1
a

(4.16)

Finally, to compute an estimate of the irradiance at x, we compute the weighted average of all
previously computed irradiance values whose weight is greater than 1/a:

E(x, ~n) ≈ Ê(x, ~n) =

∑
i,wi>1/a wi(x, ~n)Ei(xi)∑

i,wi>1/a wi(x, ~n)
. (4.17)

If there is no previously computed irradiance value with sufficient weight, we compute a new
one (by final gathering the hemisphere and querying the photon map at the hit points). In
our implementation we use a slightly different approach for the decision whether to recompute
or interpolate. Originally, only one cache entry with a weight greater than 1/a is sufficient for
interpolation. This however results in visible artifacts. Therefore, instead of only considering
the sum of weights, we also account for the density of cache entries and penalize single cache
entries. We decide to interpolate only if
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1. there are at least k (e.g. k = 4) reusable neighboring cache entries (with wi > 1/a),

2. or the sum of weights is greater than 2k/a.

The first criteria ensures that we use in most cases k computed irradiance values for the inter-
polation, where k should be at least 2. (Otherwise we would get a piecewise constant approxi-
mation.) The second criteria avoids clustering of cache locations in a small area because it can
happen that we place k cache entries next to each other until we have k entries to continue with
interpolation. Intuitively, this means that a cache entry is reusable if its weight is high enough
to compensate the k nearest entries (i.e. if we are very close to the entry). The factor 2k is just
a heuristic based on the observation of the sample placement and could be chosen differently.

Computing the weights for all irradiance values at each sampled point visible to the camera,
is very costly. It is clear that each irradiance value is only useful in a small neighborhood of a
sample point x. Hence, we can limit the search to a region where the error with respect to the
distance is below the user define threshold a. This maximum distance Ri,max can be derived
from Equation 4.13 if we ignore the surface orientation (i.e. the normals are assumed to be
equal):

‖xi − x‖ < a ·Ri = Ri,max (4.18)

Ri,max only depends on the user defined threshold a and its harmonic mean distance Ri.
This is intuitively clear since the irradiance changes faster in regions that are close to other
surfaces. The result is visible as color bleeding or shadowing due to occlusion. Therefore, the
harmonic mean distance is a good indicator to irradiance gradients.

Figure 4.3: Results without (left) and with bounding (right) the maximum radius Ri for the influence
of an irradiance cache entry.

The original proposed formula 4.13 used for computing the weights places too many samples
near corners or edges and too few in open planar regions. Thus, it is a common procedure to
set lower and upper bounds for the harmonic mean distance of a sample. The lower bounds
ensures that less samples are computed in corners and the upper bound generates more samples
in planar regions (see Figure 4.3).

In order to search efficiently for cached irradiance values, one usually uses an octree structure.
A voxel is split into eight sub-voxels if the overlapping bounding box of the inserted sample is
smaller than the voxel (i.e. has a shorter diagonal). See Figure 4.4 for a simplified example
in 2D using a quad-tree instead. Therefore, when we are searching for re-usable cache entries
(with sufficient weight), we first query the octree by recursively tracing down the sub-tree voxels
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Figure 4.4: Example of inserting two cache samples into the quad-tree. Sample P1 is inserted into quads
A,B,C, D whereas P2 is inserted one depth level below P1 into the quads Bc, Bd,Da,Db,Dc,Dd.

that contain the current query location. Only the weights of the cached irradiance values in
those voxels are computed and summed at the end. The sum of those weights determines if the
current location can be interpolated. In Figure 4.4 a query at location X will search for cache
entries in voxel B and its sub-voxel Bb computing the weights for P1 and P2. However, only P2

may be re-used. P1 can be rejected early.
In practice, one does not only consider the computed weight of a particular cache entry but

also adds three additional heuristics: Skip cache entry i if:

1. surface orientations of xi and x deviate more than a given constant threshold (see Fig-
ure 4.5.a), i.e. (~n · ~ni) < cos(αmax), αmax ≈ 10◦,

2. the current query location x is below the tangent plane of the cache entry xi in query or
vice versa (see Figure 4.5.b), i.e. |(xi − x) · ~vavg| > cos(βmin), where ~vavg = ~ni + ~n, and
βmin ≈ 85◦,

3. distance between xi and x in screen space is greater than a constant threshold pdmax, i.e.
pdmax represents maximum distance between pixel coordinates.

The third condition ensures that cache entries that are close enough in object space but large
in screen space (i.e. close to the camera) are not re-used. In our implementation, we also added
a constant threshold to limit the minimum distance in screen space (about half a pixel) between
samples that are neighboring which usually yields in fewer computed samples at the horizon far
away from the camera. Table 4.1 shows the statistics for the rendering of the sponza scene and
the icido scene with irradiance caching. Note that the percentage due to distance clipping is an
early rejection due to the maximum possible distance in the split-sphere error computation. For
the rendering 700.000 photons were used. One thousand final gather rays were traced for the
sponza scene at each irradiance cache location and two thousand final gather rays were traced
for the icido scene. The irradiance cache introduces little error when rendering the sponza scene
since this scene is completely diffuse and contains low frequency illumination. Even with a large
error the results look satisfactory. However, despite its general usage, irradiance caching can still
lead to artifacts in case of higher frequencies in the indirect illumination and does not handle
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Figure 4.5: Early rejection due to normal deviation (a) of cache entry (xi) and early rejection due to
vertical deviations (b) (stairs effect).

Sponza Icido

FGRs 16, 148, 000 48, 431, 970

Total Queries 1, 535, 998 919, 186

Successful Queries 1, 519, 850 (98.95%) 894, 546 (97.32%)

Error Threshold 1.1 0.12

Octree Depth 7 7

Average Neighbors 4 4

Rejected Samples 136, 618, 199 48, 003, 887

Rdist 73.99% 71.09%

Rnormal 14.59% 9.12%

Rpixel 6.97% 8.61%

Rerror 2.97% 1.52%

Rstairs 1.58% 9.66%

Table 4.1: Irradiance cache statistics for two scenes with different complexity: the sponza scene rendered
with 1000 times 5 final gather rays per pixel in a resolution of 640 × 480 pixels and 700.000 photons,
and the icido scene rendered with 2000 times 3 final gather rays per pixel with same resolution and same
number of photons. The rows from top to bottom: the total number of traced final gather rays, the number
of queries to the cache (≈ the number of primary rays), the number of interpolated irradiance points, the
maximum allowed error (a), the average depth of a cache entry in the octree, the average number of
neighbors used for interpolation of the irradiance, the total number of rejected cache entries during the
search of reusable neighbors, the percentage of such rejections due to distance clipping, normal deviations
(Figure 4.5.a), screen space distance clipping, split sphere error (a), and stairs effect (Figure 4.5.b). Note
that Rdist is also included in Rerror and is tested before to avoid the expensive computation of Rerror.
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Figure 4.6: Irradiance cache interpolation at point PQ using naive line by line frame sampling (a) finds
only the valid cache sample C3 and misses potential samples C4 and C5. Using the final pass (b) all valid
cache samples (C3, C4, C5) are found.

glossy BRDFs. For example interpolation artifacts were always visible in the icido scene when
using the proposed caching scheme. Irradiance caching also depends strongly on the user defined
threshold a. If it is set too low, most of the irradiance values are computed and cached which
heavily increases the cache size making the algorithm sub-optimal. Even for a low quality (high
error) setting as shown in Table 4.1 the number of tests and searches in the octree can be quite
high. On the other hand, if a is set too high, interpolation artifacts become visible.

Another problem arises in terms of the algorithm work-flow. The way how to sample the
image plane can be crucial because it strongly influences the placement of final gather samples. If
we go line by line through each pixel, most samples will eventually only find one valid irradiance
cache sample within the error bounds (Figure 4.6).

This yields a visible error since the interpolation becomes a constant step function because
each interpolated point in the cached sample’s neighborhood gets the normalized weight 1.0
and therefore the same irradiance as the cached sample. The artifacts are perceptible (speckled
artifacts) as shown in Figure 4.7 on the left.

As a remedy the image plane can either be sampled stochastically (e.g. using Quasi-Monte
Carlo sampling) or progressive refinement. The Quasi-Monte Carlo sampling has not been tested
but the progressive refinement scheme. And because the latter still suffers from artifacts too,
a different approach using two passes for sampling the image plane has been implemented for
reverse photon mapping (see Section 6.7.3). The scheme is also applicable to normal photon
mapping and works in the following way:

In the first pass when tracing primary rays from the camera and shooting the final gather
rays, we use the simplest frame sampling scheme going line by line through the image plane. At
each diffuse primary ray hit point, we query the irradiance cache for re-usable cache entries. If
no re-usable cache entries are found, costly final gathering is done and the irradiance cache is
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Figure 4.7: Cached irradiance interpolation using one screen pass (left), two passes (middle), and the
reference image (right).

updated. For all visible hit points, we store a record containing position and normal in 3D and
the pixel coordinates. We will refer to this record as pixel sample. The first rendering pass is
rather pessimistic since it computes more cache samples than the user-defined error threshold
would need. Up to this point, only the incomplete cache that has been build up to the currently
sampled pixel is available. There are occasionally superfluous samples that could be interpolated
by cache entries which are added to the irradiance cache in consequent lines. This, however,
does not harm the algorithm and is even advantageous in the following pass. In the second
pass, having the image plane sampled and the irradiance cache filled, we go over all stored
non-computed pixel sample records and search for re-usable cache entries in the neighborhood
as done in the first pass. This time, we get all re-usable cache entries since the irradiance cache
is complete. Moreover, since we have sampled more densely in the first pass than necessary, we
find more than one re-usable cache sample in most cases which yields in a cleaner interpolation
without the stepping artifacts resulting from the first pass only (see Figure 4.7, middle image).

4.5.2 Radiance Caching

Besides the old algorithm for irradiance caching on Lambertian surfaces [95] that has been used
with little modifications till nowadays, several methods have been published in order to make
the caching scheme also work with glossy BRDFs. For completeness we will briefly describe the
most significant methods.

In realistic scenes not all surfaces are perfectly diffuse. For surfaces with a glossy BRDF
simple interpolation of the irradiance across the surface does not work since the light reflection
is view dependent and we need to compute the full directional incoming radiance function rather
than just a single irradiance value. In order to visualize glossy surfaces one can compute the
light transport integral via Monte Carlo sampling of the BRDF. For high frequency, mirror like
BRDFs Monte Carlo importance sampling is probably the best choice. However, it is costly
for low frequency BRDFs and produces visible noise if not enough samples are used. Hence,
one tries to represent the incoming radiance function in a more suitable way with a set of
basis functions. Several approaches have been proposed using wavelets [68], spherical harmonics
(SH) [64, 73] or hemispherical harmonics (HSH) [20]. Most popular are spherical harmonics
(SH) basis functions [52] which are well-suited for low frequency functions defined over a sphere.
The incoming radiance as well as the BRDF function are projected onto the basis of (hemi-)
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spherical harmonics. Using SH basis functions the light transport integral becomes a simple dot
product of the incoming radiance coefficient with the BRDF coefficients. Moreover, the lower the
frequencies of light and BRDF the fewer coefficients are needed to reconstruct the original signal.
Furthermore, SH allow a GPU-friendly implementation on modern graphics hardware and has
recently been used in combination with SH environment maps for real-time rendering [64].

4.5.3 Irradiance Pre-computation

Another possibility to speed up the costly final gathering is to precompute the irradiance at
each photon location. This approach was proposed by Christensen [9]. The precomputation
can be done in an initial density estimation phase or progressively during the final gather. The
former has the advantage of coherence in the search for the neighbor photons at each photon
location, since all photons are spatially sorted in a kd-tree structure. Hence, going through
each photon location sequentially, results in highly coherent memory access. On the other
hand, there might be unnecessary irradiance precomputations in regions that are not visible or
areas where the photon density is too high. For these cases, a progressive lazy precomputation
might be preferable. The radiance along a final gather ray is then computed by searching for
the nearest photon in the neighborhood of the hit point and using (if already precomputed)
the photon’s precomputed irradiance modulated by the diffuse BRDF. This way, the resulting
radiance for a final gather ray corresponds to a piecewise constant approximation of the actual
irradiance estimate. However, this is not too problematic because it is adaptive to the photon
density and hence to the irradiance. Therefore, the error is low in bright regions which have
an important contribution to the final gather and high in (unimportant) low-density regions.
Christensen even claimed that the precomputation at every fourth photon location is sufficient.
The precomputation of irradiance yields a speedup of one order of magnitude compared to the
naive final gathering. The only disadvantage with the precomputation is that it cannot handle
glossy BRDFs but only Lambertian surfaces at the final gather ray hit points.

4.5.4 Visual Importance Rendering

Standard photon mapping traces particles from the light sources distributed according to the
lights’ power distribution and deposits the photons when they interact with surfaces. It performs
poorly when little of the lights’ total power arrives at query locations important to the final
gather. This situation is not uncommon in practice. Indoor environments may have many lights
that contribute unevenly to the image. It may also happen that most light path are occluded
which is usually the case for large indoor scenes consisting of many separate rooms with a few
relatively small light ports like windows and doors. Poor sampling results in excessive noise
in the (in)direct illumination estimates derived from the photon map. Moreover, low photon
density leads to larger search radii when accessing the photon map, which causes inappropriate
samples to be included in the density estimate and therefore severe energy bleeding.
One cause for a poor sampling distribution is the lack of visual importance information because
naive sampling from the lights is view-independent and does not consider the camera location.
Therefore, several algorithms have been proposed to include visual importance in the photon
sampling process. The method of Peter and Pietriek [62] uses an initial pass to emit so-called
”importons” (particles traced from the observer). In the following photon tracing pass, they
use the previously constructed importon map to compute an importance sampling distribution
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from the local importon distribution for each scattering event of a photon. This of course, is
expensive due to the cost of computing distributions at every particle bounce and the increased
memory storage costs for the importons. Moreover, because this importance sampling strategy
is unbiased and requires division by the probability of a certain direction, it results in highly
varying photon power especially in areas reached by few photons coming from directions with
low probability. Hence, the radiance estimate may be poor.

Another approach to visual importance sampling was introduced by Keller and Wald [43].
They also use an importon map like Peter and Pietriek. However, instead of directing photons
into visual important directions building up an importance distribution, they simply decide
whether a photon shall be stored or discarded. This decision is computed using Russian roulette
with the probability derived from the local importon density at the photon’s hit point. Their
method produces good-looking results. However, it is very inefficient in generating the photon
map. A much larger number of photons than the final number of stored photons must be emitted
to get the desired size of the map. Furthermore, the method results also in varying photon power
due to the Russian Roulette.

A similar approach was introduced by Suykens and Willems [77]. In their algorithm the
photon density is not only driven by the visual importance using importon densities but also by
the local photon density itself. Hence, their work introduces the concept of density control for
photon maps. The algorithm considers the current local sample density in the photon map before
storing a new sample and redistributes its power among neighboring samples if the resulting local
density would exceed a user-defined density threshold (e.g. 80, 000 photons/m2). A very similar
approach to the latter was used in this thesis and is described in detail in Section 6.9.3.

With the two latter methods, important regions get a dense population of low-power photons
while unimportant regions get a sparse population of high-power photons, thus avoiding mixing
high and low-power photons. The disadvantage of these two methods is that using importance
does not reduce the number of traced photons.
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Chapter 5
Data Structures for Density Estimation

In the previous chapters, we have introduced the theoretical subject of density estimation and its
practical application for photon mapping. We have seen that photon mapping is generally more
demanding with respect to computational resources than statistical density estimation where
it is often sufficient to have algorithms of complexity O(n2). In photon mapping we cannot
afford computing the distance and evaluating the filter kernel for each photon and each density
estimation point in 3D since the number of such query points are in the order of 1 to 100 million.
Hence, efficient culling of infeasible photons or query points is a key issue in efficient searching
for photon mapping and all density estimation techniques. Since the search for feasible photons
within the kernel support is often the most expensive part during density estimation, we are
now going to investigate data structures for efficient searching.

5.1 Overview

There is a rich literature on spatial data structures outside the computer graphics community
[18]. However, in computer graphics already exist many efficient data structures for searching
of ray intersections with geometry and polygon clipping. Therefore, first approaches to the
problem stored the photons directly on the intersected surfaces of the scene model [71, 88]
or accumulated the photons’ energy in texels of an illumination texture. These methods are
classified as topological dependent methods since the photon storage depends on the geometry
and tessellation of the scene model. For these methods we do not need a photon map. In
this thesis, we will not deal with such approaches but focus on topological independent density
estimation methods where photons are stored loosely in 3D space in a so-called photon map.

Any data structure suitable for searching can be used for the photon map. The simplest
among those is the unsorted list or array where every element needs to be tested. Despite its
simplicity the list performs best for a small number of elements (up to ≈ 100), which can be
exploited for more sophisticated data structures such as the grid or kd-tree. The grid subdivides
the domain into regularly spaced cells called voxels, which can be localized in constant time.
Therefore, a grid is a fast but not adaptive search structure. It is further described in Section 5.3.
A data structure that is better at handling non-uniform distributions of photons is the binary
space partitioning tree (BSP-tree) in particular the axis aligned BSP tree referred to as kd-
tree [67]. However, it might also be useful to investigate an octree structure (8 children per
node). Since the kd-tree is the most popular data structure, it is used throughout the thesis and
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Figure 5.1: Photon median balanced kd-tree (a) and the spatial median balanced kd-tree (b). Note that
the depth of the spatial kd-tree is greater than for the balanced one.

described thoroughly in the next section. Another interesting and efficient but more complex
data structure is the Voronoi diagram, which we will only mention shortly.

In a Voronoi diagram each node (photon) is linked to its direct neighbors. For a nearest
neighbor query, we first need to identify the node occupying the cell of the query point. This
can be done via a directed walk towards the query point starting from a random node (e.g.
chosen from the voxel of a grid on top of the diagram). The nearest neighbors are then trivially
found via a seed-growing-like algorithm. The Voronoi diagram supports queries for the k-nearest
neighbors in O(k log n) time but requires O(n2) storage space in three dimensions. Nevertheless,
the Voronoi diagram is interesting in the way it can provide us information about the density
and local distribution of the points (e.g. if the occupied area of an associated node is the same
for all nodes, the density is uniform).

5.2 Kd-tree

The kd-tree is probably the most commonly used data structure for searching since it is fast
and memory-friendly due to the adaptation to the data density. There are different layouts and
various ordering schemes for kd-trees. We will compare several ordering schemes and layouts for
kd-trees over photons.

The traditional layout of the kd-tree proposed by Jensen [33] stores the photons with the
nodes of the tree where each splitting plane is defined by the location of the median photon of
the current node (see Figure 5.1.a). The photons are stored in an array that is organized as a
heap (i.e. the left child is stored at index 2 · i and the right child at 2 · i + 1, if the current index
is i). This ordering scheme requires that the kd-tree is left balanced such that each interior node
has at least a left child but not necessarily a right one. Furthermore, the tree is constructed up
to the leaves and hence each interior node has between one and two children. Since the tree is
balanced, the maximum depth is log n where n is the total number of photons.

Within the framework of reverse photon mapping which is part of this thesis and is described
in Chapter 6, we have also analyzed other kd-tree layouts for searching. Since the number of
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Figure 5.2: The figures on the left show a photon map representation using a left-balanced kd-tree (a)
and a balanced kd-tree (b). The figures on the right (c) show possible memory layouts for the photon-nodes
representing the tree in (a) or (b). The heap order (top) was proposed by Henrik Wann Jensen. The tree
must be left-balanced (a) for the heap representation. For the inorder and preorder scheme the tree has
to be balanced (b). The preorder scheme needs two additional bits in each photon-node to indicate if the
node is a leaf-node, an interior-node, or a one-child node.

”particles” in the tree is much larger for reverse photon mapping than for ”normal” photon
mapping, the standard layout à la Jensen is not appropriate for our purposes. First of all, the
time for constructing the tree is unacceptable and even the search does not perform better than
our proposed method. Therefore, we experimented with alternative layouts for the kd-tree.

The first tests are related to Jensen’s kd-tree proposal in the way that each photon cor-
responds to a node in the tree and lies on the axis-aligned splitting plane of the node. The
difference is in the ordering scheme of the tree in the memory. Jensen proposed a heap-like
order that corresponds to a breadth-first layout: the tree is stored from the root to the leaves
such that each depth level of tree comes after the other in the array. Hence, tree traversals are
most memory-coherent at the top level of the tree but far jumps are necessary to the lower levels
of the tree (e.g. to the leaves).

A simpler ordering is the inorder scheme where the array of photons is organized in the same
way the tree is constructed. This means the root is the middle of the array in range [il, ir] at
index ic = (ir + il)/2 and the children are located at (il + ic − 1)/2 and (ir + ic + 1)/2 where il
is the index of the leftmost photon in the sub-tree of root node ic and ir is the rightmost (see
Figure 5.2). This scheme can be thought of as a projection of the kd-tree to the 1D array of
photons (i.e. the tree collapses to a line). Consequently, the layout has best coherence at the
lower levels of the tree since neighboring photons in space are also neighboring elements in the
array. However, in the upper levels, at the root of the tree, traversals are most incoherent as
the indices of the child-nodes are very different.

Another possible ordering for the array of photons is the preorder scheme (see Figure 5.2).
The tree is stored in the order: root, left child, right child. Thus, the left child (if any) follows
its root node at index ir +1 and the right child is always located at index ir +(nr−nr/2), where
nr is the number of nodes (i.e. photons) in the sub-tree excluding the root node with index
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ir. This shows that the tree is right-balanced and a right child always exists unless the current
node is a leaf node. Despite all assumptions, this preorder scheme is more efficient for searching
than the inorder scheme. It is also slightly faster than Jensen’s left-balanced heap-layout, which
however might be due to implementation differences.

