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Figure 1: Example of BTF datasets used in rendering for bunny and sphere: ceiling, wool, corduroy, proposte, pulli, wallpaper,
impalla. Environment map illumination (odd columns) and point light illumination (even columns) is used, average compression
ratio 1:631, average compression time 3 hours, rate of decompression 127 million evaluations per second on a GPU.

Abstract
Bidirectional Texture Function (BTF) as an effective visual fidelity representation of surface appearance is becom-
ing more and more widely used. In this paper we report on contributions to BTF data compression for multi-level
vector quantization. We describe novel decompositions that improve the compression ratio by 15% in comparison
with the original method, without loss of visual quality. Further, we show how for offline storage the compression
ratio can be increased by 33% in total by Huffman coding. We also show that efficient parallelization of the vector
quantization algorithm in OpenCL can reduce the compression time by factor of 9 on a GPU. The results for the
new compression algorithm are shown on six low dynamic range BTFs and four high dynamic range publicly
available BTF samples. Our method allows for real time synthesis on a GPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading, texture I.4.1 [Image Processing and Computer Vision]: Digitization and Image
Capture—Quantization, Reflectance

1. Introduction
The Bidirectional Texture Function (BTF), introduced by
Dana et al. [DvGNK99], is a practical and powerful image
based technique for representing the visual appearance in the
real world. It can be understood as a six-dimensional func-
tion for monochromatic data of fixed wavelength. In contrast
to spatially varying BRDFs, BTF allows to capture visu-
ally complex phenomena such as subsurface scattering, self-
shadowing, self-occlusion, and inter-reflections. The BTF
data are acquired by taking thousands of photographs. The
BTF data storage can be solved by using a suitable lossy fast
compression algorithm with the highest possible compres-
sion ratio and with high speed of decompression on various
computer hardware architectures.

In this paper we extend the compression method based

on Multi-Level Vector Quantization (MLVQ) for BTF data
proposed by Havran et al. [HFM10]. We propose alternate
decomposition schemes that improve the compression ratio.
We also show the use of Huffman coding to further improve
the compression ratio. To decrease the compression time, we
are first to show how MLVQ algorithm can be parallelized on
contemporary GPUs using OpenCL [MGMG11]. We show
that a parallelization of the BTF compression algorithm is
possible and achieves a significant reduction in computation
time.

2. Related Work

Bidirectional Texture Functions. The acquisition and com-
pression of BTF has raised significant interest since its in-
troduction by Dana et al. [DvGNK99]. A recent survey com-
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paring acquisition approaches and compression methods for
the first decade since introduction was presented by Filip and
Haindl [FH09].

Several principles are used in lossy BTF data compres-
sion, including data fitting, factorization, tensor decomposi-
tion, inverse procedural modeling, etc. One of the most ex-
plored methods uses fitting of analytical functions such as
Lafortune model lobes to the data in the method of McAl-
lister [MLH02] and by Tsai and Shih [TS12] for real time
rendering. Another set of methods is based on Principal
Component Analysis (PCA) or its variant local PCA. Filip et
al. [FCGH08] used a perceptual metric to reduce selectively
some input data as the input to PCA compression. More re-
cently, Havran et al. [HFM10] have proposed compressing
BTF by MLVQ, taking BTF as a conditional probability den-
sity function. Our algorithm extends this method, so we de-
scribe it in greater detail in the next section.

Vector quantization on GPUs. Vector quantiza-
tion [GG92] allows efficient mapping of an input set
of vectors to a small representative set of vectors, referred
to as a codebook, using a distance measure between two
vectors. Its implementation on a GPU was used e.g. for
volumetric compression [ZYX∗11].

3. Multi-Level Vector Quantization for BTF data

MLVQ for BTF compression [HFM10] in fact extends the
hierarchical vector quantization introduced by Gersho and
Shoham [GS84] by indices and scales for improved adap-
tive modeling of the input data. A description of the algo-
rithm and its settings can be found out in the original pa-
per [HFM10] and we due to the lack of space need cannot
describe it in more detail, it almost corresponds to the de-
composition used here is shown in Figure 2b.

Several key components are needed to make the algorithm
efficient: suitable parameterization over a hemisphere allow-
ing such a hierarchical decomposition, resampling algorithm
for BTF data, and error metric required by vector quantiza-
tion (Structural Similarity Index Metric (SSIM) [WBSS04]
that utilizes the neighborhood of a pixel compared against
the reference, and can to some extent model such effects
such as visual masking, luminance, and contrast measures).
In the MLVQ algorithm, the SSIM is computed for a cur-
rently encoded vector over already existing vectors for all the
codebooks along the pipeline. It achieves about a ten times
higher compression ratio than a single level vector quantiza-
tion. The similarity of vectors in a codebook and a candidate
vector is also given up to a scale factor. Another difference
is that ordinary vector quantization is applied for monochro-
matic data, but the BTF data are trichromatic.