Other ordering schemes have not been tested in the scope of the thesis. However, using
these three schemes we stress that we have covered the most important ones. And anyway the
ordering scheme does not have that much impact on the search performance as the tree structure
and the spatial layout of the tree have, which we will focus on next.

5.2.1 Our proposed Kd-tree8

Using a balanced heap-like tree representation as suggested by Jensen, we avoid the storage of
two pointers per node. We will see that we actually need only one. Since each node is represented
by a photon, which uses at minimum 20 Bytes, the tree becomes very large for several million
photons and might eventually not fit in the main memory. Hence, the memory-footprint of a
tree traversal can become considerably large since unneeded data from the photon-nodes (power,
3D position, incoming direction) is read to the CPU cache. We have therefore developed a new
tree representation that does not explicitly store photons in the nodes but uses specific traversal
nodes which store merely the minimum information needed for a tree traversal. Due to the
smaller size of our kd-tree (3-4 times less memory than the kd-tree layout used by Jensen [34]),
we reduce the memory foot-print of a traversal which helps to increase cache coherency. The
actual photons are kept in the sorted array and are only indexed by the leaf nodes of the kd-tree.
This way we need more memory in total because each traversal node needs to store at least the
axis aligned splitting plane (which Jensen avoided by exploiting the position of photon nodes)
but we gain more flexibility with respect to the shape of the tree and its spatial layout. So,
it is possible to use either a photon-median (balanced) or a spatial-median layout. However,
the spatial-median is preferable and the photon-median has only been used for comparison.
The difference in the performance can be observed in Table 5.2. The spatial-median layout has
several advantages:

1. Construction of the tree is faster since we simply fix the splitting plane of a tree-node
to the middle of the longest side of its bounding box and avoid a k-median sort of the
photons.

2. The search performance is improved even if the depth of the tree is increased, especially
for none-uniform, skewed distributions (e.g. caustics).

3. Construction can be combined with the sliding-midpoint rule which further improves the
search performance.

4. The tree adapts to the local density of photons. Hence, using a node’s voxel size and
its associated photons, we can draw rough assumptions about the local density that can
be exploited for fast bandwidth selection in pilot estimates or as an upper bound for the
k-nearest neighbors search radius. Moreover, fluctuations in the density of photons (which
is decisive in bandwidth selection) are reflected in the depth variations of the tree.

The only disadvantage of the spatial-median layout is that we need slightly more memory since
the tree is not balanced anymore and an index or offset to one child must be stored per node.
In addition to the spatial median sorting, we apply the sliding-midpoint rule:
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Figure 5.3: The spatial layout in 2D (right) of the kd-tree with sliding mid-point rule (left). The sample
query shows the tested interior nodes (red lines) and leaves (red boxes). Here, the maximum number of
photons per leaf is 2. Note, how the sliding-midpoint rule shifts the plane to the nearest photon location
to cut away the largest possible empty space!

• set the splitting plane to the middle of a node’s bounding box aligned with the axis of
longest side,

• sort all photons associated with the node to the left or right side of the slitting plane,

• if either the right or left halfspace does not contain any photons, slide the splitting plane
to the nearest photon location in the non-empty halfspace.

This sliding-midpoint rule is a key issue for good performance of the kd-tree. Although such
rule looks quite simple, it was proven to be bounded in worst case by a poly-logarithmic time
for approximate search queries [14, 53]. An example for a visualization of our kd-tree in 2D
with spatial layout and sliding-midpoint rule is shown in Figure 5.3. We call our tree structure
kdtree8 because each node of the tree has 8 Bytes, which are defined as shown in Figure 5.2.1.
The variable plane stores the splitting plane position aligned with the axis that is stored in the
lower 2 Bits of rightOffset. Given the bounding box of the tree, the variable plane could be
avoided if we restrict the tree layout to a fixed spatial-median. However, we want to keep the
tree most flexible to allow for sliding-midpoint rule based construction as well as for photon-
median balanced construction. Therefore, we need to store the plane position and the index or
offset to at least one of the two child-nodes. Since we have chosen to use the preorder memory
layout, we only need to store the offset to the right child-node because the left child-node is
always found at index i+1. Using the spatial layout, the tree is not necessarily regular anymore
and there happen to be empty leaves in the tree that do not contain any photons. Furthermore,
we apply the sliding mid-point rule to cull away empty parts of the tree as soon as possible.
Thus, we need to insert special nodes into the tree that simply indicate that the sub-tree ends
there. In the same way, we need to identify whether a node is a leaf or an interior-node of the
tree. In case of an interior node, we continue the tree traversal. In case of a leaf-node the plane
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struct InteriorNode
{

float plane; // axis-aligned splitting plane
unsigned int rightOffset; // offset to the right child
enum EType {

EE LEAF = 0x0,
EE LOAD = 0x4,
EE EMPTY = 0x8,
EE INNER = 0xC };

enum EMask {
EE TYPE = 0xC,
EE PLANE = 0x3 };

};

is used to store the precomputed bandwidth (squared search radius) and the upper 28 bits of
rightOffset are taken as the index into the array of photons.

The important issue of the separate 8-Byte-node tree is that a single leaf can point to a
contiguous sequence of photons in the array. The maximum number of photons per leaf is
limited to a constant number Tm (e.g. Tm = 16). Since all bits of the leaf-node are used, the
number of elements per leaf is stored in the photon structure itself since this structure contains
one unused Byte due to alignment. This allows us to store the number of elements in the first
photon pointed to by the leaf-node and enables up to 256 photons per leaf which is sufficient.
The type LOAD is a special type of nodes that is only used by the external tree which is descibed
in reverse photon mapping in Section 6.10. The pseudocode for the recursive top-down kd-tree
construction starting at the root node for the whole photon array in range ifrom = 0 to ito = n

is shown in Figure 5.4.
Since we store several photons per leaf, the total memory needed for the kdtree8 (including

the photon array) is only slightly higher than for the tree layout with photon-nodes. By using
the kd-tree only for traversal to the leaves, we limit the test for nearest photons to a minimal
spatial region around the query point rather than along the entire kd-tree traversal.

Storing several photons per leaf results not only in an improvement of the search performance,
but also in a substantial decrease of construction time and memory space since fewer tree nodes
are created. The effect of having several elements (photons) in the leaves of a kd-tree was studied
by Talbert and Fisher [79]. They conclude that 10 to 30 photons does not decrease performance
but reduces the memory requirements of the tree by up to a factor of log2 30. Since we stop the
recursive sorting if the number of photons in the sub-tree falls below the threshold Tm, the time
complexity is reduced by O(N log2(Tm)). Hence, the time complexity of the kd-tree construction
is O(N log2 dN/Tme) where N is the total number of photons. In our test case, having maximal
32 photons per leaf, the memory required by the nodes of the kd-tree is about 30 to 60 times
less than the memory for the photons. Hence the whole tree can be stored in the main memory
of a standard PC even for dozen millions of photons. Moreover, we experienced that even more
than 30 photons per leaf does not decrease performance of searching. The impact of the number
of photons per leaf on the search timings and construction timings is shown in Table 5.1.
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function constructTree(ifrom, ito) −→ Nnodes

Nph ← ito − ifrom + 1
if Nph = 0 then

create empty node
return 1

end if
if Nph ≤ Nleaf OR tree depth ≥ Dmax then

create leaf node with index ifrom and offset Nph

return 1
else

create interior node H and keep index iH
select axis a with longest side of the current voxel
compute [spatial ‖ photon] median position PH along a
binary sort the array Aph in O(n) time so that ∀(i, j) with i, j ∈ [ifrom, ito] and ph[i].p < PH ∧
ph[j].p ≥ PH ⇒ i < j
{if either the left or right half space given by the splitting plane PH does not contain any photons,
move PH to the nearest photon position on the right respectively left (sliding-midpoint rule)}
NL ←− constructTree(ifrom, ileft) {recurse for the left half space and returns number of nodes
NL}
NR ←− constructTree(iright, ito) {recurse for the right half space and return number of nodes
NR}
initialize H with rightOffset ← NL + 1, plane ← PH , and axis ← a
return NL + NR + 1

end if

Figure 5.4: The construction of our spatial kd-tree with sliding-midpoint rule.

Atrium scene (glossy/diffuse) Sponza scene (diffuse)

Nleaf Nnodes V̄nodes V̄leaves Tc Ts Nleaf Nnodes V̄nodes V̄leaves Tc Ts

1 38,666,700 13, 195 4, 941 14.73 10.75 1 17,486,267 7, 587 2, 833 6.11 3.00

2 22,648,498 7, 617 3, 263 12.87 8.50 2 10,064,441 4, 422 1, 882 5.59 2.45

4 12,106,679 4, 031 1, 767 11.50 6.95 4 5,266,633 2, 338 1, 059 4.94 1.67

8 6,278,929 2, 098 953 10.62 6.08 8 2,659,460 1, 207 548 4.27 1.63

16 3,265,263 1, 100 501 9.87 5.56 16 1,345,430 629 283 4.23 1.52

32 1,739,938 591 253 9.35 5.33 32 682,949 333 144 4.02 1.39

64 952,313 329 135 8.88 5.23 64 344,390 182 78 3.81 1.39

128 443,773 187 71 9.39 5.38 128 173,284 104 40 3.65 1.44

256 217,547 113 42 8.03 5.34 256 88,694 63 24 3.25 1.44

Table 5.1: Construction time (Tc) and fixed-radius search time (Ts) in seconds for a different number of
photons per leaf (Nleaf ) in the proposed spatial kd-tree with 8-Byte-nodes and preorder depth-first layout
constructed using the sliding-midpoint rule. The table shows also the average number of accessed nodes
per search query (V̄nodes) in the kd-tree (including leaves) and the average number of accessed leaves per
query (V̄leaves). We have tested two scenes: the atrium scene which is rather glossy and the sponza scene
which is almost diffuse. The scenes are shown in Section 6.21. The tests in the left half are carried out for
the atrium scene with approx. 16.5 million photons (≈ 3, 100 photons per query). The tests in the right
half are carried out for the sponza scene with approx. 7 million of photons (≈ 1, 600 photons per query).
Both search times are the result from 10,000 successive search queries including density estimation. Note
that the maximum number of photons per leaf is limited by one Byte allowing for 256 photons.
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5.3 Grid

The largest part of the rendering time is spent in searching the nearest neighbors. Therefore, any
implementation that is faster than the standard kd-tree would yield in a significant speedup. The
regular grid is one such data structure. It has been successfully used in several photon mapping
papers [86], and theses [26, 32]. A photon grid is a regular sub-division of the photon bounding
box into equal-sized cells called voxels. The grid needs additional memory for representing the
voxels, which is usually only one index or pointer per voxel to the photon array. Nevertheless, the
memory overhead for millions of voxels can take a considerable amount of memory in addition
to the photon array. Since the grid is not adaptive, it may perform badly if the distribution
of photons is far from uniform (as for caustics) because this would result in few voxels with a
high number of photons and many voxels which are empty (usually more than 75% for most
scenes [26]) and more than 3/4 of the memory is wasted. Nevertheless, the grid performs usually
better than a kd-tree due to its constant search complexity for the nearest voxels. However, the
performance depends heavily on the resolution of the grid. Too large voxels decrease performance
since many one to one comparisons inside the voxels have to be tested. Too small a voxel size
rapidly increases the number of empty voxels (with O(n3)). The construction of the grid is
the same as for the hybrid grid described next except that we do not further sort the photons
inside a voxel. The search in a grid is similar to a 3-dimensional seed filling. In case of the
k-nearest neighbor search, we start to compute the distance to all photons inside the current
voxel containing the query location and proceed with the neighboring voxels (which can be found
in O(1) time) until we have found the k-nearest photons or reached the farthest voxels in the
maximum search radius. Detailed code for the regular grid is omitted, since it is not relevant for
this thesis and has not been investigated further. For implementation details, refer to [86, 26].

5.3.1 Hybrid Grid

A grid is fast but not adaptive. The kd-tree is adaptive but less efficient. So, we can combine
them to benefit from both data structures. Two combinations are possible: a grid in each leaf of
the kd-tree, or a kd-tree in each voxel of the grid. However, only the latter combination has been
implemented, which works as follows. We utilize a hybrid grid with a regular (coarse) resolution
and a secondary (adaptive) data structure in each voxel. This is preferable over the standard
grid where every voxel contains only a simple list of photons. A hybrid approach depends less
on the resolution and wastes less memory due to fewer voxels. Moreover, the search complexity
for a hybrid grid with many small localized kd-trees in its voxels is better than for a single large
tree since we only need to account for photons in a small fraction of the scene, whose extend
can be determined in O(1) time. Therefore, combined with our spatial kd-tree8, it naturally
performs better than using a single instance of the tree. In some sense, this is related to the
idea of having multiple photon maps as proposed by Larsen and Christensen [46]. However,
combined with the aggregate search described in reverse photon mapping in Section 6.9.2, we
gain 30% to 65% speedup for the kd-tree8 compared to the traversal of individual queries. The
traversal of several coherent queries at once is more efficient for a single large tree. Therefore,
we claim that the tree is still preferable over the grid for coherent search queries. Nevertheless,
the hybrid grid is still an interesting alternative to a single kd-tree and should be investigated
further.

The construction of the hybrid grid is very similar to the normal grid construction except
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for the treatment of a leaf. For a standard grid, the leaves contain a list of photons which have
to be checked one by one. For the hybrid grid, a leaf contains another photon map of any type.
Therefore, we need fewer voxels than for the normal grid and the computation of the resolution
can be simplified to the following proposed algorithm:

• compute the resolution of the grid as usual but set the minimum size of a voxel to the max-
imum gather radius for density estimation (this ensures that only the direct neighboring
voxels (26 neighbors) must be tested and eventually queried during density estimation

• allocate an array of pointers to an abstract photon map type which can be a list or a
certain kd-tree (or a grid itself)

• recursively subdivide the domain (until a single voxel is left) in the same way as for
the spatial kd-tree8 but with discrete splitting plane locations aligned with the voxel
boundaries

• if the recursion reaches a single voxel, and the number of associated photons is larger
than a minimum threshold (70), create a new photon map of user-defined type (e.g. list,
kdtree8, balanced kdtree).

• construct the new photon map for the photons in the current voxel’s bounding box.

Instead of bounding the minimum size of a voxel to the maximum gather radius Rmax, we could
also set it to 2 · Rmax, which would limit the search to only 8 voxels as proposed by Wald et
al. [86]. However, we experienced that the resolution of the grid in the case of 2 · Rmax can be
too coarse (8 times less voxels!) if Rmax is relatively large.

The search in a hybrid grid at a query point pq with search radius R can then be formulated
as follows:

• find the voxel v, where pq is located in, in O(1) time and query its photon map

• compute and insert the indices of all direct neighbors of v to a list of max. 26 entries (not
at the boundary of the grid!)

• compute the distance di from pq to all 6 sides i ∈ [1..6] of v

• if di is greater than R remove all 9 voxels on side i from the list

• do the same for all max. 12 edges and remove all 3 voxels from the list connected to the
edge j (if any) if d2

j is greater than R2.

• finally, do the same procedure for the max. 8 corners of the remaining diagonal voxels (if
any)

• successively query the photon maps of the remaining voxels in the list (between 0 and 26)

Notice that in only few cases all 26 neighboring voxels must be queried. In most cases only 1
to 8 neighbors need to be tested since the search radius is on average much smaller than the
maximum search radius.
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Scene Data Struct. Type Layout Nleaf Tconstruct Tsearch

Atrium kdtree jensen balanced preorder 1 14.90 10.20

Atrium kdtree jensen balanced inorder 1 14.50 12.70

Atrium kdtree8 our balanced preorder 1 16.80 9.48

Atrium kdtree8 our balanced preorder 16 12.66 5.67

Atrium kdtree8 our spatial preorder 16 9.87 5.56

Atrium kdtree8 our spatial preorder 32 9.35 5.33

Atrium grid normal spatial + list - 5.66 8.56

Atrium grid hybrid spatial + balanced kdtree 1 12.22 10.10

Atrium grid hybrid spatial + kdtree8 16 10.20 5.47

Sponza kdtree jensen balanced preorder 1 5.82 2.96

Sponza kdtree jensen balanced inorder 1 6.07 3.66

Sponza kdtree8 our balanced preorder 1 6.72 2.59

Sponza kdtree8 our balanced preorder 16 5.32 1.61

Sponza kdtree8 our spatial preorder 16 4.23 1.52

Sponza kdtree8 our spatial preorder 32 4.02 1.39

Sponza grid normal spatial + list - 2.33 1.91

Sponza grid hybrid spatial + balanced kdtree 1 5.25 2.69

Sponza grid hybrid spatial + kdtree8 16 4.60 1.41

Table 5.2: The construction times Tconstruct and query times Tsearch for different search data structures
and layouts. A fixed radius was used for the search. From left to right column: The scene used for testing,
the search data structure, its type and layout, the maximum number of photons per leaf (voxel) Nleaf , the
construction time, and the render time (search + density estimation time) for 10,000 successive queries.
The total number of photons is about 16 million for the atrium scene and 7 million for the sponza scene.
The type of the kdtree indicates whether it is the original layout of the kdtree proposed by Jensen where
each photon corresponds to a node of the tree or whether it is our proposed kdtree with 8-Byte nodes where
the photons are stored in the leaves only. The hybrid grid consists of 11,700 voxels (atrium) and 46,128
voxels (sponza) each containing a kdtree (or list) of same type and layout.

5.4 Results

A full comparison of the performance of our kdtree8 relative to the other mentioned search
data structures is shown in Table 5.2. It shows the timings for construction and rendering for
the different kd-trees with various layout schemes as well as a grid and hybrid grid structure.
The first two rows correspond to the balanced kd-tree with one photon per leaf as proposed by
Henrik Wann Jensen. The next rows show the timings for our proposed spatial kd-tree with
8-Byte nodes and sliding mid-point rule where the photons are only stored in the leaves. We
have tested both the photon-median balanced version and the spatial-median balanced variant.
For comparison purposes, we show only the difference between 1, 16, and 32 photons per leaf.
An exhaustive analysis for various leaf settings is shown in Table 5.1. The time Tsearch includes
the time for density estimation and statistics which is about 30% to 40% of the total time
Tsearch. All trees are implemented in a recursive way for construction as well as for searching.
An iterative version could decrease the search time further by up to 10% [9].



Chapter 6
Reverse Photon Mapping

Photon mapping (PM) is the commonly used global illumination algorithm since it yields good-
looking images without the distracting noise of unbiased Monte Carlo algorithms. Moreover,
Monte Carlo algorithms such as path tracing converge very slowly to a visual acceptable solution.
The reason for this is that PM efficiently re-uses light information and performs a convolution
of illumination across all surfaces filtering the high frequencies. This works well since indirect
illumination changes slowly in most cases. Hence, PM speeds up rendering of global illumination
by having more information at hand on the expense of using more memory.
In our approach, we build on this principle but exploit much more the modern PC’s memory.
Instead of storing only the incoming illumination on surfaces, we also store information about
indirect visibility. In normal PM one usually prepends a Monte Carlo sampling step referred
to as final gathering before estimating illumination from the photon map. However, each final
gather ray is only used once for computing the radiance from the photon map and thrown
away afterward. Thus, FGRs that intersect the same surface will eventually use a similar set
of photons for computing the radiance from the photons energy. We propose an algorithm that
keeps all final gather rays (FGRs) and organizes them in an efficient data structure for searching
similar to the photon map. We have presented and analyzed several data structures suitable
for density estimation in Chapter 5. Keeping all FGRs, we don’t need to compute the radiance
for each FGR separately but can turn the procedure around and distribute a photon’s energy
to many FGRs at once. This concept is algorithmically advantageous due to the fact that the
number of final gather rays is usually much larger than the number of photons and we will save
queries compared to normal photon mapping. The achieved speedup is in the order from 150
to 400 percent. On the other hand, the memory storage needed for storing all final gather rays
and photons becomes huge (beyond the capacities of standard PCs). As a remedy, we will show
different techniques such as image tiling and external caching to a hard disk. The rendering
equation for our reverse photon mapping is very similar to normal photon mapping but uses a
slightly different density estimation technique which we will describe in Section 6.4.

6.1 Previous Work

The time consumed by diffuse indirect illumination is typically the most significant part in the
whole rendering. This issue has been addressed in several papers. Here, we focus on a method
that aims at high quality solutions not allowing approximation artifacts that is comparable to
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normal photon mapping with final gathering. We will exclude methods based on radiosity as well
as other techniques that explicitly work with polygonal representations. The recently developed
real-time global illumination techniques such as Instant Radiosity work only for diffuse surfaces
and are not general enough to be used for high-quality rendering taking arbitrary light transport
into account.

The probably most prominent and oldest acceleration technique for indirect illumination
computation is the irradiance cache [95] and [94]. This solution works efficiently for slowly
changing indirect illumination on diffuse surfaces. Irradiance caching is excessively explained in
Section 4.5.1. The irradiance cache normally accelerates by one order of magnitude depending
on the user defined error threshold. However, it can introduce visible artifacts and the user
parameters need to be tuned in order to obtain nice results in acceptable times. This can be
cumbersome and needs experience.

Christensen proposes to precompute the irradiance at the positions of one quarter of all
photons. While the storage space required for the photon map is increased, the irradiance for
each FGR is approximated by a piece-wise constant function that forms a 2D Voronoi diagram.
Instead of computing the density from the k nearest photons, the algorithm searches for the
closest photon with a ”similar” normal to the one at the final gather ray hit point and returns
the irradiance that was precomputed at its location. This technique offers a speedup of around
one order of magnitude depending on the number of queries to the photon map. However, the
speedup varies strongly. The quality of the results depends on the scene and user settings. To
avoid artifacts the user is required to adjust parameters such as ”similar enough” for photon
normals.