Compression is then computed relatively simply by data
pruning [GS84] in a hierarchical way starting from the 4D
codebook and ending in 1D codebook. The lowest dimen-

sional codebook stores the data in a simple table represent-
ing the data vectors themselves.

BTF decompression given a particular 6D coordinate is
computed by chained indexing from the existing codebooks,
with necessary interpolation among data vectors to allow
for visually pleasing results. When implemented naively, so
that the scale factors are represented by floating point values
stored as 4 Bytes and indices among codebooks by 4 other
Bytes (denoted as C.R.1 in Table 1), has a mild compres-
sion ratio of the order of 1:200. Without deteriorating the
visual quality, the scale factors can be represented by 8 bits
for LDR data and by 16 bits for HDR data (scalar quantiza-
tion), and the indices among codebooks can be represented
by only necessary number of bits (denoted as C.R.4 in Ta-
ble 1). For this variant of the algorithm the compression ratio
was reported to be between 1:233 and 1:2267, with an aver-
age of 1:764 for twenty BTF samples in the original paper.
Some of the used BTF samples have not been made publicly
available, so reproducibility cannot be verified.

4. New BTF Compression Algorithm

In this section, we describe briefly two new modifications to
the compression scheme as described in the previous section
and in detail in [HFM10]. We also described how to address
the relatively high compression time (average 20 hours for
one BTF data 256×256 texels) by a parallel algorithm.

4.1. Adaptive Multi-Level Vector Quantization

There is an interesting but unjustified choice in the origi-
nal algorithm related to the decomposition shown in Fig-
ure 2b. A common problem of all BTF compression algo-
rithms is due to the necessity to represent (at least) trichro-
matic BTF data as three separate channels. There is obvi-
ously some redundancy as most real world BTF samples
exhibit only slightly varying chromaticity for a single BTF
texel. In MLVQ algorithm, this is handled by separation to
luminance and chromaticity in codebook M, which merges
together the two-dimensional luminance data (one channel)
given by codebook P2 and the two-dimensional chromaticity
data (two channels) given by codebook I2.

It is not obvious, where to separate the data of the lumi-
nance and chromaticity channels. The original paper seems
to make an ad-hoc decision to separate them between code-
book P2 and P3. It is unclear when we want to get the highest
compression ratio, if the vector data in VQ are to be shared,
including luminance and chromaticity, for many vectors so
the separation should come as late as possible. However, it
can be argued that they should be separated as soon as pos-
sible, since they are not sufficiently similar. We designed a
total of four decomposition schemes, where one corresponds
to the original scheme [HFM10] with only a small differ-
ence. The three of four implemented and tested decompo-
sition schemes are shown in Figure 2, where the separation
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Figure 2: Three of four implemented and tested BTF decomposition schemes for compression using MLVQ algorithm with
luminance and chromaticity is separated in one, two, and four dimensions by the codebook M representing indices.

of luminance and chromaticity is either at 1D, 2D, or 4D
dimension, using a common index codebook M. This com-
mon index codebook M in fact implements the color model
conversion from sRGB space (3 channels) to luminance (1
channel) and chromaticity (2 channels).

4.2. Optional Huffman Coding of Indices

The indices stored in any individual codebook pointing to
a lower dimensional codebook present another possible po-
tential redundancy that can be utilized to improve the com-
pression ratio. We show below how we can apply simple
Huffman coding [Huf52] as a method for lossless compres-
sion based on the entropy of individual symbols. This well-
known algorithm first computes the static frequency of the
symbols in the data, and its time complexity is O(N. logN)
for N symbols, knowing the probability of the individual
symbols. As symbols we take the indices for each codebook
that point from one codebook to another lower dimensional
codebook. We calculate the size needed to represent both the
binary tree of Huffman coding and the size of the encoded
stream representing the indices. We choose such a represen-
tation that requires less memory. This step is applied as post-
processing after the whole set of codebooks is constructed.

4.3. Parallelization of Compression with OpenCL

The compression pipeline functionality is designed so that
parallelism is exploited at several levels. First, decompres-
sion to the reconstruction caches is executed in parallel in
all the codebooks. For 4D PDF only one vector is decom-
pressed, while for 3D PDF all necessary vectors are decom-
pressed that correspond to 2D PDFs, etc. Second, the com-
putation of SSIM errors is computed in parallel for all data
vectors in the codebooks. Third, the conversion from sRGB
to the selected color model is computed in parallel. Fourth,
when the vectors are inserted into the codebook, it is done
by a single thread and can be done in parallel by more than
one thread simultaneously. We used OpenCL [MGMG11] as
the parallel API to keep the parallel algorithm platform in-
dependent.