Christensen and Batali [10] proposed the concept of an irradiance atlas as an approximative
representation for diffuse indirect illumination. They associate photon maps with objects in
the scene and construct a hierarchical ”irradiance brick map” represented by an octree over the
entire scene. The depth of the brick map adapts to the density and normal deviations in the
photon maps. A brick consists of 83 voxels for which a constant irradiance value is precomputed.
The brick map is capable of storing a large number of photons since the brick data is stored to
disk and only cached to main memory during access. Despite the large number of photons, the
method is not able to eliminate the noise when rendering the directly visible irradiance from
the brick map. The results look still noisy and blurry. And hence, a final gather step is needed
which boosts the render timings to approximately 4 hours for a high quality image.

A photon mapping method based on kernel density estimation (KDE) is described in the
paper from Lavignotte and Paulin [50]. They propose a two pass algorithm for fast photon
mapping using graphics hardware. Each photon that hits a diffuse surface splats its contribution
to the pixels within its projected footprint (i.e. projected disc) in the frame buffer using a box
kernel. They account for adaptive bandwidth selection in each pixel and deal with boundary
bias for triangular meshes. However, their approach is limited by the precision of the graphics
hardware and does not work with arbitrary topology. Since the KDE is restricted to a 2D
projection of the photon’s footprint in the image plane, occlusion and topological bias is enhanced
for non-planar surfaces. Moreover, the density estimation is limited to a box kernel function
and further bias is introduced due to the quadrilateral kernel support (projected quad) rather
than ellipsoidal (projected disc).

In this thesis we present our acceleration technique for photon mapping that has been pub-
lished to Eurographics in 2005 [29]. The method is also based on kernel density estimation but
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utilizes final gathering to obtain high quality results. It yields satisfactory and robust results
without the need for playing with parameter settings. We achieve this at the expense of using
more memory. Our algorithm can also be combined with several acceleration techniques such
as irradiance caching, density control, and importance sampling.

6.2 Overview

The basic idea of our algorithm is to reorganize the computation of density estimation for diffuse
indirect illumination in the reverse order. We will refer to normal photon mapping (NPM) as the
way how the global photon map is used traditionally [34]. In NPM, photons are traced first. The
photon map is constructed and final gather rays (FGR) are shot for every primary ray hitting
objects in the scene. At each FGR hit point, the irradiance is computed by density estimation
based on the k-nearest neighbors (kNN) search. The detailed photon mapping algorithm is
described in Chapter 4 on page 35.

We propose a reverse photon mapping algorithm that uses the same set of FGRs and the
same set of photons as for NPM. The difference is in the order of the density computation. For
each photon we find all the hits from FGRs that we refer to as reverse photons. We distribute
the photon’s energy to all contributing reverse photons and their corresponding pixels. The
reverse order results in faster computation. The analogy of reverse photon density estimation to
NPM is shown in Figure 6.2. Below, we describe the simplified version of the proposed algorithm
without issues related to caching.

6.3 Data structures

In the first step we sample the image plane and shoot FGRs at all primary ray hit points. We
will refer to the visible hit points of primary rays as pixel samples. For each pixel sample, we
store a record containing several attributes that we will describe later. At each pixel sample
we shoot final gather rays across the hemisphere and store reverse photons corresponding to
their hit points with scene objects. The reverse photons are similar to the concept of importons
[62]. However, since we use them in a different context, we prefer another name to distinguish
between these concepts. The reverse photons are stored in an array Ar. The reverse photon
contains the information listed below in Figure 6.1.

struct CReversePhoton
{

CVector3D position; // position of FGR hit point (12 bytes)
unsigned char theta, phi; // incoming direction - compressed to 2 bytes
unsigned short flags; // 1 byte for flags + 1 byte alignment
CVector3D contribution; // reverse photon weight for 3 spectra (12 bytes)
unsigned int sampleIndex; // index to the pixel sample array (4 bytes)

};

Figure 6.1: The reverse photon record (not optimized!)

The storage of an reverse photon requires 31 Bytes, however, for better alignment in the
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memory 32 Bytes are used. The member variable flags has different meanings depending on the
search data structure we use. For the original balanced kd-tree à la Jensen [34], it is used for
storing the dimension of the splitting plane (x, y, z). Our proposed spatial kd-tree uses it to
save the offset from the first to the last element in a leaf. In addition to photons, the reverse
photon contains an index to its originating pixel sample. Moreover, instead of storing energy it
stores the weight c of the eye path from the corresponding pixel to the final gather ray hit point
for three wavelengths (here just RGB or XYZ). Since the weight c results from BRDF sampling,
it is reciprocal. This means we are allowed to revert the eye path and consider it as the light
path describing the radiance transfer from FGR hit point (reverse photon) to the eye.

After having sampled the image plane and stored all reverse photons, we construct the reverse
photon map which accelerates searches of the kind: nearest neighbor, k-nearest neighbors, and
all neighbors in radius R (used for KDE).

6.3.1 Kd-tree Construction and Layout

In the second step, we construct an efficient data structure for fixed-radius search over reverse
photons. We have tested several data structures such as the original balanced kd-tree [34] in
various memory layouts (inorder, preorder, heap order), a hybrid grid where the voxels contain
any other data structure, and a simple list for comparison, see Chapter 5 for details. We
evaluated as the most efficient a spatial kd-tree with preorder layout and sliding mid-point rule.
Unlike the original balanced kd-tree where the interior nodes and leaves correspond to single
photons each storing an axis-aligned splitting plane (4+1 Bytes), the reverse photons are only
stored in the leaves and are pointed to by the kd-tree nodes. This way, both, the interior nodes
and the leaf nodes of our kd-tree take only 8 Bytes. Similar approach was used by Wald et
al. [85]. The total memory consumption of our search data structure including reverse photons
is only slightly higher since the kd-tree is around Tm ∗ (32Bytes/8Bytes) times smaller than
the array of reverse photons, where Tm is the average number of reverse photons per leaf. For
example, if Tm = 32 the kd-tree is up to 128 times smaller than the array of reverse photons.
Therefore, the whole tree fits into the main memory of a standard PC even for a high number of
reverse photons. However, the highest performance gain yields the kd-tree construction since the
time for the tree construction is proportional to the depth of the tree and the depth is reduced
by up to log2(Tm).

6.3.2 The Dual-Tree for Coherent Accesses

In addition to the reverse photon map, we also construct a second kd-tree, which we will call the
kd-tree over photons. The procedure is almost the same as for reverse photons. We shoot the
photons from the light sources and store them in the photon array Ap when they hit a diffuse
surface. This is exactly carried out as for normal photon mapping with the exception that we do
not use the photon map for searching. However, when building up the kd-tree over photons, we
benefit from the spatially sorted photons. Queries formed by sequentially traversing the photon
array Ap, establish spatial and therefore memory coherent accesses to the reverse photon map
Ar. The queries are highly coherent because both trees are sorted spatially. This allows us to
use several optimizations such as the aggregate search (see Section 6.9.2) and the external cache
(Section 6.10). The kd-tree over photons uses the same data structure as the reverse photon map
where the photons are stored in the leaves and the kd-tree on top consists of 8 byte nodes. This
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has the advantage that we can simply throw away the kd-tree after construction and applied
density control (Section 6.9.3) which saves us memory. Furthermore, the spatial layout of the
kd-tree over photons can be exploited in various ways as we will show for the case of adaptive
kernel density estimation (Section 6.5).

6.4 Kernel Density Estimation

We have built up the kd-tree over reverse photons and the kd-tree over photons. Therefore, we
have highly coherent queries in the reverse photon map. Using kernel density estimation (KDE)
we search at every photon position for all reverse photons not farther than the radius Rj . The
computation of Rj is described in Section 6.5. Recall that in normal photon mapping the k-
nearest neighbors (kNN) density estimation is usually used. The kNN density estimation is an
adaptive method and has been proved to be robust while still efficient and easy to implement.
The number for k is usually provided by the user. In combination with final gathering, k
is set to smaller values (≈ 30 − 100) to avoid occlusion bias (light leakage) and blurring in
low density regions. As a rule of thumb, we set it to 3

√
N where N is the total number of

photons (see Section 4.4.2). However, kNN density estimation is far from optimal [74]. It
results in discontinuities in the estimate and suffers from heavy tails in low density areas. See
Chapter 3 for details. In our algorithm we use kernel density estimation (KDE) with adaptation
to the local density which is often referred to as variable kernel density estimation. Variable
KDE produces slightly better results than kNN density estimation since it better preserves high
density gradients which are strongly blurred by kNN density estimation. The KDE methods are
well studied in statistics [74] [89].

Different kernel functions are supported by our density estimation method. Using an arbi-
trary kernel (Box, Cone, Epanechnikov, Gaussian, and Biweight) we distribute the flux after
multiplying by the weight given by the kernel function. We will now formulate the rendering
equation in the context of final gathering, where Nfgr final gather rays (FGRs) are shot via
BRDF importance sampling. The radiance Ld contributed by diffuse indirect illumination along
a primary ray in direction ωo hitting a surface at point x with normal ~n is computed as:

Ld(x, ωo) =
1

Nfgr
·

Nfgr∑
i=1

fr(x, ωi, ωo) · Li(x, ωi) · (~n · ωi) (6.1)

For normal photon mapping the radiance Li(x, ωi) along the i-th FGR is computed using
density estimation from the k nearest neighboring photons found at maximum distance Ri from
the hit point xi

Li(xi, ωi) =
k∑

p=1

K
(
‖xi − xp‖

Ri

)
· fr(xi, ωp, ωi) ·

∆Φp(xp, ωp)
π ·Ri

, (6.2)

where K(xd) is the kernel function used in the density estimation. In reverse photon mapping
the radiance Li(xi, ωi) along a FGR is computed as follows:

Li(xi, ωi) =
Np∑
p=1

J (xi, xp, Rp) · fr(xp, ωp, ωi) ·
∆Φp(xp, ωp)

π ·Rp
,

J (xi, xp, Rp) =

{
K
(
‖xi−xp‖

Rp

)
, ‖xi − xp‖ < Rp

0 else.
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Figure 6.2: Analogy between kernel density estimation (left) from the perspective of final gather rays
(normal photon mapping) and (right) from the perspective of photons (reverse photon mapping). Point
labels ip mark the final gather ray hits, p the photons and r the bandwidth or gather radius.

Figure 6.3: Left: direct visualization of the irradiance in the Sponza scene computed from the photon
map via reverse photon mapping. It shows what is seen by a final gather ray. Middle: a moderate
distribution of the reverse photons (usually about 1000 times more), and right: the distribution of the
photons (in false color).

The interpretation is as follows: all photons p that found the reverse photon at position xi with
a maximum distance Rp from the photon position xp, splat their flux ∆Φp weighted by the
kernel K to this reverse photon. Recall that the reverse photon is just a synonym for the end of
the i-th final gather ray. The analogy between both density estimation techniques is depicted
in Figure 6.2.

In order to allow for fast rendering using a direct visualization of the (adaptive) density
estimation from the photon map, we must not initiate a final gather but store single reverse
photons with directly visible pixel samples at primary ray hit points. Consequently, the resulting
number of reverse photons is much smaller and the reverse photon map fits completely in the
main memory. An example for the direct visualization of the density estimation computed
with our method together with the distribution of photons and reverse photons, is shown in
Figure 6.3. The blurry image on the left can be understood as what is seen by a final gather
ray.
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6.5 Estimating Kernel Bandwidth

In standard KDE the radius R (called bandwidth, support or window) of the kernel is globally
constant and has to be adjusted to give satisfactory results. The setting for R is crucial (see
Section 3.6). R is either tuned by the subjective choice of the user in a sense of trial and error
or by applying optimization algorithms. The optimization is split in two groups: the parametric
and the non-parametric estimation. The former assumes that the underlying distribution is of
a particular class of analytical models (e.g. normal distribution, log-normal) and adjusts the
parameters to compute the optimal bandwidth. Therefore parametric density estimation is not
suited for photon mapping since we do not know anything about the distribution of the photons
in advance. In order to provide some automatic adaptation to rather general distributions,
several cross-validation approaches were developed such as least squares cross-validation, biased
cross-validation, likelihood cross-validation. These methods are very expensive to compute and
only feasible for a small number of samples. They were designed for statistical applications
that often deal only with uni-variate (1D) data. Moreover, in the original form, these methods
compute a constant optimal bandwidth as a trade-off between bias and variance. A globally
constant bandwidth however works only well for low frequency distributions. When we are
dealing with highly varying densities, it is recommended to use adaptive density estimation
methods with varying bandwidth.

6.5.1 Precomputing K-Nearest Neighbors

So far we have been talking about KDE with constant bandwidth selection. Instead of using
a fixed bandwidth R, we use an adaptive radius Rp where Rp is derived from the approximate
density of photons similarly to normal photon mapping. This is superior to the ”standard” kNN
estimate as it does not suffer from long tails in the estimate as shown in Figure 6.4. The formula
6.3 shows the general form of adaptive KDE using different radii Rp for each photon p. We will
first describe the variable kernel method that is based on the kNN method. For each photon
p we search for the set Ωk

p of the k nearest neighboring photons (kNN). We store the radius
Rp which is the distance to the farthest photon in Ωk

p in the photon p. During photon energy
distribution, for each photon p we search for all reverse photons around p within the radius Rp.
We splat the flux of p to these reverse photons as described in Section 6.4. This approach is
independent of the reverse photon positions and hence, we do not necessarily obtain k nearest
photons per reverse photon at least not in low density regions as shown in Figure 6.4. While
the kNN estimate yields 500 nearest neighbor photons, for the variable KDE only 161 photons
contribute to the reverse photons (red point). Moreover, the shape of the density estimation
footprint is not bound to be circular but can have any shape as shown in the middle image of
Figure 6.4.

The adaptive KDE does not only result in better density estimation but also in a faster and
less complex search than for kNN density estimation. This is because we know the local gather
radius Rp in advance and can use a constant bandwidth per photon during the search for the
nearest reverse photons. Contrarily, the kNN density estimation usually requires maintaining a
heap structure for finding the k-nearest neighborsin a maximum initial radius around the final
gather ray hit point, which adapts to the density of photons during the search.

A problem with the adaptive KDE is that the radius Rp has to be precomputed for each
photon. This can take long for a large number of photons. If the number of photons is Np, we
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Figure 6.4: The footprint of contributing photons (black points) to the irradiance estimate (red dot) for
the kNN estimate (left) and for the variable KDE with precomputed k-nearest neighbors bandwidth per
photon (middle). Both estimators use 500 (precomputed) nearest neighbors. The photon sample (yellow
dots) is drawn from a density function consisting of a high frequency box function plus a simulating point
light distribution function (peak with quadratic fall off). The right image shows the density estimated
along the red dotted line using the kNN (purple curve) and the variable KDE (white curve) estimator.
In this example both estimators use 100 (precomputed) nearest neighbors weighted by the Epanechnikov
kernel. The green curve shows the reference computed analytically. For the visualization only a fraction
of all photons is shown in the right image. Note that for the variable KDE in the middle image only 161
photons contribute to the irradiance estimate at the red dot, which reduces the tails in the low density
region (that has almost zero density). It also preserves the gradients slightly better than the kNN estimate.

need to perform Np k-nearest neighbors queries to the photon map. This has a complexity of
O(Np ·(k+log(Np)). Still the radius precomputation for the k-nearest neighbor photons is faster
than the kNN search for each density estimation point (reverse photon) if the number of reverse
photons is larger than the number of photons. This is normally the case for final gathering.

Nevertheless, we can improve on the precomputation if we assume that the precomputed
radius Rp does not change much among neighboring photons and is just an initial estimate of
the local density. Moreover the exact k nearest neighbors per photon are not required. So, why
not using a cheaper approximation to the bandwidth function?

We achieve this by discretizing the bandwidth function in space. In each leaf of the spatial
kd-tree over photons we select m out of n photons and precompute the bandwidth Ri only at
their locations. Next, we compute the average bandwidth R̄ from the m radii Ri. All photons in
the leaf get the same bandwidth R̄. The concept works since the size of the leaves adapts to the
photon densities and hence high-density regions get more bandwidth samples than low-density
regions (see Figure 6.5). Using this simplification, the bandwidth can be efficiently precomputed
for a large number of photons (only 10 – 20 seconds for 500,000 photons and 16 photons per
leaf) since the precomputation order is coherent in space and memory.

6.5.2 Estimating Bandwidth using the Kd-tree

In the previous section, we described a possible application of the well-known variable kernel
method [74] to photon mapping. We observed that the precomputed kNN bandwidth changes
relatively slowly compared to the photon density and that the spatial kd-tree over photons helps
in reducing the number of kNN queries for the bandwidth precomputation. From the pilot kNN
estimates, we computed the average bandwidth per leaf.



6 Reverse Photon Mapping 77

f
f

x

Figure 6.5: The adaptive piece-wise constant density estimation precomputed in the leaves of the spatial
kd-tree. The step function represents the leaves of the kd-tree in 1D, where the width along the x-axis
corresponds to the size of the leaf ’s voxel and the height to its density. The error due to the piece-wise
constant estimate decreases in the high-density region.

The general view in the literature for statistics [1, 5] is that the adaptive kernel method is
insensitive to the fine detail of the pilot estimate, and therefore any convenient estimate can be
used [74].

Since the pilot estimate does not need to be accurate and the resulting density estimate is
only visible through Monte Carlo sampling of a diffuse or glossy BRDF, we can even go one step
further and avoid any kNN photon query by exploiting the spatial kd-tree. Recall that we store
a certain number of photons per leaf whose corresponding voxel has size a ·b ·c. We compute the
diagonal length l =

√
a2 + b2 + c2. We use l and the number of photons in the leaf n to estimate

the search-radius over a spatial cell associated with the corresponding leaf. The upper bound
for the bandwidth R that aims to finds the k nearest photons is then computed as follows:

R̃ =

√
(
1
2
· l)2 · n

k

R = max(Rmin,min(R̃, Rmax),

where k is the number of photons in the actual kNN search, Rmin and Rmax are constant lower
and upper bound respectively. They can either be determined by the size of the scene or by
a user defined smoothness parameter. We compress R to 1 Byte and store it in the photon
record which we need to decompress before the actual search in the reverse photon map. We
get a pessimistic estimate for R since the surface area for a leaf is over-estimated (by using
the diagonal, we consider the bounding sphere of the leaf). Hence the initial pilot density is
underestimated and R is larger. Nevertheless, this method can provide us approximately
the desired number of photons (k) and hence the local density when searching that region
(Figure 6.5). Since the photon density for diffuse illumination is changing slowly the photon
density gradient for neighboring leaves is small. Note that the size of a leaf adapts to the density
but the number of photons per leaf stays approximately the same. Figure 6.6 shows the density
estimation visualized in the chart on the right from the kd-tree leaves for the test scene on its
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Figure 6.6: The images on the left show the test scenes and the photon distributions. The chart on the
right shows the density f(x) along the depicted line on the left. The density is estimated with the KDE
method (red line) and the proposed kd-tree method (green line). One can observe, how the green step
function corresponds to the density in the leaves of the kd-tree.

left. Figure 6.7 shows the photons bandwidth in a false color image where blue corresponds to
the largest bandwidth and red to the smallest (approx. 3 cm gather radius).

6.5.2.1 Some Implementation Issues and Optimizations

So far we used the approximative density estimation from the leaves of the kd-tree as the pilot
estimate. We experienced that the number of photons n used to compute the density for the
pilot estimate should be large. This brings up two problems. First of all, we only use n = 32
photons per leaf. Hence, the pilot estimate is too noisy to give robust results. And second, n is
independent of the total number of photons. We could use more photons per leaf but this would
decrease the spatial coherence of photons since the leaves would become larger and photons inside
are unsorted. This is not recommendable since it may slow down the kNN query performance
used for the density control (Section 6.9.3) and makes the aggregate search (Section 6.9.2) sub-
optimal. Therefore, we decided not to estimate the density from the leaves but from a sub-tree
that is a few levels up in the hierarchy. To do so, we precompute the bandwidth whenever a sub-
tree node contains less than the desired number of photons (≈ 100) and assign this bandwidth
to all photons in the sub-tree. We also reduced the maximum number of photons per leaf to 16.

Since a larger part of the tree uses now the same bandwidth, it is wasteful to store the
bandwidth with each photon record. Hence, we move the bandwidth stored in the photons to
a separate array Al associated with the sub-trees. Array Al contains the bandwidth R and the
offset to the next sub-tree which is the current number of photons in the sub-tree. Since we
access the photon array sequentially during photon splatting, we can simply look-up the gather
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Figure 6.7: Visualization of the precomputed bandwidth per photon in false colors (from blue ≡ largest
to red ≡ smallest gather radius). Left image shows the photon map without density reduction and the
right image shows the photon map after density control was applied. Note the change in the bandwidth
after density reduction.

radius R in Al and increment Al by its offset during traversal.
Furthermore, we use only the squared gather radius R2 throughout the whole algorithm.

This eliminates the computation of the square root in the radius precomputation phase and
during kd-tree searches including photon splatting.