To implement parallelization efficiently we designed

a new modular task-driven scheme for the compression
pipeline. This uses several functional nodes that work inde-
pendently for compression and for decompression without
knowledge of the rest of the pipeline. These nodes have ba-
sically three obligatory parts: the input data, the output data,
optionally compare unit, and the settings to describe their
functionality, This design of parallelization allows high flex-
ibility of the compression pipeline, specified in an XML file.

5. Results

We implemented the proposed algorithm on a PC running
MS Windows 7, x64 architecture, and GPU NVidia GTX780
Ti (GK110). We used the same discretization over the hemi-
sphere as in the original paper (16× 7× 11× 11), and all
the data were compressed for 256×256 texels to allow for
meaningful comparison. A summary of the results for 6 LDR
and 4 HDR BTF samples from the Bonn BTF repository is
shown in Table 1. The time for compressing a single BTF
sample of size 256×256 texels varies, and is on an average
3 hours (about 9 times faster than the compression time than
in [HFM10]) for BTF spatial resolution 256×256 texels. The
smaller the compression ratio, the higher the compression
time, as larger codebooks require more time for searching.

5.1. Discussion

Table 1 shows that it is not possible to select one of the
decomposition schemes for all the BTF samples to get the
highest compression ratio and the same visual quality for a
single BTF sample. The resulting compression ratios differ
while visual quality is the same. To get the highest com-
pression ratio we need to compress the BTF material in all
four decompositions and select the one that has the high-
est compression ratio. In comparison with the original pa-
per [HFM10], we achieve a higher compression ratio by 15%
on an average for C.R.4 than in the original paper, and also
slightly smaller error for SSIM. The compression ratio when
using Huffman coding is improved in total by 33%. The
speed of decompression is even higher than for the original
paper, as one codebook is omitted (for storing individual col-
ors) and reaches a frame rate over 150 FPS (and about 600
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BTF T T C.R.1 C.R.4 C.R.1 C.R.1 C.R.1 C.R.1 C.R.4 C.R.4 C.R.4 C.R.4 C.R.4 C.R.4 ratio ratio MSSIM
[h] [h] 1D 2D 3D 4D 1D 2D 3D 4D best HC [ Best

2D ] [HC
2D ] [-]

Ha10 our Ha10 Ha10 our our our our our our our our our our our our Ha10 our
UBO BTF database (LDR)

corduroy 19.2 1.1 1:128 1:418 1:170 1:142 1:142 1:141 1:485 1:422 1:420 1:417 1:485 1:561 +15% +33% 0.748 0.731
impalla 21.8 2.0 1:162 1:522 1:184 1:177 1:169 1:172 1:536 1:512 1:491 1:501 1:536 1:614 +5% +20% 0.730 0.854
proposte 18.0 1.1 1:236 1:806 1:284 1:306 1:305 1:309 1:838 1:931 1:939 1:954 1:954 1:1107 +2% +19% 0.710 0.786
pulli 27.1 10.6 1:87 1:264 1:55 1:58 1:60 1:62 1:143 1:157 1:163 1:170 1:170 1:208 +8% +32% 0.699 0.770
wallpaper 28.8 1.1 1:222 1:728 1:170 1:195 1:227 1:245 1:481 1:593 1:707 1:767 1:767 1:875 +29% +48% 0.776 0.770
wool 50.2 7.3 1:77 1:233 1:83 1:87 1:86 1:85 1:220 1:239 1:235 1:232 1:239 1:278 +0% +16% 0.684 0.763

UBO BTF database (HDR)
ceiling� 20.1 1.6 1:235 1:780 1:318 1:291 1:227 1:203 1:855 1:733 1:611 1:532 1:855 1:984 +16% +34% 0.711 0.839
floortile� 28.7 3.2 1:136 1:360 1:216 1:198 1:186 1:195 1:567 1:533 1:506 1:529 1:567 1:663 +6% +24% 0.772 0.893
pinktile� 15.6 0.7 1:711 1:2267 1:483 1:389 1:278 1:220 1:1286 1:968 1:691 1:551 1:1286 1:1455 +32% +50% 0.961 0.932
walkway� 37.4 21.3 1:102 1:257 1:123 1:138 1:148 1:162 1:305 1:370 1:421 1:446 1:446 1:563 +20% +52% 0.884 0.891
Avg(LDR) 27.5 3.2 1:152 1:495 1:158 1:161 1:165 1:169 1:451 1:476 1:493 1:507 1:525 1:607 +10% +28% 0.725 0.779
Avg(HDR) 25.5 2.8 1:296 1:967 1:285 1:254 1:187 1:195 1:753 1:651 1:557 1:515 1:789 1:916 +21% +41% 0.832 0.889
Avg 26.7 3.0 1:210 1:664 1:209 1:198 1:172 1:179 1:572 1:546 1:518 1:510 1:631 1:731 +15% +33% 0.768 0.823
�: HDR sample, 12 bits per channel, unmarked samples are LDR, 8 bits per channel. 256×256 texels are used for all samples.