6.6 Run-time complexity

In normal photon mapping with final gathering the recommended number of final gather rays
(FGR) per pixel is between 600 and 4255 [9], [40], [78]. The number of pixels in an image is
typically 1 - 3 millions. This gives in total 109 to 1010 FGRs to be computed. It involves creation
of FGRs via BRDF importance sampling, tracing the rays through the scene, and estimating
radiance at their hit points with the scene. Let us denote by G the number of final gather rays
per pixel, by I the number of pixels in the image, by K the number of photons searched in
the neighborhood, and by R the radius used by reverse photon mapping for fixed-radius (i.e.
constant bandwidth) search. For the analysis, we assume the ideal kNN search finding always
K nearest photons in O(K + log2 Np) time.

6.6.1 Normal Photon Mapping

For normal photon mapping (NPM), we shoot Np photons, we construct the kd-tree in the time
TC

NPM = c1 ·Np · log2 Np. During rendering, we shoot Nfgr = G · I FGRs. For every FGR, we
find and process the K nearest photons in time TS

NPM = c2 ·K+c3 · log2 Np. The total number of
found photons for all FGRs is Nfgr ·K. The total computation time for normal photon mapping
without construction time is then:

T T
NPM = Nfgr · TS

NPM = c2 ·Nfgr ·K + c3 ·Nfgr · log2 Np (6.3)
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The constant c1 is a factor behind the sorting of the photons during the construction of
the tree, c2 is the factor for processing a single pair photon×FGR (i.e. feasibility test and
evaluation of the kernel function), and c3 is the time required for a single traversal step in the
kd-tree during kNN search. These constants are determined by the actual implementation and
are therefore not relevant for the theoretical analysis of the algorithms. They can be excluded
for the time complexity analysis, though they should not be neglected. For example, a recursive
implementation of the kd-tree search is about 10 percent slower than its iterative counterpart.
The space needed for the photon mapping is O(Np).

6.6.2 Reverse Photon Mapping

For reverse photon mapping (RPM) we construct two kd-trees: the kd-tree over Np photons
(photon map) and the kd-tree over Nfgr reverse photons (reverse photon map). Since we increase
the number of photons in a single leaf to Tm, the construction time is TC

RPM = c1 · (Np ·
log2 dNp/Tme+Nfgr · log2 dNfgr/Tme). The searches are carried out in the reverse photon map.
Let us assume that the total number of found pairs photon × reverse photon is also Nfgr ·K.
Since the number of searches is Np, the number of reverse photons found per search is on
average Kr = Nfgr ·K/Np. The search time in the reverse photon map for a single photon is
then TS

RPM = c2 ·Kr + c3 · log2 Nfgr. The total computation time neglecting construction time
is then:

T T
RPM = Np · TS

RPM

= c2 ·Np · (Nfgr ·K/Np) + c3 ·Np · log2 Nfgr

= c2 ·Nfgr ·K + c3 ·Np · log2 Nfgr (6.4)

The space complexity for reverse photon mapping is O(Np + Nfgr). From the formula 6.4
we can already see that the computation time is the same for NPM and RPM if the number of
photons Np and the number of final gather rays Nfgr is equal. In our analysis the computation
time to process all pairs photon × reverse photon (TP = c2 · Nfgr · K) is the same for both
normal and reverse photon maps (c2 · Nfgr ·K in formulae 6.3 and 6.4). The processing time
TP includes the time for computing the radiance contribution per FGR via BRDF evaluation.
However, the searching time is significantly smaller for RPM. The theoretical speedup for RPM,
excluding TP , is shown in Figure 6.8 on the left. The ratio of computation times T T

NPM/T T
RPM

is shown in Figure 6.8 on the right for a various number of FGRs Nfgr and different numbers of
photons Np. From the analysis it follows that the reverse photon mapping algorithm decreases
the searching time only if the number of final gather rays to process is by orders of magnitude
higher than the number of photons. This is typically the case for rendering images even when
using irradiance caching, in particular high resolution images used in the production rendering.
It should be mentioned that if the computation time TP dominates the computation, reverse
photon mapping hardly gives any speedup. The dependence of RPM on the number of photons
is summarized in Table 6.1. Each test uses the same setting for the eye pass (i.e. same number
of reverse photons) but approximately the double number of photons. For testing purposes
the density control (Section 6.9.3) was switched off and the adaptive bandwidth (Section 6.5.2)
was bound to a maximum gather radius of 1 meter. If the adaptive bandwidth is not bounded
by a maximum radius, the timings become similar for a large range of photon numbers. This
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Figure 6.8: The theoretical speedup for reverse photon mapping compared to normal photon mapping.
The number of pairs photon×reverse photon (i.e. all photons found by all FGRs in normal photon
mapping) is the same. The constants are K = 100, c2 = 0.1, and c3 = 1.0. (left) The theoretical speedup
only for the search. (right) The total speedup comprising search and processing of the pairs photon×reverse
photon.

# Tasks NS
ep Np T T

RPM [s] T S
RPM [s]

97 2.00 · 109 12,670 3, 793 297

97 3.75 · 109 24,701 3, 872 308

98 3.52 · 109 50,093 3, 778 297

99 5.98 · 109 99,383 4, 073 465

99 10.80 · 109 199,705 4, 312 826

100 21.00 · 109 400,178 5, 063 1, 522

102 38.90 · 109 800,025 6, 344 2, 788

104 67.60 · 109 1,602,241 8, 417 4, 722

Table 6.1: Rendering timings for the atrium scene using reverse photon mapping with different numbers
of photons (without density control). The adaptive bandwidth is used with rendering setting: 800 final
gather rays per sample, 4 samples per pixel, and a resolution of 500× 500 pixels (i.e. ≈ 800 · 106 reverse
photons). From the left column to the right column: the number of tasks generated by the scheduler, the
total number of gathered reverse photons NS

ep from all tasks and all queries, the number of stored photons
Np, the total computation time TT

RPM in seconds (see Table 6.5 for a complete list of timings of all
rendering stages), and only the time for rendering the indirect diffuse illumination via density estimation
TS

RPM including search of reverse photons. Note that the number of rendering tasks increases slightly with
the number of stored photons Np. This is enforced by the given memory limits in the scheduler described
in Section 6.7.
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is because the number of gathered reverse photons per photon increases automatically when
the number of photons decreases. Hence the total number of found reverse photons to be
processed is similar for different numbers of photons. This also shows the weakness of kNN
density estimation: The large bandwidth in low density regions leads to blur and light leakage.
Moreover, more cache misses are produced if a photon query includes too many nearest neighbors
which can even result in a decrease of performance if the number of photons is reduced!

6.7 Scheduling Tasks

Rendering images in high resolution and high quality requires a large number of reverse photons
(i.e. FGRs) that do not fit in the physical memory of consumer-level computers. Nowadays, the
main memory of most standard PCs (with 32 Bit addressing) is limited to 1–4 GBytes. In our
current implementation, we allow for up to 230 ≈ 1 Billion entries in the reverse photon array.
The storage space required is then 230 × 32 Bytes = 32 GBytes, which is far from affordable
for the main memory of a consumer-level computer nowadays. (Besides it is even infeasible for
most computers with a 32 Bit address space.) One way to solve this issue is to subdivide the
data execution in many tasks and combine the results of these tasks.

The major part is the computation of the radiance along the final gather rays. Since the
computation of density estimation via reverse photon mapping does not induce any correlation
between FGRs nor any ordering of the pixels, we can subdivide the computation in the spatial
as well as the ”temporal” domain. The former is carried out by tiling the whole image plane
and the latter by processing the pixels in several repeating runs splitting the number of FGRs
per pixel.

In order to make it practical to the user, we hide the burden for setting these parameters
manually. Therefore, we implemented a memory scheduler that does the job of computing the
number of tiles and the number of final gather rays for the tasks in advance. The input for
the scheduler is the size of available memory for the renderer, the image resolution, the number
of samples per pixel, the number of FGRs per pixel sample, the number of caustic and global
photons to store, and the user preferences as a trade-off between image quality and the tile size.
The latter produces faster results however with lower quality and vice versa.

The scheduler creates the sequence of tasks to be computed by the renderer. A task is
specified by the image tile coordinates, the number of samples per pixel, the number of FGRs
per pixel sample, the weight for this tile (i.e. its contribution to the overall image), the initial
random seed, the estimated memory consumption by reverse photons and photons for this task,
and some flags specific to the rendering and statistics (e.g. whether we want to re-shoot the
photons or which camera-frame-sampling scheme we want to use). When a tile is computed, all
the computed tiles are combined to a single image.

The order of tasks can also allow progressive previewing: first the whole image is computed
with a small number of FGRs per pixel, and then the quality is improved by computing the tiles,
increasing the number of FGRs per pixel. The proposed scheduling is also a natural candidate
for parallelization. Note that the photons from the light sources are only generated for the
first task and reused for all subsequent tasks. This is not obligatory. We could delete the
photon array and re-shoot them using a new seed for successive runs. Using Quasi-Monte Carlo
sampling (e.g. Halton sequence), we would be able to obtain the same results in successive runs
as if using a multiple of the number of photons per run at once. This way we could save memory
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int spp = samplesPerPixel;
int fgrs = finalGatherRaysPerSample;
int width = imageWidth;
int height = imageHeight;
int tilesY = 1;
int tilesX = 1;
int sampleWeight = sampleWeightIncrement;
int tileWeight = tileWeightIncrement;
estimateMemoryConsumption( & memoryAvailable, & memoryNeeded,

width, height, spp, fgrs);
while (memoryAvailable < memoryNeeded) {

if (sampleWeight > tileWeight) {
if (height > width) {

tilesY++;
height = (int)ceilf( imageHeight / (float)tilesY);

}
else {

tilesX++;
width = (int)ceilf( imageWidth / (float)tilesX);

}
tileWeight += tileWeightIncrement;

}
else { // decrease the number of samples per pixel

if (spp > 1)
spp = spp / 2;

sampleWeight += sampleWeightIncrement;
}
estimateMemoryConsumption( & memoryAvailable, & memoryNeeded,

width, height, spp, fgrs );
}
nTasks = tilesX * tilesY * (int)ceilf(samplesPerPixel / (float)spp);

Figure 6.9: A basic scheduler for reverse photon mapping

by using less photons per run which in turn could be used for storing more reverse photons.
However, the photon distribution should be the same for all tiles of the image. Otherwise,
visible artifacts between neighboring tiles may occur. To our experience the subjective image
quality of the global illumination with final gathering is not much affected when using more
photons but depends heavily on the number of final gather rays per pixel. However, we have
not experimented with the influence of using more photons in the final gathering.

6.7.1 A Basic Scheduler for Reverse Photon Mapping

We have implemented two scheduling algorithms. The first one is the simpler algorithm that
computes a pessimistic estimate for the maximum number of reverse photons per tile and sub-
divides the image and the number of samples per pixel until the needed memory per task is
less than the available memory. The algorithm for the task sub-division is shown in Figure 6.9.
The function estimateMemoryConsumption computes an estimate of the memory used by the
photons and kd-tree over photons, the images, the scene geometry including final gather ray
cache and write-back cache for reverse photons and returns the remaining memory in variable
memoryAvailable. Additionally, it computes the memory needed to store the reverse photons
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for a given tile with parameters width, height, spp, fgrs and returns it in memoryNeeded.
Next, the image is sub-divided into the number of tiles in x and y direction. Tile coordinates

and samples per pixel for each tile are written to the task list. At the end the weights for each
tile are computed from the ratio of the actual samples per pixel used and the final number
of samples per pixel. Note, that a user-defined preference parameter determines the weights
sampleWeight and tileWeight that dictate the partitioning into the number of repeated runs
per pixel and the number of image tiles, i.e. two times a higher sample weight results in two
times more tile sub-divisions than pixel sample splits.

6.7.2 Scheduling with Improved Memory Estimation

The basic scheduler explained previously has a major drawback. It cannot accurately predict
the memory consumption by the reverse photons since it depends on the scene and the involved
BRDF sampling of final gather rays. Hence, the number of stored reverse photons varies highly
for different scenes using the same rendering settings. Moreover, secondary final gather increases
the number of final gather rays in corners considerably. In the former scheduler, we simply
assumed the number of stored reverse photons is maximum in each tile. This often leaded to
large over-estimations for scenes with mostly glossy light transport and did not work at all
when secondary final gather was enabled. In order to minimize the number of tasks, which is
beneficial for reverse photon mapping since it can exploit more memory, we precede an initial
pre-sampling step. This pre-sampling over the entire image plane identically imitates the final
rendering process including final gathering and BRDF sampling. However, it uses a much smaller
number of samples per pixel. And instead of storing the reverse photons at final gather ray hit
points, we increment the number of stored samples in a matrix field which corresponds to the
currently sampled pixel of the image. The matrix has exactly the same size as the image and is
initialized to zero at the beginning.

Once we have pre-sampled the whole image and filled the matrix, we build a summed-area
table from this matrix. Using this table, we can easily compute the memory that would have
been used by reverse photons during pre-sampling in a rectangular area of the image if we had
stored them. Since we know the ratio of initial samples and final number of samples for the
image, we can compute a precise estimate for the required storage space of each area in the
image.

We pass the summed-area table to the scheduler which adaptively constructs the tiles in
a way that each tile uses approximately the same memory and the memory consumption per
tile is maximized. The tiles are not regularly sized anymore but adapt to the local sampling
distribution. For example, glossy image parts will receive less samples and the tile size will
automatically increase in this region. This adaptation would be also beneficial for parallel
computation of the tasks since the workload and hence the computation time is balanced among
concurrent tasks.

So far, we have neglected a small detail in the algorithm. We have described the adaptive
scheduler for standard final gathering via BRDF importance sampling. However, we also allow
the user to enable secondary final gathering in order to obtain slightly better results in corners. If
we allow for secondary final gathering, the pre-sampling results are not linear scalable anymore
since the results grow exponentially in the corners. We do not know the pixels affected by
secondary final gathering and additionally the number of secondary final gather rays (FGR2nd)
depends also on the number of primary final gather rays. Therefore, we keep it simple and store
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all FGR2nd in a second matrix. At the end the final estimate for the number of reverse photons
per tile is computed as the sum from both matrices (i.e. summed area tables) that are scaled
individually.

6.7.3 Irradiance Caching

Irradiance caching is a widely used technique for accelerating rendering of indirect diffuse illu-
mination by interpolation and works smoothly hand in hand with photon mapping. It normally
yields a speedup compared to normal photon mapping (NPM) of one order of magnitude. This
is a better speedup than we achieve with reverse photon mapping. Below we describe how irra-
diance caching can be combined with reverse photon mapping. We will not explain the details
here since we have already introduced the general concept in Section 4.5.1 on page 50.

The difficulty in reverse photon mapping (RPM) is that we do not know the irradiance
during final gathering. So, we cannot immediately interpolate the irradiance from neighboring
cache samples at the query location and add its contribution to the image as it is done for
normal photon mapping. In RPM the radiance per FGR is computed during photon splatting
and we get the irradiance only at the end. Hence, we need to store the irradiance samples that
are to be interpolated and process them in a second pass (completion phase). Fortunately, we
already store all pixel samples (primary ray shot through the image plane) for pixel filtering
purposes (convolution across the sub-pixels). Thus, we simply set the state of the pixel sample
to interpolation. For that we do not need to introduce an additional variable.

At the end, after the cache is complete and all irradiance values for each cache sample have
been computed in the processing phase, we can start the second pass, the actual interpolation.
To do so, we go over all pixel samples that are marked for interpolation and query the irradi-
ance cache for neighboring cache samples in the same way as it is done for NPM described in
Section 4.5.1. However, this time we benefit from the complete irradiance cache and do not need
to use progressive refinement for the image sampling as for the standard irradiance cache. This
second pass algorithm even yields a cleaner and smoother interpolation which can be seen in
Figure 4.7 on page 55. This is because each query to the irradiance cache returns all re-usable
neighbors, their correct weights, and their irradiance. We simply sum all weighted irradiance
values, divide the result by the sum of weights, and write this result back to the interpolated
pixel sample. Now, we have got the irradiance at the sample location. To compute the final
radiance for the pixel sample, we multiply the interpolated irradiance by the constant BRDF
vector (diffuse albedo divided by π) stored with the pixel sample.

The second pass, the irradiance cache completion, is done in negligible time compared to
the rest of the computation. The overhead for querying the cache twice is negligible due to the
coherent sequential processing. However, the increased memory requirements are considerable
since we need to store the whole irradiance cache and the pixel samples for a tile containing
position, compressed normal, and albedo at primary ray hit points. Moreover, irradiance caching
cannot be separated into tile-based rendering passes since we also need to query cache samples
from previous tiles in order to interpolate the irradiance smoothly across the tile boundaries.
Splitting the irradiance cache to tiles yields discontinuities at tile boundaries. Therefore, the
complete cache must be maintained and updated during the task processing loop.

The quality of the rendered images with irradiance caching depends strongly on the user
defined error threshold and the number of neighboring cache samples for the interpolation.
Below are the statistics for three rendering settings for the sponza scene. The results are shown
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in Figure 6.10.

Error Nfgr NT
ep NQ/N∗

Q [%] N̄K max NK Tfgr [s] Tde [s] Ttotal [s]

0.2 400 × 5 3.4 · 106 99.45 5 17 21.4 23.0 124.9

0.1 400 × 5 15.1 · 106 97.54 4 10 53.5 95.5 235.8

0.0 400 × 5 614.4 · 106 – – – 1, 910.4 2, 431.0 4, 826.7

Table 6.2: Irradiance cache and rendering statistics for RPM for the sponza scene obtained from 2
different error settings and from the reference with disabled irradiance caching. All images were rendered
in a resolution of 640 × 480 pixels with 5 super samples per pixel using 700,000 photons for density
estimation. From left to right column: the maximum error (a) for cache interpolation, the number of
final gather rays per pixel (Nfgr), the total number of stored reverse photons (NT

ep ≡ number of final
gather rays), the percentage of interpolated irradiance values (NQ/N∗

Q), the average (N̄K) and maximum
(max NK) number of computed irradiance values used for interpolation at one point, the time spent for
final gathering and irradiance caching Tfgr, the time for computing the indirect illumination via density
estimation from 700,000 photons and 50 nearest neighbors (Tde), and the total time (Ttotal) spent for the
whole rendering which includes photon tracing (63 s), photon map pre-processing (10 s), tree construction,
and post-processing (filtering) (6 s).

6.8 Algorithm Workflow

Here, we will describe the algorithm flow for a single task given by the scheduler. The overall
scheme of the processing is depicted in Figure 6.11.

The algorithm decomposes the computation to several tasks to deal with the increased mem-
ory requirements. In the initialization the data structures are allocated and initialized using the
parameters that are read from the global environment. The pre-sampling of the image plane is
performed and the scheduler is called which returns the set of tasks for rendering. Each task
undergoes the whole rendering pipeline from initialization of the camera to image tile compo-
sition. The camera initialization includes image tile and samples per pixel setting. Next the
image plane is sampled and the direct light is rendered at primary ray hit points (pixel sam-
ples). At each diffuse and moderately glossy hit point, final gathering is carried out accounting
for irradiance cache queries and secondary final gather. For each final gather ray hit point an
reverse photon is stored. At the end the reverse photon map is constructed.

The processing phase starts with photon shooting and global photon map and caustic photon
map construction. Both maps are individually filled in a few iterations until we get approxi-
mately the required number of photons per map. However, the caustic map filling is accelerated
using a kind of projection map that is generated during the initial photon shooting and used
after one fifth of the required number of photons has been stored. The projection map is a
boolean matrix where each element corresponds to a certain direction that is either marked as
a caustic path or not. If a maximum number of emitted photons is exceeded during the caustic
photon map filling or not a single caustic photon has been stored after 100.000 traced photons,
the shooting phase is always aborted. The construction of the photon maps follows optionally
the density control which reduces the density to a user-defined threshold and hence decreases the
number of photons. Next, the density estimation is computed in the reverse order. The photons
from the global photon array Ap are processed sequentially discarding the kd-tree over photons,
which creates a highly coherent search pattern in the reverse photon map. For a processed
photon the neighboring reverse photons are gathered and the photon energy is distributed to
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Image (a) 129 s error = 0.2

Image (b) 236 s error = 0.1

Reference: 4827 s

Figure 6.10: Irradiance caching with reverse photon mapping for the sponza scene. All images were
computed using 400 × 5 final gather rays per pixel in a resolution of 640 × 480 pixels. Whereas for
Image (a) (top) a low quality setting with a large error bound was used, for Image (b) (middle) a smaller
error was set (see Table 6.2). The bottom image shows the reference computed by RPM using the same
setting but without irradiance caching.
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Figure 6.11: Algorithm pipeline of reverse photon mapping. The dotted round boxes represent optional
steps. The work flow is divided up to three main phases (Preprocessing, Processing, Postprocessing) that
are executed for each task.
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the corresponding entries in the write-back cache array Aw using a supported filter kernel (e.g.
Box, Cone, Biweight). The entries of Aw map one to one to the entries of the reverse photon
array Ar. Note, that during the search the photon array Ap and the reverse photon map are
used for read-only access. Only Aw is read to the CPU cache and written back to the main
memory (see Section 6.9.4.1 for details).

In the postprocessing phase, the accumulated radiance in Aw[i] per reverse photon Ar[i] is
weighted by the reverse photon’s contribution given by BRDF importance sampling of FGRs
and added to the array of pixel samples As at index given by the reverse photon. The array
Aw is processed in sequential order. Next the irradiance cache is completed. The irradiance
cache entries are searched by all pixel samples that are marked for interpolation and their
irradiance is extrapolated to the pixel samples as in the normal irradiance cache algorithm. The
irradiance cache is optional and can be controlled by the user. In the next step the caustic
contribution is computed for each pixel sample and added to its pixel radiance. The caustics are
computed as described in [34] using standard kNN density estimation from the caustics photon
map. Again, this step is optional and can be switched on and off by the user. After that, the
image (tile) is formed by adding the radiance along pixel samples to the pixels possibly filtered
using a convolution kernel (Box, Cone, Gaussian, Mitchell [55]). Finally, the complete image is
updated by the current image (tile) that is multiplied by the weight of the task. The data flow
between data structures for the density estimation including searching and pixel reconstruction
is visualized in more detail in Figure 6.12.

There are several algorithmic design goals fulfilled by our algorithm. First, the computation
over the data structures results in highly coherent access to the main memory. Due to the
read-only access to reverse photons by using the write-back cache for accumulating radiance,
the write-back traffic from the CPU cache to the main memory is efficiently reduced. Third, the
increased main memory requirements are alleviated by efficient methods using tiling, irradiance
caching, and external caching on hard disk.

6.9 Optimizations

In this section we will cover the important algorithmic optimization techniques that we have
applied and tested with our implementation.

6.9.1 Ray Shooting Cache for Final Gather Rays

Ray tracing of final gather rays (FGRs) is carried out for subsequently created FGRs from BRDF
sampling on visible surfaces. Since their generation is basically a random process (Monte Carlo
sampling), the directions of subsequently created FGRs are incoherent. Test for visibility data
structures have shown that coherent ray tracing can be up to three times faster than highly
incoherent ray tracing [63]. Here, we propose an organization scheme to improve on coherency
for final gather ray tracing (referred to as final gathering). We create a single cache for FGRs by
subdividing a sphere surface to NC directional cells Ci covering a certain solid angle. Each Ci

is associated with an array to store NR FGRs to be ray traced. We set NR = 100. Successively,
we store the created FGRs in the cache by mapping the direction ~Do ∈ R3 to a cell Ci identified
by (θ, φ) ∈ N2 (see Figure 6.13). Whenever the array of a cell is full, we ray trace all the
FGRs in the array and store reverse photons at their intersection points with diffuse or glossy
surfaces. One difficulty in this approach is the application of secondary final gather in corners
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Figure 6.12: Visualization of the data flow on the left and the data structures on the right. In the
processing phase (top) the radiance for all FGRs is computed by density estimation (i.e. splatting the
energy of each photon to neighboring reverse photons). In the completion phase (bottom) the contribution
to the pixels is computed, possibly using a filter kernel. Note that the majority of data accesses is read
only and highly memory coherent.

and on specular surfaces. Due to the discretization of the sphere, it can happen that we flush a
particular strata whose rays travel a very short distance or hit a specular surface in a grazing
angle. Then a secondary final gather (only one ray in case of a specular hit) might be invoked.
Occasionally, a secondary final gather ray is added to the same strata as its primary final gather
ray (see Figure 6.14). Even if this case happens rarely, we need to catch it in order to guarantee
robustness.

The final gather ray cache yields up to 30 percent speedup in ray shooting for complex
scenes. For simple scenes consisting only of a few primitives such as the cornell box scene, it
can perform worse than the naive final gathering. This is due to the overhead for organizing the
FGR cache which becomes more significant than the gain in coherence from a few intersection
tests (all primitives are in the CPU cache). Moreover, the efficiency of the FGR cache depends
also on the parameter setting for the cache. As one can observe in Table 6.3, the optimal setting
for the number of stratas depends on the number of FGRs. Optimizing the parameters of the
cache is a difficult task since the speedup depends on several quantities: the scene model, the
rendering setting (e.g. FGRs per pixel, image resolution), and the hardware (e.g. CPU cache
size, processor type). The tests in Table 6.3 do not account for the size of the buffer in each
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Figure 6.13: Caching final gather rays (FGRs). The directions of the FGRs ~A, ~B, ~C, ~D (left) are
transformed to polar coordinates and mapped to stratas of a discrete spherical cache (right) independent
of their origin. FGRs are accumulated in their corresponding stratas. When the array associated with the
strata is full, all FGRs inside are traced at once. Note that the FGRs are only clustered in the directional
domain independently of their origin (e.g. rays vecB and vecC).

strata. We simply limit the buffer to 100 rays per strata. On average a smaller size (50 and 75
stratas were tested) performed worse.

The FGR cache has only one disadvantage that is: it does not run together with irradiance
caching. For irradiance caching we need all final gather rays shot at once to compute the
harmonic mean distance and if required the rotational and translational gradients. This is not
easy to manage with the FGR cache where each FGR is processed irregularly, independent of
time and location. Therefore, the FGR cache is automatically disabled when irradiance caching
is enabled.

6.9.2 Aggregate Kd-tree Traversal

Another optimisation we have applied to the reverse photon mapping algorithm is the traversal
of the reverse photon kd-tree for several photons queries at once. We find the nearby photons
in the leaves of the photon kd-tree (which are already close in space) and aggregate them by
clustering in one larger bounding sphere. During the clustering procedure the bounding sphere
is extended until more than a maximum number of photons are clustered inside or until the
sphere exceeds the maximum radius. The maximum radius is taken from the upper threshold
for the gather radius (see source code in 6.15).
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Scene Res FGR T200 T400 T600 T800 T1000 Naive max. Speedup

Atrium 6002 100 5,87 5,26 5,22 5,12 4,89 6,11 20,0%

Atrium 6002 200 11,82 10,29 10,11 10,11 10,11 12,08 16,3%

Atrium 6002 300 17,44 15,24 14,98 14,81 14,83 15,79 6,2%

Atrium 6002 400 23,17 20,31 19,92 19,67 17,67 21,22 16,7%

Atrium 6002 500 29,04 25,25 24,87 24,36 23,42 26,43 11,4%

Atrium 6002 600 35,28 30,30 29,59 29,46 26,47 36,58 27,6%

Atrium 6002 700 40,96 31,97 34,68 31,24 30,92 42,77 27,7%

Atrium 6002 800 46,88 36,24 39,57 39,33 35,28 42,71 17,4%

Table 6.3: Timings for final gather ray shooting including camera frame sampling and BRDF importance
sampling for various number of final gather rays per hemisphere and 5 different resolutions (θ×φ) of the
final gather ray cache ranging from 200 to 1000 stratas discretizing the sphere. All stratas were set to
cache 100 rays. The speedup compared to the naive single ray shooting is summarized in the last column.
For the timings only a tile of size 50×50 with 7 samples per pixel was rendered. The importance sampled
surfaces, visible within the rendered tile, involve glossy and diffuse BRDFs. Note, that the speedup is
optimal for purely diffuse sampling over the hemisphere since it yields the highest variance.

We traverse the reverse photon tree using this larger bounding sphere to find the first interior
node whose assigned splitting plane cuts the bounding sphere. This is the starting node for the
kd-tree traversal for all individual queries of the photons inside the bounding sphere. This
aggregate search avoids repeated traversals in upper level nodes in the reverse photon kd-tree.
The concept is visualized in Figure 6.16. The achieved speedup for the kd-tree search depends
on the photon density and the depth of the reverse-photon kd-tree. We observed a speedup
between 30 to 65 percent compared to traversing for individual photons. The average number
of traversal steps in the kd-tree is reduced by more than 30% compared to individual queries
starting from the root.

6.9.3 Density Control for the Photon Map

Using the adaptive radius is one method to reduce searching and processing time while decreasing
the bias. Another adaptive technique that helps us to speed up the rendering, is density control
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int rightIndex = 0;
while (rightIndex < nPhotons) {

leftIndex = rightIndex;
rightIndex++;
const CPhoton& ph = photonMap->GetPhoton(leftIndex);
radiusPh = ph.searchRadius;
radiusBSphere = ph.searchRadius;
searchSphere.Init(ph.pos, radiusPh);
photonsInSphere = 1;
maxRadiusReached = false;
while ((rightIndex < nPhotons) && (!maxRadiusReached)) {
const CPhoton& ph = photonMap->GetPhoton(rightIndex);
radiusPh = ph.searchRadius;
if (radiusPh > maxRadius || photonsInSphere >= MAX PHOTONS) {

maxRadiusReached = true;
break;

}
dist = Distance(searchSphere.pos, ph.pos);
if (dist+radiusPh <= radiusBSphere) {

rNew = radiusBSphere;
t = 0;

}
// else spheres overlap or are disjoint
// then calculate new radius and interpolation value t
else {
rNew = (dist + radiusPh + radiusBSphere) / 2.0f;
t = (rNew - radiusBSphere) / dist;

}
if (rNew <= maxRadius) {
rightIndex++;
//compute new center of bounding sphere
sphereCenter = ph.pos * t + searchSphere.pos * (1-t);
searchSphere.Init( sphereCenter, rNew);
photonsInSphere++;
radiusBSphere = rNew;

}
else {
maxRadiusReached = true;

}
}//end of second while
int startNode = 0;
bool foundSomething =

eyePhotonMap->FirstIntersectedNode(startNode, searchSphere);
if (!foundSomething) //we found empty voxel –>

continue;
// individual photon searches
for (int i = leftIndex; i < rightIndex; i++) {

const CPhoton& ph = photonMap->GetPhoton(i);
searchSphere.Init(ph.pos, ph.searchRadius);
eyePhotonMap->LocateEyePhotons(searchSphere, startNode);
if (searchSphere.foundEyePhotons > 0)

SplatPhotonEnergy(ph, searchSphere);
}

}

Figure 6.15: The aggregate photon search in the reverse photon map.
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Figure 6.16: An example for the aggregate search in 2D. Photons (red larger dots) from the sorted
photon array (Ap) are clustered in a bounding circle and the reverse photon kd-tree (Te) is searched for
the first intersected splitting plane (thick red line). The corresponding node (rl) is the starting node for
the individual photon queries (smaller circles).

for the photon map. The concept is not new and has been studied in [77, 43]. However, rather
than controlling the density on-the-fly during photon tracing, we propose a post-processing
algorithm which is faster and easier to implement. It also introduces less bias since the dis-
carded photons which we spread among their neighbors are randomly chosen with probability
proportional to their density. Since the photons are sorted spatially, the linear photon array
corresponds to a discrete cumulative distribution function (CDF ), see Figure 6.17.

In the algorithm of Suykens and Willems [77] the discarded photons are determined by the
sampling process which can induce a correlation that might lead to artifacts. On the other hand,
our algorithm needs more initial memory because all photons are stored during the photon trac-
ing phase regardless of the density. Suykens and Willems use the density control in combination
with importance sampling. This helps to reduce the size of the photon map in unimportant re-
gions (i.e. regions not contributing to the image). Importance sampling for the density control
has not been applied to reverse photon mapping but is straightforward to implement since the
”importons” are inherently given by the reverse photons.

For reverse photon mapping density control is more decisive than for normal photon map-
ping since the time spent for density estimation strongly depends on the number of photons
(see Table 6.1). This is because the photons are processed successively (if we neglect the aggre-
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Figure 6.17: Mapping a discrete probability density function (PDF) (left) to its cumulative distribution
function (CDF) (middle) and its correspondence to the spatially sorted photon array (right). Each bar
corresponds to the density within one voxel of a regular grid which is proportional to its number of photons.

gate search, Section 6.9.2). For normal photon mapping, the number of stored photons is less
significant with respect to the computation time since the time depends mainly on the number
of final gather rays. Following, we roughly describe the algorithm used for density control in
reverse photon mapping. The density control takes negligible time compared to the rest of the
computation for reverse photon mapping.

We use an iterative randomized algorithm and we assume that the kd-tree over photons is
constructed and the gather radius for each leaf in the photon tree is precomputed (see Sec-
tion 6.5). A simplified version of the algorithm is listed in Figure 6.18. The algorithm 6.18
proceeds until a maximum number of iterations is exceeded (= number of photons) or less than
a minimum number of photons Nmin with higher density than the given maximum density Dmax

has been found in one pass. This additional constraint triggers an early break in cases when
there is almost nothing to reduce any longer. Since the probability to pick a photon from a par-
ticular region is roughly proportional to its underlying density, it is likely to find high density
photons within a limited number of iterations M . The probability P (Vi) to pick a photon Pj

from a voxel Vi with density above Dmax within M iterations is:

P (Vi) = 1− (1−
∑
i∈∆

p(Vi))M , ∆ = {i|Density(Vi) > Dmax},

where p is the probability density function (PDF ) determined by the density of photons. For
example, if one percent of all photons have greater density than Dmax the probability P to
find one in M = 1000 iterations is 0.99997. Without the early termination constraint the
computation time of the density control can become considerably long since we would need to
compute the density at each photon location and the gain in rendering speedup might be lost.
To judge our method, we tested the brute-force approach: iterating over the entire photon array
and computing the density at each photon location. Although the iteration is highly coherent,
the performance of this approach is too slow for a large amount of photons. This is in particular
a problem when none of the photon locations or only a small fraction of the photon locations
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Np ← number of photons
MAX PASSES ← 100
M ← Np / MAX PASSES
Nmin ← M / 1000
K NN ← 30
precompute Rsearch

pass ← 0
repeat

Ndistributed ← 0
pass++
for i ← 1 to M do

pick random photon Pj with j ∈ [0..Np]
if not Pj marked as invalid then

gather K nearest valid photons Sj around Pj within Rsearch

compute density Dj

if Dj > Dmax then
distribute energy of Pj among neighbors using kernel Ks

mark Pj as invalid
Ndistributed++

end if
end if

end for
until pass = MAX PASSES or Ndistributed < Nmin

remove invalid photons
rebuild kd-tree over valid photons
precompute the gather radii
return new number of photons

Figure 6.18: The algorithm for density control for the photon map.

has a ”too high” density (e.g. caustics). We also experimented with stratified sampling over the
photon array, which did not noticeably improve the algorithm.

The gather radius Rsearch is tuned to find on average a few photons less per query than
the specified maximum number for K. As a result we avoid performing an expensive k-median
sort on the gathered photons. The method works well in practice. We have chosen a constant
number for K that is set to 30.

Suykens and Willems used a simple box filter to distribute the energy equally among the
neighboring photons. We chose a filter function that gives most energy to photons that are
close to the location of photon Pj . A common choice is the biweight kernel function (see Sec-
tion 3.6.4.5). This kernel is a good approximation to the gaussian kernel and is cheaper to
evaluate. We distribute the energy of photon Pj among the neighboring photons accounting for
photons with similar normal and incoming direction on the same hemisphere. At the end, all
gaps from invalidated photons are removed by traversing the photon array from left to right and
filling the gaps with valid photons from the right. Finally, the kd-tree is constructed and the
photon bandwidths (gather radii) are precomputed. The results for the photon density control
are shown in Figure 6.19. A problem with density control is that it increases variance of the
photon power. In combination with the precomputed gather radius for adaptive density estima-
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tion, the results may exhibit occlusion bias (light leakage) due to the automatically increased
bandwidth in regions of reduced density. This problem cannot easily be eliminated since we loose
information when decreasing the photon density. Simply keeping the precomputed bandwidth
per photon assigned before density decimation results in visible noise. Nevertheless, applying
density control with a sensible setting for the maximum allowed density, we save memory and
rendering time with little loss in image quality.

No density control With density control

Figure 6.19: False color images of the photon distribution in the kitchen scene using 700,000 photons
without density control (top left) and approximately 370,000 photons with density control using a max-
imum density of 10, 000 photons/m2 (top right). The false color (from blue to red) corresponds to the
energy of a photon. Note how the energy increases in high density regions after density control was ap-
plied. Below are the rendered images showing only indirect illumination using the photon map displayed
above.
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6.9.4 Low-level Optimization

Besides all previously described algorithmic optimization techniques, there is one method that
always works and should not be underestimated. This is code optimization. Due to the continual
increase in processor speed, the bottleneck between CPU and main memory becomes more
crucial. Hence, caching has become more and more important and gave rise to the cache-aware
algorithms. In particular for algorithms working on large data sets such as reverse photon
mapping, caching is very decisive. Therefore, we will briefly describe the modifications we
applied to the data structures and the algorithm workflow.

6.9.4.1 The Write-Back Cache for Accumulating Radiance

The most significant optimization we applied to reverse photon mapping is the write-back cache
for gathering radiance in each reverse photon. In the early stages of our algorithm we wrote the
computed radiance for each reverse photon from a photon query directly to its corresponding
screen pixel where it originated from. This method had the advantage of progressive previewing
since the image was progressively refined and displayed during photon tracing. However, even if
the reverse photons in a query are coherent in space and memory their corresponding pixels are
not and splatting the photon’s energy to the image becomes a random process. The image is
considerably large and does not fit into the cache memory together with the photon query, which
results in many cache misses. However, the gathered reverse photons from successive photon
queries are highly coherent. This is the reason why we created a second array of the same size
and same order as the reverse photon array, which we call the cumulative radiance array (Aw).
The elements in Aw consist of only 3 floats and represents one radiance sample of a pixel in
RGB. Thus, every element in Aw corresponds to exactly one reverse photon and has the same
index as its reverse photon. As we sum the radiance in this separate array, the reverse photon
array stays read-only for the entire search and density estimation phase (photon splatting).
During the photon splatting, the radiance from all photons in the neighborhood of an reverse
photon is accumulated in the reverse photon’s corresponding ”write-back cell” of Aw. This way,
we establish coherency at the expense of using additional memory for the array Aw which is
much more larger than the number of pixels in the screen (tile). Since Aw is around three times
smaller than the reverse photon array, it is also too large to fit in the memory for the whole
rendering phase. Therefore, we also need to delete and resize it for each tile (see Section 6.7) or
write it to hard disk using the external cache described in Section 6.10. At the end, the array Aw

is processed in sequential order. The accumulated radiance for each reverse photon is summed
to the radiance along pixel samples which is possibly filtered by some convolution kernel before
being added to the resulting image (see Figure 6.12).

Using the cumulative radiance array has another advantage. We can postpone the multi-
plication with the actual contribution of an reverse photon. Instead of computing the radiance
contribution to a pixel sample for every individual photon, we accumulate the local radiance
for each reverse photon and compute the total contribution (including the light transport via
BRDF sampling to the pixel) at the end. This saves three multiplications in the most expensive
inner loop for distributing the photon’s energy that is usually iterated between 108 and 1011

times.
The achieved speedup using the cumulative radiance array is one order of magnitude (up to

approx. 1000 percent). However, combined with the dual-tree approach storing and sorting all
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photons in space, the memory coherence is as high as possible for our algorithm. Therefore, the
speedup compared with the naive method (splatting photon energy directly to screen) is two
orders of magnitude.

We have also experimented with a write-back cache that accumulates radiance from photons
in a small window until we access an reverse photon index outside the range of the cache window.
The cache is then emptied by adding the accumulated radiance to the pixel samples and the
window is moved in direction of the new access. This method is superior to the naive method
(writing radiance directly to screen) but still a few times slower than having a fixed complete
write-back array. It seemed that the overhead for moving the window and emptying and re-
initializing the cache is too expensive.

6.9.4.2 Splitting the Reverse Photon Data Structures into Different Arrays

Another trick for improving cache coherence is the splitting of large data structures into temporal
disjoint parts. In our case the reverse photon consists of 32 Bytes from which only 14 Bytes are
accessed during processing phase (kd-tree traversal and photon splatting). The kd-tree traversal
needs only the position (12 Bytes) and, in case of a kd-tree with photon-nodes (see Section 5.2),
the splitting plane axis (1 Byte). The photon splatting uses the incoming direction (2 bytes)
and the index inherently given by the reverse photon. Hence, only 15 Bytes (14 Bytes in case
of the kd-tree8 ) are accessed during the processing phase. The remaining 16 Bytes for spectral
weight in RGB or XYZ (12 bytes) and pixel sample index (4 bytes) can be removed and put
to another array that is accessed only at the end in the completion phase. This results in two
separate arrays each consisting of 16 Byte elements (due to alignment). In our algorithm, this
technique yields between 2 and 5 percent speedup.

6.10 External Caching

We have already presented several data structures for the reverse photon map and normal
photon map in Chapter 5. These were designed for efficient searching in the main memory. For
reverse photon mapping (RPM) we have seen that the memory utilization is crucial and that the
complete data does usually not fit into the main memory. We created a scheduler that subdivides
the rendering into independent tasks. However, one drawback with this subdivision is that we
cannot take advantage of the full capacities of reverse photon mapping since the search speedup
increases with the amount of available memory. Hence, the more data (i.e. reverse photons)
we can store in memory, the fewer tasks need to be created by the scheduler and therefore the
fewer queries in the reverse photon map are performed.

Besides tiling and scheduling, we have another possibility to deal with the large memory
requirements: external caching. As we mentioned before, the main memory (RAM) is usually
limited by 1 to 4 GBytes. However, the external memory (i.e. hard disk) is about two orders
of magnitude larger (nowadays between 40 GBytes and 400 GBytes) than the main memory.
However, hard disks are mechanical instruments and the access time for a hard disk is in the
order of milliseconds (≈ 10 − 20ms) whereas the access time for the RAM is in the order of
nanoseconds (≈ 50 − 100ns). Furthermore, the data transfer rate (throughput) is two orders
of magnitude slower than the throughput of RAM (modern RAM: ≈ 3000 MBytes/sec, modern
hard-drives: ≈ 30− 40 MBytes/sec).
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It would not be convenient to store all data to the hard disk and access it for each search
query. We need to reduce the number of accesses to the hard disk to a minimum. Moreover,
a hard disk read-request usually loads several successive KBytes (blocks) at once even if the
requested data is only a few Bytes large. This means that the access pattern to the data must
be highly coherent; in the ideal case, each Byte belonging to a data element (i.e. reverse photon)
is read from disc at most once. Fortunately, our searches carried out in the reverse photon map
are very coherent due to the spatial dual-tree approach. This allows us to create an efficient
caching scheme that uses the hard disk. Only a small portion of the reverse photon array Ar

and the write-back array Aw (see Section 6.9.4.1 for details) is cached in the main memory.
We use a traditional software cache implemented via hashing, splitting the array into blocks of
equal size. The size of the blocks is 210− 215 Bytes and cache associativity is set to 8. A simple
hashing function uses the index of a block on the hard disk to keep only a small fraction of the
blocks in the main memory.