Table 1: The compression time, ratio, and error with respect to the original data using MSSIM [WBSS04] over the rendered
images. The reference method Ha10 [HFM10] is shown for two settings. C.R.4 HC refers to the use of Huffman coding over
the scheme that has the highest compression ratio. Values marked in bold are the best for C.R.4. The averages are reported.

FPS for GLSL) when the whole screen of size 800× 600 is
covered by BTF material rendered and illuminated by a sin-
gle point light. We also analyzed the memory pattern that is
handled by OpenCL itself. The 3 GBytes GPU memory is
fully exploited during compression, while part of the data is
in the main memory and is transferred to and from as needed.

6. Conclusions

We have proposed a novel BTF compression algorithm that
uses new decomposition schemes adaptively for MLVQ. The
compression ratio is increased by 15%, on an average, im-
proved with the Huffman coding of the indices in total by up
to 33%, on an average. We have parallelized the compression
algorithm on a GPU in OpenCL, where we achieve a signif-
icant time reduction by a factor of 9 against single threaded
implementation on a CPU.

Acknowledgments

We would like to acknowledge the use of BTF data from
UBO. This research was partially supported by the Czech
Science Foundation under projects No. P202/12/2413 and
GA14-19213S, and by the Grant Agency of the Czech Tech-
nical University, grant No. SGS13/214/OHK3/3T/13.

References
[DvGNK99] DANA K., VAN GINNEKEN B., NAYAR S., KOEN-

DERINK J.: Reflectance and Texture of Real-World Surfaces.
ACM Transactions on Graphics 18, 1 (1999), 1–34. 1

[FCGH08] FILIP J., CHANTLER M. J., GREEN P. R., HAINDL
M.: A Psychophysically Validated Metric for Bidirectional Tex-
ture Data Reduction. ACM Trans. Graph. 27, 5 (Dec. 2008),
138:1–138:11. 2

[FH09] FILIP J., HAINDL M.: Bidirectional Texture Function
Modeling: A State of the Art Survey. PAMI, IEEE Transactions
on 31, 11 (Nov 2009), 1921–1940. 2

[GG92] GERSHO A., GRAY R. M.: Vector Quantization and
Signal Compression. Communications and Information Theory.
Kluwer Academic Publishers, Norwell, MA, USA, 1992. 2

[GS84] GERSHO A., SHOHAM Y.: Hierarchical Vector Quantiza-
tion of Speech with Dynamic Codebook Allocation. In Acoustics,
Speech, and Signal Processing, IEEE International Conference
on ICASSP ’84. (Mar 1984), vol. 9, pp. 416–419. 2

[HFM10] HAVRAN V., FILIP J., MYSZKOWSKI K.: Bidirec-
tional Texture Function Compression Based on Multi-Level Vec-
tor Quantization. Computer Graphics Forum 29, 1 (jan 2010),
175–190. 1, 2, 3, 4

[Huf52] HUFFMAN D.: A Method for the Construction of
Minimum-Redundancy Codes. In Proc. of the IRE 40, 9 (Sept
1952), 1098–1101. 3

[MGMG11] MUNSHI A., GASTER B., MATTSON T., GINS-
BURG D.: OpenCL Programming Guide. OpenGL Series. Addi-
sion Wesley, 2011. 1, 3

[MLH02] MCALLISTER D. K., LASTRA A., HEIDRICH W.: Ef-
ficient Rendering of Spatial Bi-directional Reflectance Distribu-
tion Functions. In Proc. of conference on Graphics Hardware,
HWWS ’02, pp. 79–88. 2

[TS12] TSAI Y.-T., SHIH Z.-C.: K-clustered Tensor Approxima-
tion: A Sparse Multilinear Model for Real-time Rendering. ACM
Trans. Graph. 31, 3 (June 2012), 19:1–19:17. 2

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.:
Image quality assessment: From error visibility to structural sim-
ilarity. IEEE Transactions on Image Processing 13, 4 (April
2004), 600–612. 2, 4

[ZYX∗11] ZHAO L., YUE G., XIAO D., ZHOU X., YU X., YU
F.: A Content-based Classified Hierarchical Vector Quantization
Algorithm for Volume Compression. JSW 6, 2 (2011), 322–330.
2

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.