The array Ar is used in four steps: array creation and kd-tree construction, spatial searching,
density estimation, and summing the results for FGRs to corresponding pixel samples (i.e.
irradiance computation at visible hit points of primary rays). During creation of FGRs, we save
the reverse photons to array Ar which is frequently flushed to disk when the internal cache is
full.

The next step is the construction of the kd-tree. This time we benefit from our spatial kd-
tree consisting of 8 Byte interior nodes on top of the reverse photon array. The kd-tree fits in
the main memory even for the maximum allowed number of reverse photons (230) since the tree
needs around 100 times less memory. This leads to at most ≈ 300 MBytes memory consumption
for the whole kd-tree in the worst case. However, we need to modify the tree structure slightly
in order to guarantee efficient searches. We do not want to evaluate the expensive hash function
for each access to the reverse photon array and check whether the block containing the requested
reverse photon is currently in memory or not. Therefore, we add a specific interior node (load-
node) to the kd-tree that is only responsible for loading one (or two) requested block(s) from
disk to memory. This node is inserted in the tree whenever the number of reverse photons in
the current sub-tree is less than or equal to the size of a block. This ensures that each reverse
photon in a leaf is located in memory when it is accessed during tree traversal. We only need
to keep track of two pointers to two blocks and compute the offset with respect to the first and
second block index (which is simply the reverse photon index modulo blocksize). Since a leaf
is much smaller than a block, we nearly always access only one block during search in the leaf.
However, there can be at most two blocks associated with the sub-tree of a load-node and we
must occasionally check both of them if a leaf is located in both blocks. For each traversal from
the root to a leaf of the tree there is exactly one load-node per path. The concept is shown in
Figure 6.20.

During the reverse photon map (kd-tree) construction, we need to perform a binary sort of
the reverse photons with respect to the splitting plane of the current kd-tree node. We do this
by sequentially traversing the array Ar from left to right and from right to left until we find
two entries that must be exchanged. The algorithm is very similar to the quick-sort algorithm,
however the pivot element is given by the splitting plane position. This way, we only access
each element once and one after another which creates a coherent access pattern to Ar and
avoids irregular jumping between hash blocks. Since the size of a hash block is relatively large
compared to the size of an reverse photon, the blocks are mostly loaded and written at the
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Figure 6.20: Loading blocks #i and #j to main memory when accessing node NL,2. Block #i was
already read to memory by node NL,1 and the hash function simply returns the address in memory. Block
#j needs to be read from hard disk and mapped to a free address possibly replacing an old block. Note,
that all entries in the sub-tree below NL,1 and NL,2 are located in main memory at addresses f#(i) to
f#(j)+ block size and there is no need to call the hash function f#(x) at leaf-level.

higher levels of the tree and sorting at the lower levels is mostly done in main memory where we
access only a few blocks. Notice that for the external cache it is much more important that we
store more than one reverse photon per leaf since this reduces significantly the number of sort
operations at the lower levels of the tree.

During the search and density estimation phase, we need to keep only a small part of the
array Ar and Aw in the main memory because successive photon queries into the reverse photon
map are likely to access the same reverse photons and hence the same hash blocks. Thus, the
hard disk accesses are reduced to a minimum. The observed performance slowdown during the
rendering phase was between 2 and 10 percent only. The final step is the summation of radiance
along FGRs stored in the write-back array Aw which we access in a sequential order using the
indices and weights from Ar.

So far, our rendering algorithm performed surprisingly well but the bottle-neck moved to
the kd-tree construction that took far too long for larger settings (up to 25 minutes for about
30 million reverse photons). In our current implementation of the external cache, we have to
construct the whole tree from root to leaves above the reverse photons array which is stored
entirely on disk. Let the number of reverse photons be Nr and the average number of reverse
photons per leaf Tm. Then we have to read O(Nr · log2(Nr/Tm)) reverse photons from the hard
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disk and also to write them back. Let us assume we have stored Nr = 227 ≈ 134 million reverse
photons, which is quite common even for normal settings, and Tm = 16. Then we need to
access about log2(227/16) · 134× 106 ≈ 3.1 billion reverse photons. This yields a total hard disk
throughput of ≈ 94.1 × 109 Bytes (≈ 92 GBytes) to be read and written. Modern hard disks
have an average throughput of about 30 - 40 MBytes per second. Hence, only the data transfer
between main memory and hard disk takes about one hour and a half.

Another reason for the slow kd-tree construction might be due to the fact that we did not
account for low-level system behavior such as buffering and page swapping. Hence, there might
be space for optimization of disk accesses. In addition, more tests with different block sizes and
perhaps also other operating systems should be made.

6.11 Results

In this section we present the results for reverse photon mapping and compare them with normal
photon mapping. At the end, we show a full global illumination example for a complex scene
rendered with reverse photon mapping.

We measured the rendering timings for 8 scenes of various complexity and lighting conditions.
Rendered images of the scenes are shown in Figure 6.21. The images show only diffuse and glossy
indirect illumination as carried out by NPM using the global photon map. Direct illumination
and caustics are not included since they are computed in the same way for both methods. The
computed images are virtually the same for normal and reverse photon mapping.

We have implemented NPM for comparison purposes using the same data structures as for
RPM. Both methods use a recursive version for the construction and search in the spatial kd-tree.
The timings for normal and reverse photon mapping are listed in Table 6.4. Whereas for RPM
we used the adaptive bandwidth for density estimation, for NPM we applied the traditional
kNN density estimation using the proposed spatial kd-tree over photons. In both cases we
applied the density control resulting in 500,000 photons. The variation in the average number
of the k-nearest neighbors (K̄) comes from the adaptive bandwidth selection. The bandwidth
for the adaptive density estimation was tweaked to find on average the same number of photons
per reverse photon as in the k-nearest neighbors photon search. In practice, the total achieved
speedup in favour of RPM varies between 30−230% depending on the resolution and the number
of final gather rays per pixel. Note that the acceleration methods for reverse photon mapping
(irradiance caching and the ray shooting cache) were disabled in the tests for the sake of fair
comparison.

We carried out unobtrusive profiling of the code execution. In normal photon mapping about
70% of the time is spent on the kNN search, which is decreases to about 50% for the kd-tree
described in Section 5.2.1. About 15% is required for density estimation with a box kernel,
10% is taken by visibility computations (without direct illumination computation), and 3% for
BRDF importance sampling. The remaining 2% are required by other operations.

In reverse photon mapping searching takes about 20-25% of the total time (without the
aggregate search described in Section 6.9.2). About 37% is required for density estimation,
20% for visibility computations (without direct illumination computation), 8% for constructing
the kd-trees, 6% for BRDF importance sampling, and the remaining 4% for other operations
including task management and pixel filtering.



6 Reverse Photon Mapping 103

Cornell Box Corner Room MGF Office

Gallery Sponza Appartement

Cathedral Aizu Atrium

Figure 6.21: Rendered images of the scenes used for the tests in Table 6.4. The images show only indirect
diffuse and glossy illumination computed with reverse photon mapping. The images were rendered in a
resolution of 500×500 pixels. In order to eliminate the noise in final gathering, 1500 to 3500 final gather
rays per pixel were necessary depending on the scene.
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Scene Res K̄ T T
NPM T T

RPM Speedup

Cornell Box 300 × 300 65 605 420 1,44

12 objs. 500 × 500 55 1540 710 2,16

Corner Room 300 × 300 30 1100 860 1,27

57 objs. 500 × 500 50 2200 1610 1,36

MGF Office 300 × 300 50 941 399 2,35

540 objs. 500 × 500 60 3600 1125 3,20

Gallery 300 × 300 50 1250 386 3,23

8607 objs. 500 × 500 50 2600 1248 2,08

Sponza 300 × 300 50 840 493 1,70

66650 objs. 500 × 500 50 2613 1280 2,04

Appartement 300 × 300 45 810 343 2,36

72270 objs. 500 × 500 45 2231 926 2,40

Sibenik 300 × 300 50 610 460 1,32

76643 objs. 500 × 500 50 1710 1250 1,36

Aizu Atrium 300 × 300 55 1793 541 3,31

948371 objs. 500 × 500 55 4712 1450 3,24

Table 6.4: The timings for 8 scenes, using 600 final gather rays per pixel and resolution 300 × 300
and 500 × 500. From leftmost column to rightmost column: the scene name with the number of objects,
the resolution of the image, the average number of found photons per final gather ray K̄, the overall
computation time for normal photon mapping TT

NPM , and reverse photon mapping TT
RPM , and the speedup

achieved for reverse photon mapping.

The time for searching using reverse photon mapping is efficiently accelerated by a factor of
4-7 compared to normal photon mapping. The time required for density estimation including
kernel evaluation and feasibility test for occlusion is increased although the number of evaluations
for pairs photon×reverse photon is almost the same. This is due to the increased rate of write-
back operations from the CPU cache to the main memory (via array Aw).

If the aggregate search is carried out, the time required for searching is decreased by 30% to
65%. In total the speedup only for searching varies between 20 and 30 compared to the time for
searching in normal photon mapping. The number of traversal steps in the reverse photon map
was decreased by additional 35%.

The speedup for ray tracing of FGRs using the proposed ray shooting cache varied between
5-30% compared with standard final gathering.

We computed an image from the sponza scene in a resolution of 2 Mpixels with 600 FGRs
per pixel (1.2 × 109 final gather rays for the whole image). Such setting is commonly used in
the production rendering [78]. Although the timing is in total 160 minutes (70 minutes for
similar scene complexity in [78]), we compute more bounces of indirect illumination than in [78].
Our timings are comparable to the rendering with the irradiance atlas [10] (≈ 200 minutes for
73× 106 final gather rays for a complex scene).

For the measurements we have used a standard PC with a single CPU 3.0 GHz Intel P4 with
512 KBytes of L2 cache and 2 GBytes of memory. The program was implemented in C++ and
compiled with GNU g++ version 3.3 with -O3 optimization.

Finally, we present a high quality global illumination image rendered from the icido scene.
Figure 6.22 shows the individual light contributions from direct illumination (top), diffuse and
glossy indirect illumination (middle), and specular indirect illumination (top and middle) com-
bined in the final image (bottom). The image was rendered in a resolution of 640×480 pixels
with 6, 000 FGRs per pixel (5 × 1, 200 samples) and 700, 000 photons in the global map and
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Rendering Phases Time [h:m:s] [%]

Direct illumination: 3:54:51 53.33

Shooting final gather rays: 1:29:14 20.30

Reverse photon map construction: 0:19:39 4.49

Photon shooting: 0:00:30 0.11

Photon map construction and density control: 0:01:45 0.40

Density estimation (indirect illumination): 1:33:20 21.13

Density estimation (caustics): 0:00:59 0.22

Filtering and pixel reconstruction: 0:00:02 0.02

Total time: 7:20:20 100.00

Table 6.5: Results for the icido scene shown in Figure 6.22. Note that the final gathering and direct
illumination overwhelms the final result. The photon shooting phase with photon tree construction, density
control, and gather radius precomputation is only done for the first tile and reused for all 125 successive
tiles.

200, 000 photons in the caustic map. The total number of used final gather rays was 1.76× 109

(stored hit point in the reverse photon map). This setting was necessary to suppress the noise in
the final image due to the high-frequency illumination. For the adaptive bandwidth we used the
precomputed gather radius that aims to find on average 50 nearest photons per photon location.
For the caustic rendering we used our spatial kd-tree (Section 5.2.1) and k-nearest neighbors
density estimation with k set to 200. The timings of the individual rendering phases are shown
in Table 6.5. Note that the majority of the time was taken by the computation of the direct
illumination (4 hours) since we did not apply any importance sampling technique. The indirect
illumination computation time took less than 3.5 hours including final gathering, photon trac-
ing, global and caustic photon map construction and bandwidth precomputation, search in the
reverse photon map, and density estimation. This is acceptable for such a setting since we have
not applied any approximation technique such as irradiance caching or irradiance precomputa-
tion. We also rendered the same setting of the icido scene with irradiance caching. However,
non-diffuse BRDFs and high-frequency illumination make the scene not suitable for standard
irradiance caching. The results exposed visible artifacts in places where the illumination changes
rapidly even for a low error setting.

6.12 Future Work

Our proposed reverse photon mapping algorithm is a powerful concept and we claim that there
is more to exploit than in the normal photon mapping algorithm because of the additional
information about the view dependent eye pass. Therefore, the algorithm suits perfectly to
most importance sampling techniques for direct illumination [90, 72, 6] and indirect illumination
[43, 62, 77]. It is also straightforward to extend the proposed irradiance caching scheme to
account for irradiance gradients [94] and radiance interpolation on glossy surface [75] via FGR
reprojection.

One of the biggest advantages over normal photon mapping is that we can have much faster
and more flexible bandwidth selection because the bandwidth can be precomputed for all photons
independent of the reverse photons. For instance, we could detect large illumination gradients by
applying differential checking [34] of the density during bandwidth precomputation per photon.
For normal photon mapping we are obliged to choose a gather radius for every final gather
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(a) Direct Illumination (b) Caustics

(c) Indirect Illumination (d) Global Illumination

Figure 6.22: Results for the icido scene rendered with reverse photon mapping. Image (d) shows the
combination of direct illumination (a), caustics (b) and indirect diffuse/glossy illumination (c). Since
the caustic contribution is too low, the caustic image was linearly scaled by a factor of 4 for visualization
purposes. The indirect diffuse illumination was rendered with more than 1.76 billion stored reverse photons
in 126 tiles with 6, 000 final gather rays per pixel.

ray which is far too expensive due to the incoherence and number of final gather rays. As a
compromise, one usually sticks to the ”cheap” kNN technique with a fixed k. This way the search
domain for the density estimate is limited to a symmetrical sphere or box search. However, with
reverse photon mapping which is based on statistical KDE the density estimation area for a
final gather ray can have any shape since each photon uses an individual bandwidth to ”spread”
its energy to the final gather rays. It is also possible to extend the single bandwidth to a full
bandwidth matrix giving control over the x-y-direction and the orientation of the energy spread
for each photon.

Further, since reverse photon mapping is superior to normal photon mapping algorithms,
we claim that it is extendable with any other technique known from photon mapping. Finally,
it could be extended for rendering animations in the spirit of recent techniques that explore
temporal coherence [80], which could bring additional speedup by one order of magnitude.



Chapter 7
Ray Maps

So far we have described how the density of photon hits is related to irradiance in a scene and
how they can be stored in an appropriate way for searching. We have also presented several
data structures for efficient storage of the photon hit points with the scene and introduced a
novel ”two-pass” algorithm in the previous chapter for more efficient computation of indirect
illumination using the popular photon map.

We have shown the problems arising from photon mapping that impose a Monte Carlo
sampling step called final gathering before the photon density estimation in order to diminish
the visible error or replace it by less observable noise. As we have seen in the previous chapter,
this technique is algorithmically expensive no matter what we are optimizing. Therefore, we will
now focus on a new fundamental method for computing the illumination rather than optimizing
and approximating the principles of the original methodology.

The method discussed in this chapter deals with organizing rays in space and has been devel-
oped in cooperation with Vlastimil Havran and Jǐŕı Bittner. It was published to Eurographics
Symposium on Rendering in 2005 [28].

7.1 Overview

In this chapter we will present a novel data structure for representing light transport in a scene
called ray map. The ray map extends the concept of photon maps: it stores not only photon
impacts but the whole photon paths represented by a sequence of rays. Ray maps are used for
density estimation similarly to the photon maps, however, ray maps represent 4D information
while photon maps store only 3D information about the light transport. This avoids boundary
bias and improves the direct visualization without final gathering. We present a case study for
the density estimation over photon maps and ray maps on a set of simple scenes. We propose
a particular representation of ray maps using a lazily constructed spatial subdivision based on
kd-trees. Additionally, we present several optimization techniques bringing the ray map query
performance close to the performance of the photon map.

7.2 Previous Work

There are numerous data structures for storing illumination. A prominent example is the photon
map [33] that stores light flux at the object surfaces, more specifically each point in the photon
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map represents a photon carrying certain energy. Photon mapping is described in Chapter 4.
Other representations for indirect illumination include irradiance gradients [94], light maps [97],
the line-space hierarchy [16], light vectors [98], or the irradiance volume [22].

The work presented in this thesis is closely related to the density estimation for photon
maps. The density estimation was introduced to computer graphics by Heckbert [30] who
first recognized that the computation of illumination from particle hits corresponds to density
estimation [74, 89]. The result of the density estimation always induces a systematic error,
referred to as bias. Every density estimation technique trades off between noise and bias. As
discussed in Section 4.3.2 there are four basic types of bias (Figure 4.1) in the context of photon
maps [76, 69]. For deeper discussion on bias for photon maps and an automatic bandwidth
selection technique see Chapter 3 and Chapter 4. The error of lighting reconstruction of photon
hits was studied by Myszkowski [58]. Several techniques have been proposed to improve the
basic photon mapping algorithm, more or less intended to decrease the boundary bias. Hey and
Purgathofer have dealt with the boundary bias using the average computed from several oriented
photon maps [31]. Lavignotte and Paulin extend the object boundaries for storing of photons
in polygonal scenes [49]. Several optimization techniques for photon maps such as the density
control of photons were presented by Suykens and Willems [77] and Peter and Pietrek [62]. An
extension of photon maps to account for the temporal domain was introduced by Cammarano
and Jensen [7].

Below we discuss in more detail a conceptually different method first introduced by Lastra
et al. [47] to remove boundary bias where the photon impacts are replaced by photons paths.
The algorithm by Lastra et al. computes density estimation from photon paths intersecting a
disc on the tangent plane. The estimation by using photon paths intersecting a disc instead of
photon impacts efficiently reduces boundary bias inherent to photon maps. In order to search
the nearest photon paths efficiently they build a ray cache that they call dynamic list of spheres,
which is a hierarchy of spheres with decreasing radius. Each sphere is associated with a list of
intersecting rays. At the highest level in the hierarchy the sphere contains all rays and at the
lowest level the sphere radius is only slightly larger than the disc radius and the search for the
candidate rays intersecting the disc is reduced to the smallest ”bounding” sphere enclosing the
disc. The concepts strongly relies on the assumption that successive density estimation queries
are highly coherent in space such that each consecutive disc query can reuse mostly the same list
of spheres from previous queries. Otherwise when a new disc query is outside the current sphere
list, the list has to be updated from bottom to top. In order to obtain efficient results their data
structure requires parameter settings for the ratio of consecutive sphere radii in the hierarchy
and minimum sphere radius. These parameters strongly depend on the scene and render setting.
Hence, their algorithm is penalized by two orders of magnitude increase of computational time
compared to photon maps.

We will build on this concept but utilize more sophisticated data structures for ray proximity
queries than a dynamic ray cache stored in a list of spheres. In order to solve high-dimensional
complex problems efficiently, it is always advantageous to apply ”divide and conquer” strategies.
Spatial subdivision for efficient searching can be understood as such a kind of strategy. There
is a rich literature on spatial data structures outside the computer graphics community [18]. A
popular data structure for spatial subdivision and point or object indexing is the kd-tree [67].
The dynamization of kd-trees was introduced by van Kreveld and Overmars [82] decomposing
the tree to subtrees according to individual dimensions. Proximity data structures for collision
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detection that are inherently dynamic were surveyed by Lin and Manocha [51] and Jimenez et al.
[36]. Ar et al. [2] propose to construct BSP trees lazily for collision detection. We will propose
an efficient data structure represented by a lazily constructed kd-tree for spatial subdivision of
photon rays.

7.3 Representation of Light Paths

The ray map stores information about light paths traced during a global illumination simulation.
The ray map itself is independent of the actual global illumination algorithm, that is the choice
of the paths as well as the number of paths and the information associated with each ray on
the path. The ray map represents exactly the same information as the photon map. However,
for photon mapping the surface hits are computed in advance and the paths are discarded
afterwards. Hence, the major difference is that the ray map also organizes the photon paths and
not only the photon impacts on surfaces. Nevertheless, as for photon maps the density estimation
is still a 2D problem but for the ray maps the photon hits are computed online during density
estimation for a planar proximity domain. This domain is not on an arbitrary surface whose
area is difficult to estimate but a ”perfect” shape (e.g. disc, sphere surface). Therefore, density
estimation becomes entirely independent of the geometry and additional geometry-based bias
sources are almost completely removed.

The problem of proximity search in the photon maps has dimensionality three, since the
search works basically over 3D point data. The problem of proximity search in ray maps has
dimensionality four, since the line data in the search is 4D. This results in an increased com-
putational complexity and/or memory requirements for proximity searches. In Section 7.6 we
address the problem of the increased computational complexity by enforcing the queries to be
coherent so that the running time and memory requirements of the ray map are kept low.

7.3.1 Ray Proximity Queries

By organizing the paths the ray map can be used to answer queries that cannot be efficiently
computed using the photon map. We can determine photons passing in proximity of an arbitrary
point in space or all photons passing near the boundary of an object independently of the distance
of the actual photon impact.

We distinguish between two different classes of queries: intersection queries and nearest
neighbor queries. The intersection queries determine all rays intersecting a given spatial domain
of fixed size. The nearest neighbor queries find k nearest rays using a particular distance metric.
The queries can use different spatial domains and distance metrics:

I. Intersection. Domain:

– Disc

– Hemisphere

– Sphere

– Axis aligned bounding box

II. K-Nearest Neighbors. Metric:

– Distance to the point of intersection of the ray with a tangent plane
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– Distance to the supporting line of the ray

In practice we should be able to use combinations of queries from the two classes. That is
we should determine k nearest neighbors under a condition that they intersect the given spatial
domain. However, not all the combinations of searches are justified in the context of density
estimation.

In Figure 7.1 we show two important query methods that we use for density estimation.
Figure 7.1(a) shows the standard query that searches the k nearest ray intersections (here k = 4)
with the tangent plane. Ray 5 is farther away in the tangent plane than ray 4 even if its photon
hit with the surface is closer. In the right (Figure b), our new hemisphere-disc intersection
method is used: a ray is only included if

1. it intersects the hemisphere expanding around the density estimation point with radius R

2. and its prolongation also intersects the disc in the tangent plane.

Figure 7.1.b shows 7 different cases for ray intersections. The 1. ray is the standard case as
shown in (Figure a). The 2. ray is included in the density estimation even if its surface hit
is outside the hemisphere. The 3. ray ends in front of the tangent plane but intersects the
hemisphere and its prolongation intersects the disc. The 4. ray also intersects the hemisphere
but its prolongation not. The 5. ray is inside the hemisphere and is valid since it intersects the
disc. The 6. ray does not even intersect the hemisphere and the 7. ray is actually occluded but
since we do not detect this sort of occlusion bias, it is the same as case 1. As for normal photon
mapping, all rays intersecting the tangent plane from below (i.e. have a positive dot product
with the plane normal) are excluded from the density estimation.

The hemisphere-disc metric is a heuristic and cannot always guarantee a better density
estimation than with the photon map. However, it usually leads to better results than with the
pure disc query and the unnatural darkening at convex corners is reduced. We justify using this
metric and intersection domain in the ray map in the following way. For searching the rays we use
a hemispherical domain. However, we count only the rays that after prolongation intersect a disc.
For the weight in the kernel we can use both: the distance in the tangent plane or the distance to
the supporting line. First, this method is consistent with the rendering equation formulated for
photon maps over the disc. Second, the approach removes boundary bias completely. Third, the
method reduces topological bias, since only the rays intersecting a disc are taken into account,
which is the assumption in the density estimation formula. The proposed search method is a
key for implementing bias reduction techniques for density estimation. We support our selection
of the method by experimental results on simple scenes in the next section. The images in
Figure 7.2 show the density estimation footprints (i.e. ray/point candidates included in the
density estimation) for three different intersection metrics: the standard photon map query
(left), the ray disc query (middle), and the hemisphere-disc query (right).

7.4 Density Estimation

The ray map allows us to design a novel density estimation technique which makes use of a
combination of metrics II.(a), II.(b), and II.(c). We use a k-nearest neighbors search which
takes a maximum of the distances given by II.(a) and II.(b), i.e. the distance to the point on the
tangent plane and the distance to the ray segment. Accordingly, either the distance to the line of
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Figure 7.1: The Figures (a) and (b) show different intersection metrics: Four nearest neighbors according
to the euclidean distance in 2D of the intersection of a ray with the tangent plane (a). Note that due
to the planar intersection domain, different photons can be included than for the 3D euclidean distance
used for the photon map. The right figure (b) shows a complex query domain where the hemisphere-
disc intersection metric takes effect (i.e. a ray is included if it first intersects the hemisphere and its
prolongation (dashed line) intersects also the disc in the tangent plane). Figure (b) shows seven different
cases for ray intersections. The red circles represent the photon hits with the surface. The red-colored
rays are valid and the black ones are excluded.

Figure 7.2: The density estimation footprints inside a simple box for the ”normal” photon map (left), for
the ray disc intersection (middle), and for the hemisphere-disc method (right). Yellow points represent
the photon hits (i.e. ray end points) and the black dots show the rays (photons) used for the density
estimation at the red point. The sample of photons is drawn from a parallel light distribution starting
from the opposite corner. (Notice that the red point is closer to the camera than the corner.)
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the ray or the distance in the tangent plane is used as a weight for the density estimation kernel.
In this section we present the case study for density estimation we have made for ray maps
and photon maps on a set of simple scenes and ray distributions. The simple scenes depicted
in Figure 7.3 and Figure 7.4 were constructed in order to model the basic geometric features
occurring in normal scenes.

7.4.1 Experimental Evaluation

Using photon maps the irradiance E(x) at a point x is computed as:

E(x) ≈
K∑

i=1

∆Φ(x, dA, ωi, dωi)
∆A

(7.1)

∆A = π ·R2 (7.2)

This is equivalent to density estimation in case of diffuse (Lambertian) surfaces since the
BRDF is constant and moved out of the sum. We have used the following four methods for
density estimation:

• the reference irradiance computed either analytically or by a reference algorithm from two
magnitudes higher number of photons following the same distribution,

• the irradiance from density estimation using the photon map,

• the irradiance computed from the ray map using the disc only,

• the irradiance from density estimation with the ray map using the hemisphere-disc metric,

• and for comparison with the hemisphere-disc metric, the irradiance computed from the
ray map using the convex hull of the ray intersections with the disc to estimate the correct
area in corners,

• partially, for comparison only, specific estimators were applied to the photon map: the
adaptive KDE with precomputed bandwidth from the kNN for each photon hit, and the
convex hull of nearest photon hits (the convex hull estimate for photons as well as for ray
intersections is further discussed in 7.5 and 7.4.2).

In order to model basic geometric features occurring in rendered scenes, we implemented a
program specifically designed for the analysis of 2D density estimation in a 3D model. Thereby,
the user is able to visualize the density estimate along an arbitrary selected path (or 2D grid) on
a surface using the photon map or the ray map. A graphical user interface allows for convenient
construction and visualization of simple abstract scenes via OpenGL and their combination with
various ray-photon distributions. This allows to simulate different illumination such as diffuse
indirect light, caustics, or direct illumination from various light sources (e.g. point light, area
light, parallel light source).

Figure 7.3 and Figure 7.4 show five selected test scenes from the analysis together with
the associated ray-photon distribution (white lines). These scenes exhibit boundary and/or
topological bias, which enables us to compare the properties of different density estimation
methods and draw conclusions about the utility of the ray map. Just a small portion of the rays
is shown for visualization purposes. The right column shows the 2D density estimates at the red
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dots along the depicted line (blue-red) on the left for various estimators using the photon map
or the ray map. For the density estimation we used the Epanechnikov kernel (Section 3.6.4.4).
For the tests two different ray-photon distributions were applied: the parallel light distribution
with uniform density across a planar surface, and the diffuse light source distribution where the
outgoing direction of a photon is proportional to the cosine of its azimuth angle with the normal
of the light surface. The diffuse light source distribution approximates diffuse indirect light of
scenes consisting mainly of Lambertian surfaces. For the diffuse light simulation photons were
shot from a sphere surrounding the test scene and for the parallel light the photon origin was
randomly chosen on a quad covering the whole test scene.

For the simple cases among the test scenes, an analytic estimate (black dotted curve) of
the density along the depicted line was computed. For these cases we either assumed that no
shadowing of photon rays can appear (i.e. the solid angle covered by the ”light source” is not
(partially) occluded at the density estimation point) or the light comes only from one direction
(i.e. parallel ray distribution). For ”artificial” directional light occlusion can be detected by one
shadow ray since all other directions in the hemisphere do not contribute. For the parallel ray
distribution the density (irradiance) at a certain point is simply the density of rays (surface area
of emitter divided by number of samples) multiplied by the cosine of the ray direction with the
normal at the surface point.

For more complicated test scenes exhibiting self-occlusion such as the wave surface in Fig-
ure 7.4 (middle and bottom) it is difficult to estimate the correct solid angle for arbitrary ray
distributions (e.g. cosine ray distribution). Therefore, the reference estimate (black dotted
curve) was computed from two orders of magnitude higher number of samples (≈ 4× 106 pho-
tons) following the same distribution. In addition, the surface boundaries were extended to
overcome the boundary bias problem and adaptive bandwidth selection was used based on the
ray/photon density. For the actual test 100,000 rays were drawn from the simulated light source.

7.4.2 Convex Hull of Ray Disc Intersections

Another possibility for improving the density estimation by reducing the topological bias is to
compute the density estimation area from the convex hull of ray intersections with the disc.
Unlike the hemisphere-disc intersection metric, the convex hull is not a simple heuristic and
can lead to better density estimation in corners. Since we have a perfectly planar intersection
domain (disc), the convex hull area estimate does not suffer from the usual problems that occur
for photon mapping where we have to deal with a 3D domain. Moreover, unlike the photon
map query domain, the intersections of rays with the disc mostly form a convex polygon (no
geometric boundaries) and do not lead to area overestimation at concave surfaces. However, the
problem of overestimation due to a polygonal approximation of the area (Figure 7.7 (a) and (b))
still appears for ray–disc intersections as well. Therefore, noise appears in low-density regions
or areas where the convex hull becomes very coarse. Therefore, our hemisphere-disc method
might be preferable since it is more robust. Figure 7.5 shows an example of the convex hull
density estimation for a simple scene on the left. The density is uniform across each plane and
the estimate was computed along the depicted line. On the right is a chart showing the density
estimates for three different kernel methods. The yellow line is computed from the photon map
via ”normal” k-nearest neighbors and shows the typical bump near the corner. The dashed
purple line is the estimate using the convex hull of the photon hits, which overestimates near
the corner. And the dotted blue line shows the convex hull estimate for the ray map using the
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Figure 7.3: Simple test scenes to study the bias of density estimation near a corner. The test scenes
with the ray-photon distribution (white lines) are shown on the left and the 2D density estimates along
the depicted red-dotted line for various kernel density estimation methods using the photon map and ray
map are shown in the right graphs. In order to interpret the images correctly, note that in the top figure
point A is closer to the observer than point B, whereas in the other figures point B is closer.



7 Ray Maps 115

Boundary bias on sieve 
(parallel light)

0

0,05

0,1

0,15

0,2

0,25

0,3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Reference (analytic)
Point KDE convex hull
Point KDE (k-NN=50)
Ray KDE (disc only) <=>
Ray KDE (hemisphere→disc)

A B C D E

Topological bias 
(cosine distributed ray direction)

0

0,01

0,02

0,03

0,04

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Reference (4.000.000 photons)
Point KDE (photons)
Ray KDE (disc only)
Ray KDE (hemisphere→disc)

A B C D E

Topological bias (parallel light)

0

0,01

0,02

0,03

0,04

0,05

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Reference (analytic)
Point KDE (photons)
Ray KDE (disc only)
Ray KDE (hemisphere→disc)

A B C D E

Figure 7.4: Test scenes that are difficult for density estimation. The scene on the top consists of many
tiny surfaces and exhibits strong boundary bias for the photon map. Note how the density estimation
from the photon map always underestimates the density since it includes points from many patches even
if a small number of nearest neighbors is chosen (here 50). For this case of unconnected patches even the
convex hull cannot help! The scenes on the bottom exhibit topological bias which cannot be removed but
reduced when using the ray map.
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Figure 7.5: Density estimates using the convex hull area estimate along the depicted line (left) for the
photon map KDE and ray map KDE with the disc intersection method. For comparison a standard kNN
point density estimation is added (red line). A parallel ray distribution is used with direction shown on
the left (white lines). The density is uniform for each plane. Note that the convex hull estimate always
overestimates.

ray-disc intersection domain. All three methods use a simple box kernel for density estimation.
Notice that, unless one uses the uniform box kernel for the convex hull, a 2D kernel function must
be re-normalized since it does not necessarily integrate to one and is not symmetric anymore.
This is because if we use a non-uniform symmetric kernel function and we cut away the area
A′ from the disc (A = πr2) outside the convex hull, we reduce the area by the ratio A′/A.
However, the volume of the kernel does not necessarily decrease with the same ratio and can
become greater than 1. The result can be observed in the bottom Figure 7.3 for the ray disc
convex hull. Using the Epanechnikov kernel it increases incorrectly near the corner. This is in
particular problematic for kernel functions which have most of the mass in their center such as
the Gaussian or the Biweight kernel function. Normalizing the resulting non-symmetric kernels
might be difficult in the general case since the convex hull can have any convex shape. The
easiest solution is to use the simplest kernel, the uniform function (box) which gives a correct
estimate as shown in Figure 7.5.

7.5 Comparison with the Convex Hull of Photons

For comparison purposes we have also implemented a boundary bias reduction technique for
the photon map using the convex hull of the photon hits as an area approximation. Density
estimation using photon maps with convex hull area estimates are approximately 2 times faster
then ray map queries and 1.7 to 2 times slower than normal photon disc area estimates. The
convex hull area compensates for boundary bias on convex isolated surfaces that have got enough
photon hits. However the convex hull fails for curved surfaces since we are only concerned with
the 2D projection onto the local tangent plane at the query position. Hence, the area of non-flat
surfaces is strongly under-estimated (see Figure 7.6) which yields in clearly visible bias.
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Figure 7.6: Convex hull area estimate for the photon map (left) and for the ray disc query (right).
While the convex hull of the photon map query is problematic for the non-planar query domain, it almost
correctly estimates the area for the ray disc intersection domain (right). The black points belong to the
convex hull and the red points are included in the density estimate.

On the other hand, at concave borders, it naturally over-estimates the surface area (Fig-
ure 7.7). Another disadvantage of the convex hull area estimate is that it introduces additionally
noise even across planar surfaces with constant density due to a slight variance in the surface
area estimation which strongly depends on the density of photon hits (Figure 7.7.a/b). And
last, the downside of all photon hit density estimation algorithms is the dependence on the size
and orientation of the surfaces (see example in top Figure 7.4). Thus, the convex hull area
estimates cannot be robustly computed in places where we do not have enough photon hits in
the neighborhood. This is normally the case for small surfaces. The fewer photons are included
in the convex hull, the higher is the noise in the estimate due to the area underestimation. As
an alternative one could compute a 2D spline curve going through the convex hull vertices. This
would reduce the bias arising from the polygonal area approximation. However, it is expensive
to compute and even more complex to integrate to obtain an area estimate. Another idea for
reducing the topological bias is to find an appropriate 3D convex hull at non-planar regions of
the 3D model. After all, such an algorithm would be more unstable than a 2D convex hull and
also very complex to compute.

7.6 Managing Ray Maps

In this section we describe our implementation of the ray map concept. We present an overview
of the method and describe the algorithm for ray map construction, ray map queries, and
ray map updates. Developing efficient data structures for ray maps is inversely related to the
well-known ray shooting problem and we cannot easily adapt standard acceleration structures
used for ray shooting. To our best knowledge and investigation it has not being solved by
computational geometry or in other fields dealing with spatial data structures. The proximity
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(a) (b) (c)

Figure 7.7: Problems with the convex hull area estimate: the estimated area decreases with the density of
photons (a) to (b) and the density estimate is overestimated. If the domain of the photon hits is concave
(c) (or unconnected), the area is overestimated and hence the photon density is underestimated.

search is a 4D problem unlike photon maps, since the lines are 4D primitives. The 4-dimensional
search problem increases the running time and memory size of the data structure compared to
photon maps. We address the problem by enforcing the coherence of queries, which allows us
to achieve reasonable performance while keeping the memory requirements acceptable.

7.6.1 Overview of the Ray Map Data Structure

We represent the ray map using spatial subdivision based on kd-trees. The rays are organized in a
way similarly to organizing objects for ray shooting acceleration [27]. We construct a hierarchical
spatial subdivision that contains references to rays intersecting the cells of the subdivision. For
each elementary cell of the subdivision we maintain a list of references to rays that intersect
the cell. Then, for a given query domain, we first determine which cells of the subdivision the
domain overlaps and evaluate intersections only with rays referenced in these cells. The resulting
spatial subdivision should address the following two points during computation:

• Distribution of rays and queries

• Coherence of the queries

To address the first point we use a termination criteria that stops the hierarchical subdivision
based on the number of rays contained in the cells. Additionally, as we describe later, we use a
lazy construction of the tree that automatically adapts to the distribution of the queries.

The second point is addressed as follows: once a cell with a set of rays is split, the resulting ray
classification is reused by all subsequent queries. If the queries are coherent, only a small number
of spatial splits is performed for each query, since we mostly access cells already subdivided by
the previous queries.
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The proposed strategy using kd-trees that organize rays differs from the case of a kd-tree for
ray shooting or point location due to the increased dimensionality of the problem. Our strategy
is to keep searching time as low as possible while slightly increasing memory requirements. The
increased memory requirements are addressed by enforcing the queries to be coherent in the
application. This, together with an efficient caching strategy, allows us to limit the memory
usage to an acceptable level.

7.6.2 Static kd-tree Construction

The static construction of the ray map kd-tree proceeds as follows: starting at the root of the tree
we check if it satisfies the subdivision criteria. If the subdivision criteria are met, we subdivide
the node and distribute all rays it contains to the new leaves. A ray gets associated with a
leaf only if it intersects the cell corresponding to the leaf. After the subdivision we continue by
recursively traversing the newly created children.

We have used three subdivision criteria: the node is subdivided if all of the following three
conditions hold:

1. The number of ray references in the node is greater than a predefined constant Cmin (we
use Cmin = 32).

2. The diagonal of the corresponding cell is longer than a fraction of the diagonal of the scene
bounding box Rmin (typically Rmin = 0.1% of the size of the scene bounding box).

3. The depth of the node is smaller than a predefined maximal depth Dmax (we use Dmax =
30).

We have used splitting planes positioned at the spatial median of the current node that
is perpendicular to the axis with greatest spatial extent. The resulting algorithm has several
desirable properties:

• Since we use a spatial median the tree is spatially balanced.

• Due to the later presented lazy construction the tree automatically adapts to the query
distribution.

• Except for the termination criteria the subdivision is independent of the actual distribution
of rays. While this might be a drawback for a static set of rays, it turns out to be beneficial
for a dynamically changing ray set and the caching strategy we use.

• We do not have to evaluate a cost function which is required for more advanced splitting
plane selection. In asymptotic complexity bounds this reduces the cost of the plane selec-
tion from O(n log n) (sorting according to the cost) to O(n). Additionally the constants
hidden by the O-notation for the spatial median split are several times lower than for the
cost based one, which is important for ”on-the-fly” construction.

7.6.3 Intersection Query

An intersection of a given spatial domain with the rays from the ray map is carried out by a
constrained traversal of the kd-tree and computing intersections with rays stored at the leaf
nodes. The traversal is constrained only to those nodes intersecting the spatial domain of the
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query. In fact we constrain the traversal to a bounding box of the spatial domain and use the
actual domain (disc, sphere, hemisphere) only for evaluating the ray-domain intersection.

Starting at the root node the intersection query proceeds as follows: for each internal node
we determine the position of the query bounding box with respect to the plane associated with
the node. If the box lies on the positive side of the plane, we continue in the right subtree.
Similarly, if the box lies in the negative side of the plane, we continue only in the left subtree.
If the box intersects the plane, we recursively continue in both subtrees of the node. Reaching
a leaf we compute intersections of the rays associated with the query domain and aggregate all
intersecting rays. To avoid testing one ray several times we use mailboxes: once a ray has been
tested for intersection, we mark it as tested for the given query.

7.6.4 K-Nearest Neighbors Query

K-nearest neighbors queries aim to locate k nearest rays for the given query center. It uses a
similar mechanism as the intersection query, however it requires that the leaf nodes are processed
according to their distance from the center of the query. This is achieved by using a priority
queue in which the priority of the node is inversely proportional to its distance. This approach
is similar to the k-nearest neighbors over point data [3].

Initially we push the root node in the priority queue and proceed as follows: we pop the node
with the highest priority from the queue. If it is an internal node, we compute minimal distances
dl, dr of its children from the query center and insert them in the priority queue with priorities
equal to −dl and −dr, respectively. When reaching a leaf node we evaluate the distance of all
rays associated with the node with respect to the query center and add these rays to the ray
candidate list. If the ray candidate list becomes larger than k, we apply the k-median algorithm
to select the k rays with minimal distance. If the distance of the k-th selected rays is smaller
than the distance of the unprocessed node on the priority queue, we can terminate the algorithm,
since no unprocessed ray can be closer than the already found k-th ray.

The described technique considers the whole scene as a query domain. It is advantageous to
constrain the query domain even for the k-nearest neighbors queries. This is easily incorporated
in the algorithm by pushing only those nodes in the priority queue that intersect the query
domain. This limits the number of nodes in the queue and thus provides a minor speedup. The
set of leaves traversed is mostly identical to the unrestricted query. Note that the priority queue
provides a natural adaptation of the traversed part of the scene to the range where the k-nearest
rays are actually found, without the need of any complicated estimation techniques. The nodes
further away from the k-nearest neighbors are accessed at the higher levels of the hierarchy but
they are not accessed any further. The process of the k-nearest neighbors query without and
with the restriction of the query domain is illustrated in Figure 7.8.

7.6.5 Dynamic Updates

Inserting a ray into the ray map is easily implemented by a technique similar to ray shooting in
kd-trees [27]. We traverse only the part of the kd-tree that is formed by nodes that the given ray
intersects. When reaching a leaf node we insert a reference to the ray. Optionally we could apply
some rebalancing techniques after inserting a number of non-evenly distributed rays. However
as we shall see in Section 7.7.1 our lazy ray map construction postpones the rebalancing to the
moment of the actual presence of a query in this particular part of the scene.
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Figure 7.8: K-nearest neighbors queries using a priority queue. (a) Traversal of the tree for the un-
constrained query, i.e. query with a domain corresponding to the whole scene. The nodes are labeled
according to their processing order. The rays at the red leaves were actually tested for intersection. After
testing these two nodes the query was terminated since we have found a required number of rays that were
closer than any of the unprocessed nodes in the queue. (b) Traversal of the tree constrained by the query
domain. Note that although we have accessed a smaller part of the hierarchy we actually test the same
number of leaves as for the unconstrained query.

Deleting a ray from the ray map proceeds similarly as the ray insertion. Again we perform
a traversal of the tree constrained to the nodes intersecting the ray. When reaching a leaf we
remove the reference to this ray from its ray list. Deleting rays one by one could suffer from
exhaustive searching in the leaf ray lists. One way to tackle this problem is to keep the ray
list sorted and use a binary search to locate the actual ray reference. However this requires
resorting the list after each modification. A better strategy is to aggregate the deletions and
perform deletion using a number of rays in a single pass through the list as follows: Each ray
keeps the number of references to itself. All rays to be deleted are marked. We perform the
ray traversal starting with the first ray in the list. Reaching a leaf node we scan the associated
list of rays and remove all rays scheduled for deletion. In addition, this leaf is then denoted as
solved. We continue with the next ray by first checking if it still has a non-zero reference count.
If the reference count equals to zero, this ray was already deleted by previous ray traversals.
Additionally, we can skip the processing of leaves that were previously marked as solved. This
technique significantly improves the performance for deleting coherent rays that are referenced
in similar sets of leaves.

7.7 Ray Map Enhancements

This section presents several enhancements of the kd-tree based ray map implementation. The
first three presented methods aim to improve the performance of queries. The last method limits
the size of the ray map allowing the user to trade the total memory consumption for speed.



122 7.7 Ray Map Enhancements

7.7.1 Lazy Ray Map Construction

In order to concentrate the splits in areas really accessed by the queries we use a lazy kd-tree
construction. The kd-tree is constructed by interleaving the traversal of the already existing part
of the tree with subdivisions performed on its leaf nodes that satisfy the subdivision criteria (e.g.
contain too many ray references).

Given a query with its domain corresponding to an axis aligned box, we start at the root
node and proceed as follows:

• If the current node is an interior node, we check the position of the box with respect to the
node’s associated plane and continue the traversal recursively for the subtrees intersected
by the box.

• If the current node is a leaf, we check if the subdivision criteria are met (Section 7.6.2):

– If the subdivision criteria are met, we subdivide the node and distribute all ray
references it contains to the new leaves. Recall that a ray is associated with a leaf
only if it intersects the corresponding cell. After the subdivision we continue with
the traversal of the newly created children.

– If the subdivision criteria are not met, we test all rays associated with the node for
an intersection with the query box.

(a) (b) (c)

Figure 7.9: Lazy construction of the kd-tree driven by the queries. (a) The first query depicted by the
red disc requires five subdivisions of the kd-tree till the required limit of 5 rays per node is fulfilled in its
kernel support. (b) The second query (green disc) does not require any new subdivision due to its spatial
coherence with the previous query. (c) The third query subdivides the kd-tree further and adds four new
internal nodes.

7.7.2 Directional Splits

Two important ray map queries use a query domain that does not only restrict the spatial range
of the rays but also their directional range. In particular the disc query and the hemisphere query
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only consider rays with a negative dot product with the normal of the disc or the hemisphere.
If we only group rays according to the spatial positions, we cannot efficiently cull groups of rays
that do not contribute to the query because their direction is opposite to the reference direction.

To tackle this problem we extended the kd-tree by directional nodes. Unlike the usual kd-
tree node the directional node does not provide a split in the spatial domain, but rather in the
directional domain. The directional node contains a reference direction. The node subdivides
the current range of directions into those having a positive and negative dot product with the
reference direction. For the density estimation the negative directions are those feasible for the
disc or hemisphere intersection queries since they represent incoming rays. To allow sharing of
the same directional node by several queries with slightly different normals we enlarge the set of
feasible directions by a specified α angle (see Figure 7.10). Such an α-extended directional node
does not cull all infeasible rays, but it allows to reuse the directional node by all queries with
normals within the α threshold from the reference direction. In scenes with directionally coherent
queries, we have observed that using α = 10 degrees, about 90% of all query normals were within
the α range. This means that we could successfully cull the whole subtree maintaining rays
within the remaining 180 − 2α degrees. Moreover, since the incoming ray direction is mainly
cosine distributed for diffuse scenes, there are usually fewer rays than 2α/180 of all infeasible
rays arriving at a grazing angle from the back side of the query domain. Hence, the major part
of infeasible rays is culled efficiently.

 

Infeasible ray directions

Feasible ray directions

Covered query normals

Reference
direction

Figure 7.10: The subdivision of the ray directions according to a directional node.

In the optimal case we would place the directional nodes as high in the tree as possible while
making sure that the whole subtree corresponds to a spatial domain where directionally coherent
queries are expected. We use a simplified strategy suitable for dynamic tree construction that
uses two predefined constants: the minimal depth of a node and minimal diagonal size of the
cell. If we shall subdivide a node during the lazy tree construction and these two criteria are
met for the given node, we first check if there was no other directional node on the path to the
root that covers the given query (i.e. the angle between its reference direction and the query
normal < α). If we do not find such a node we introduce the directional node and split the
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current set of rays according to the angle between their directions and the reference direction as
shown in Figure 7.10.

7.7.3 Exploiting Query Coherence

Subsequent queries in the ray map are likely to be coherent, if they are induced by primary rays
in the direct visualization of the density estimation using a coherent pixel order in the image.
We exploit query coherence by reducing repeated traversals of the same interior nodes of the
kd-tree. The tests at the leaf nodes are carried out as usual since for most applications we need
to evaluate the actual ray distances for each particular query.

Our design goal was to provide a mechanism that does not require preprocessing of the
queries but allows us to use the coherence between subsequent queries if there is some. We
only describe a modification to the k-nearest neighbors algorithm. The modification of the fixed
domain intersection algorithm works similarly.

For the first query we create a list of nodes corresponding to the reached leaves and unpro-
cessed nodes on the priority queue that are within an ε-distance from the k-th found ray. The
created list becomes a reference list for subsequent queries and the query center becomes the
reference center. For the next query we first check if the query center lies within the ε-distance
from the reference center. If this is the case, we push all the nodes from the reference list to the
priority queue using the actual priorities with respect to the new query center. The query then
proceeds as usual, but the reference list and the reference center are not modified. If the query
center does not lie within the ε-distance from the reference center, we start the traversal at the
root node and create a new reference list that will possibly be used by subsequent queries.

7.7.4 Limiting Memory Usage

The existing data structures dealing with ray space share a common problem of high storage
costs due to the 4-dimensionality of the search problem. As a result the number of rays stored
in the ray map can be very large. The rays stored in the ray map are generated by the actual
global illumination algorithm. This algorithm can employ numerous strategies for decreasing the
number rays while keeping high accuracy of the illumination representation, such as importance
sampling or energy redistribution among existing samples for controlling the sample density
[77]. These techniques are independent of the ray map concept as long as they only require
evaluation of ray proximity queries possibly followed by a ray map update. Even when these
techniques are applied, there can still be a huge number of rays stored in the ray map. The ray
map implementation should however be able to limit the size of the indexing structure and so
to balance the query performance and memory costs.

Our ray map implementation stores multiple references to a ray in several leaves of the kd-
tree. As the kd-tree is constructed lazily, the overall memory consumption can grow with the
number of processed queries. The actual growth rate depends on the distribution of the rays
(mainly their length and direction) and the spatial coverage of the queries. If the rays are very
short and the queries cover only a small fraction of the scene the memory growth will be small.
On the other hand for long rays and queries evenly filling the space, there might be many leaves
with references to each ray in the cells of the constructed subdivision which increases the total
memory cost.

We have developed a mechanism allowing to efficiently balance the memory dedicated to the
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Scene Rays Queries Method Found Successful Memory Collapses Query Time Speedup

[103] [103] Rays Tests [%] [MB] [%] [ms] [-]

Cornell Box 1887 53
SP 100 0.42 23.0 - 24.9 1.0

RM 100 25.0 128.0 0.02 0.88 28.3

Cognac 67 128
SP 78 0.50 2.4 - 3.27 1.0

RM 78 8.3 3.7 0 0.24 13.6

Office 2550 307
SP∗ 100 0.9 62.0 - 3.75 1.0

RM 100 16.9 78.0 0 0.22 17.0

Sala 2360 1310
SP 100 0.40 33.0 - 0.89 1.0

RM 100 19.60 128.0 0.0001 0.20 4.5

Table 7.1: Comparison of the k-nearest neighbors query performance for the kd-tree based ray map
implementation and the dynamic list of spheres. ∗For the last SP test we had to reduce the search radius
to 0.5% of the scene size to obtain reasonable timings. When the initial radius was larger there were too
many rays in the candidate list leading to running times of more than two orders of magnitude greater
than the ray map method.

ray map and the computational cost using the least-recently-used (LRU) caching strategy. We
set a limit on the memory usage for representation of the kd-tree, such as 100 MBytes. Before
each subdivision of a node in the kd-tree, we check if the limit has not been exceeded. If it has
been exceeded, we search for the LRU subtree of the kd-tree and collapse it to a single node.
The collapses of subtrees are performed until the desired memory bound is reached. Then the
required subdivision of the current node is performed.

The described method maintains parts of the kd-tree that were recently accessed. In this
way, we make sure that the memory usage will not exceed a predefined memory limit, while we
can still exploit coherence of subsequent queries.

7.8 Results

In this section we summarize the results obtained using our implementation of ray maps in the
context of density estimation. We compare the achieved results for the direct visualization using
ray maps with the direct visualization using photon maps.

We have conducted four different tests. The first test compares k-nearest neighbors queries
using our ray map implementation and the ray cache using the dynamic list of spheres [47].
The second test illustrates the dependence of the query performance on the number of rays
stored in the ray map. The third test evaluates the performance of the queries in dependence
on the number of requested nearest rays. The fourth test compares the performance of density
estimation from photon maps and ray maps for the direct visualization.

The first test is the comparison of ray maps with the ray cache. We conducted tests on four
different scenes: the Cornell box, the Cognac, the Office, and the Sala scene (see Figure 7.12).
For each test we have measured the total number of rays, the number of queries, the number
of actually found rays, the percentage of successfully tested rays, the peak memory used during
the rendering, the percentage of sub-tree collapses per query (enforced by the caching scheme),
and the average query time. We have used k-nearest neighbors queries which were set to find
100 nearest rays. Additionally, we have restricted the search to a distance corresponding to 5%
of the radius of the scene’s bounding sphere. The results are summarized in Table 7.1.

We can see that the ray map method provides significant speedup compared to the ray-
cache [47]. From the running statistics we figured out two main reasons:
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Rays Found Succ. Tests Query Time

103 [%] [ms]

189 100 27.0 0.15

378 100 27.7 0.20

944 100 26.0 0.40

1887 100 25.0 0.77

Table 7.2: Dependence of the query performance on the number of rays stored in the ray map for the
Cornell box scene. The results were averaged using 53,000 nearest neighbor queries.

Found Succ. Tests Query Time

[%] [ms]

20 11.5 0.63

50 19.2 0.68

100 25.0 0.77

200 33.4 0.89

500 44.0 1.29

Table 7.3: Dependence of the query performance on the number of requested nearest neighbors. The
measurements were carried out for the Cornell Box using 1.8× 106 rays and 53,000 queries.

1. the ray-cache using the dynamic list of spheres heavily depends on the choice of the appro-
priate search radius. If this radius is larger than that of the actual neighborhood, where
the k rays are found we obtain too many candidate rays that have to be ranked.

2. In case that all subsequent queries are not coherent enough, the dynamic list of spheres
has to be reconstructed which is relatively costly.

The second test shows the dependence of the query performance on the total number of
rays stored in the ray map. This test was carried out for the Cornell box using 53,000 nearest
neighbor queries. The results are summarized in Table 7.2. We can observe that increasing the
number of rays causes only a sub-linear increase of the average time per query. However, the
query time has no logarithmic complexity which is due to the fact that the average query time
also includes the costs for the lazy construction of the kd-tree.

The third test depicts the dependence on the number of requested rays for a k-nearest
neighbors query. Again we have used the Cornell box with 1.8× 106 rays and 53,000 queries.

We also see a sub-linear increase of query time when increasing the number of desired rays.
The more rays we require the farther we have to search from the query center. An important
property of our ray map implementation is that due to the priority queue based traversal it
automatically establishes the neighborhood where the desired number of rays are being found
without significant performance lost.

The fourth test compares the rendering using the direct visualization with ray maps and
photon maps. The time performance results for this test are summarized in Table 7.4, the
images are shown in Figure 7.11 for the photon map and in Figure 7.12 for the ray map. Notice
the clearly visible boundary bias for the photon map.

The comparisons have demonstrated that the ray map based density estimation successfully
eliminates the boundary bias. The overhead of performing the ray map queries is moderate –
the direct visualization (i.e. density estimation) for the ray map was 3.9 to 5.2 times slower
than the direct visualization for the photon map.
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Scene Time [s] Time [s] Ratio [-]

Ray map Photon map

Cornell Box 90.0 23.0 3.9

Cognac 104.0 20.0 5.2

Office 86.6 20.0 4.3

Sala 78.2 19.6 4.0

Table 7.4: Rendering times for density estimation with the photon map and the ray map without final
gathering for a resolution of 400× 400 pixels.

For all the tests, we have set the limit for the memory usage for the ray map as described in
Section 7.7.4 to 128 MBytes.

7.9 Discussion

The experimental evaluation of our ray map implementation revealed several interesting features
of the method. For the discussion we select the splitting plane selection and a comparison to a
different ray map implementation that uses a dual space.

7.9.1 Splitting Plane Selection

Inspired by the rich literature on kd-trees for ray shooting [39, 27] we have experimented with
other methods for the splitting plane selection such as the ray median or query distribution
heuristics. The ray median selects a splitting plane so that the number of rays in the left and
right subtrees of the split node is equal (plus/minus one ray). This strategy results in a balanced
tree with least maximal depth. The query distribution heuristics is based on a similar idea as
the surface area heuristic subdivision for ray shooting. We estimate the costs of a splitting plane
position by weighting the number of rays in the left and right child by the probability that the
corresponding child will be accessed by a query.

Surprisingly, the conducted experiments have shown that the best overall query performance
was achieved by using the simplest strategy - the spatial median split discussed in Section 7.6.2.
When using the more advanced ray median split or query distribution heuristic we obtained
about 10-30% performance slowdown per query. We explain this result as follows:

• The computational cost of the splitting plane selection for the advanced techniques is
higher. Asymptotically this means O(n log n) versus O(n), but there is also an additional
cost for evaluating the heuristic function hidden in the O-notation. Since we construct the
tree lazily and the number of queries is comparable or even lower than the number of rays
stored in the ray map this difference becomes significant.

• The heuristics should provide a well-balanced tree with respect to the queries. However
we deal with a more complicated higher-dimensional problem than for traditional kd-trees
that store only points in 3D. Any ray can be referenced in a number of leaves and it is
hard to predict how many references will occur at each subtree when performing a split
near the root of the tree. This is emphasized by the fact that long diagonal rays can span
across the whole scene, although after the subdivision they end up in only a few nodes in
proximity of the ray.
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7.9.2 Ray Maps in Line Space

A natural candidate for the ray map representation is the line space. Rays on a given line in
primary space are represented by a point in line space. By representing all rays as line space
points we can cluster these points and use classical range searching methods to find points that
intersect the line space mapping of the query domain. In fact this technique was used in our
first ray map implementation. We have used Plücker coordinates to map supporting lines of the
rays to 6D points (points in 5D projective space embedded in 6D). Then we have clustered the
resulting points using a balanced BBD-tree [3]. The query domain (disc) that was mapped to a
line space convex polyhedron formed a set of 6D hyperplanes [81]. We have then found all points
of the BBD-tree that were contained in the polyhedron. To reflect the fact that we actually deal
with line segments instead of lines we have interleaved the search with testing intersections of
the query domain with the spatial bounding boxes of ray clusters. Unfortunately, the resulting
technique exhibits rather small performance gain compared to the naive implementation. The
major problem is performing a computationally efficient intersection of the line space mapping of
the query domain (6D unbounded convex polyhedron) and the 6D bounding boxes corresponding
to clusters of rays. The query domain is compact in primal space (e.g. disc), but after mapping
to line space we typically obtain an unbounded thin polyhedron. Thus it is not possible to
efficiently approximate the polyhedron with a box and we have to perform intersection of the
polyhedron itself with the boxes of the BBD-tree.

To avoid complicated boundary intersection test we have used a conservative test that is
based on finding a separation plane. As candidates for separation planes we used all boundary
faces of the polyhedron. If the box is on the negative side of the plane it cannot intersect the
polyhedron. Unfortunately we have observed that such a test only succeeds at the bottom of
the hierarchy and does not cull of larger ray clusters near the root. As a result the BBD-tree
was always traversed almost to the bottom providing only a ten fold speedup compared to the
naive implementation of the query.

This approach however devotes further investigation since keeping rays as points in a dual
space has the advantage of easily predictable memory costs: every ray is represented by exactly
one entry. Perhaps a combination of primal/dual space data structure could share the benefits
of both: compactness of the query domain (primal space) and elegance of the ray representation
(dual space).

7.10 Future Work

The ray map concept opens a number of topics for future work. First, we would like to work on
the methods detecting or reducing occlusion bias via simple statistical means over the rays in
query. Second, it is possible to use the ray map for rendering of volumetric effects using 3D den-
sity estimation. An extension of the algorithm to 3D density estimation is very straightforward
and neither needs any modification (except for the used kernel) of the ray map nor would it need
additional memory unlike the photon map. Third, the ray map is mainly intended to be used
exclusively for the direct visualization of photon density estimation. Therefore, we would like
to combine the ray map with more sophisticated bandwidth selection in order to detect large
illumination gradients at shadows boundaries and caustics. And finally, we envision a composite
rendering algorithm that computes the indirect illumination more efficiently via a combination
of density estimation from the photon map, the ray map, and the final gathering across the
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image plane. When revising the underlying assumptions for each method, starting with the
cheapest method first, a significant speedup for rendering could be achieved without a decrease
of image quality compared to costly final gathering over the whole image. Last but not least,
we would like to use the ray map in the context of animation, without the necessity to compute
the ray map from the scratch for each frame.

Figure 7.11: The test scenes rendered using photon tracing with the direct visualization of the photon
map using density estimation: the Cornell box, Cognac, Office, and Sala.

Figure 7.12: The test scenes rendered using photon tracing with the direct visualization of the ray maps
using density estimation: the Cornell box, Cognac, Office, and Sala.
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Chapter 8
Conclusion

We have described the fundamentals of global illumination and density estimation at the begin-
ning of the thesis. We described the classic photon mapping method and the involved difficulties
arising from density estimation. In addition to the standard algorithm, several enhancements
were discussed including irradiance caching, final gathering, and importance sampling. We pro-
posed a novel method to speed up the k-nearest neighbors search in the photon tree by computing
an adaptive initial search radius using the spatial kd-tree.

We continued with a survey of search data structures that are suitable for photon mapping
and proposed an efficient spatial kd-tree with small memory footprint. A full comparison of the
described data structures was given at the end of the chapter.

We presented two practical applications of density estimation in photon mapping to compute
a global illumination solution for arbitrary lighting situations and scenes. The first application,
reverse photon mapping, trades memory consumption with rendering speed and highly improves
the coherence in the density estimation. We achieved this by utilizing a dual-tree approach and
reversing the search for the density estimation. Two kd-trees are constructed: a kd-tree over
photons and also a kd-tree over final gather ray hit points (reverse photons) which we called
reverse photon map. The indirect diffuse and glossy illumination is then computed by photon
density estimation. Instead of performing a density estimate at each reverse photon location to
compute an irradiance estimate, we distribute the energy of each photon to neighboring reverse
photons. This is algorithmically superior since the number of photons is much smaller than the
number of reverse photons.

We provided a theoretical analysis for the complexity of the reverse photon mapping algo-
rithm compared to normal photon mapping. Further, several optimizations were presented to
increase the utility of the algorithm: the modified irradiance caching (Section 6.7.3), the final
gather ray shooting cache (Section 6.9.1), which is also applicable to other ray shooting algo-
rithms, the aggregate search in the dual-tree (Section 6.9.2), and the offline density control for
the photon map (Section 6.9.3).

Furthermore, we showed successfully how to deal with the enormous memory overhead via
screen tiling and the use of external data structures. We evaluated our method for various test
scenes of different complexity and compared it with the normal photon mapping algorithm [34].
We have also demonstrated that the method is also capable of rendering global illumination
images in a setting as it is used for production rendering.

In the next chapter, we presented a data structure for representing light transport called ray



132

map. The ray map extends the concept of the photon map: it provides a general mechanism
for storing light path samples as well as retrieving the samples using ray proximity queries. We
have discussed the intersection queries, nearest neighbor queries, and practically analysed their
combinations for a variety of test cases with our density estimation framework. The ray map
does not only allow to determine rays in proximity, but also allows to use new distance metrics
unavailable for the photon map.

We described an implementation of the ray map based on a kd-tree. To achieve query per-
formance approaching the performance of the photon map while keeping memory requirements
low, we proposed a number of techniques. The kd-tree is constructed lazily based on the actual
queries, it is extended by directional nodes for efficient culling of infeasible rays for the queries
with limited directional range, and we exploit query coherence by avoiding repeated traversals
in the upper part of the tree. Finally, a method was described for limiting the memory usage of
the ray map by caching only the part of the tree that was recently accessed.

We practically evaluated the algorithm by direct visualization of the ray map and showed
that we can avoid boundary bias inherent to photon maps. By searching with a hemispherical
domain, while computing the surface area on the disc, we also reduced the topological bias. The
results were achieved at the cost of moderate increase in computation time compared to photon
maps.
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