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Abstract
We reexamine in this paper the variance for the Multiple Importance Sampling (MIS) estimator for multi-sample and one-
sample model. As a result of our analysis we can obtain the optimal estimator for the multi-sample model for the case where
the weights do not depend on the count of samples. We extend the analysis to include the cost of sampling. With these results in
hand we find a better estimator than balance heuristic with equal count of samples. Further, we show that the variance for the
one-sample model is larger or equal than for the multi-sample model, and that there are only two cases where the variance is
the same. Finally, we study on four examples the difference of variances for equal count as used by Veach, our new estimator,
and a recently introduced heuristic.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Computer Graphics]: Mathematics of Computing / PROBA-
BILITY AND STATISTICS—Probabilistic algorithms

Keywords: global illumination, rendering equation analysis,
multiple importance sampling, Monte Carlo

1. Introduction

Many computer graphics algorithms need efficient sampling
schemes that lead to low variance integral estimators. The Multi-
ple Importance Sampling (MIS) estimator [VG95, Vea97], and in
particular balance heuristic, which is equivalent to the Monte Carlo
estimator with a mixture of probability density functions (pdfs), has
been used for many years with a big success, as it is a reliable and
robust estimator that allows an easy and straightforward combina-
tion of different sampling techniques.

MIS can be applied with pre-determining the number of samples
generated by the different methods (multi-sample model). Alterna-
tively, the decision on the actually used sample method can also
be made randomly (one-sample model). This random decision is
essential when very few samples need to be generated by multiple
methods, e.g. a single sample.

Despite the wide scale application of MIS, there are still open
questions about their benefit and optimal use. Among others, for
an efficient application, we need to know how many samples are
worth taking with different techniques and where the trade-off is
between random decisions and deterministic, but non-optimal se-
lections. The determination of the relative number of samples al-

located to each of the sampling methods or their selection proba-
bilities is non-trivial, it should take into account the variance and
sampling cost of individual methods and their contribution to the
overall variance and cost of the MIS approach. It is intuitive that
strategies of high variance and/or significant cost should be given
a lower weight or sample number, but this requirement is difficult
to formalize and meet. On the one hand, this is a typical chicken
and egg problem since we wish to optimize a sampling strategy be-
fore applying it and gathering information about its properties in a
particular neighborhood of our scene. Heuristics can be used that
prefer certain sampling methods based on the local properties, for
example, BRDF sampling is advantageous on highly specular sur-
faces and light source sampling on diffuse surfaces. Pajot et al. pro-
posed a framework, called representativity, to develop such heuris-
tic [PBPP11].

In other papers addressing the variance of MIS, strategies were
assumed to have equal number of samples [EMLB15] and the com-
bination of MIS with jittered sampling was studied [SNJ∗14]. Lu
et al. [LPG13] used a Taylor’s second order approximation of the
variance around the equal weights 1/2 to obtain the counts of sam-
ples from BRDF and environment map, which is accurate only if
the optimal sample numbers are not too far from equal sampling.
Havran and Sbert in [HS14] used a heuristic for the count of sam-
ples based on the inverse of the variance of each technique, and
taking into account the cost of sampling.
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This paper revisits the variance of MIS estimators and addresses
the open problems of optimal sample allocation. In addition to vari-
ance and cost analysis, we also propose a new estimator in Sec-
tion 4, which is provably better than the equal count of samples es-
timator. This new estimator belongs to the category of multi-sample
estimators and thus can be used when we can control the number
of samples allocated to different methods.

The rest of the paper is organized as follows. In the next section
we review the variance of the MIS estimators where the weights
are independent of the samples taken and address the problem of
optimal number of samples allocated to the individual methods. In
Section 3, a similar analysis is carried out for the balance heuris-
tic, where the weights also involve the sample numbers. Section 4
presents our new estimator that belongs to the category where
weights are independent of the number of samples. We study the
effect of further randomization used in the one-sample estimator in
Section 5. Numeric examples are presented in the appendix.

2. Variance of MIS estimator when weights are independent
of the number of samples

The MIS estimator introduced by Veach and Guibas [VG95] to es-
timate the value of integral I =

∫
f (x)dµ(x) has the following ex-

pression:

F =
n

∑
i=1

1
ni

ni

∑
j=1

wi(Xi j)
f (Xi j)

pi(Xi j)
, (1)

where the weights wi(Xi j) are such that

f (x) 6= 0 ⇒
n

∑
i=1

wi(x) = 1 (2)

and

pi(x) = 0 ⇒ wi(x) = 0. (3)

In this combination scheme, sampling method i uses probability
density function pi(x) to generate ni number of random samples
Xi j , ( j = 1, . . . ,ni). If we have n techniques, the total number of
samples is ∑

n
i=1 ni = N. Integral estimator F is unbiased, as its ex-

pected value µ is equal to integral I:

µ = E[F ] =
n

∑
i=1

1
ni

ni

∑
j=1

∫
wi(x) f (x)

pi(x)
pi(x)dµ(x) (4)

=
∫ n

∑
i=1

wi(x) f (x)dµ(x) =
∫

f (x)dµ(x).

The variance of the estimator is given in the proof of Theorem 9.2
of Veach’s thesis [Vea97]. Define Fi j as

Fi j = wi(Xi j)
f (Xi j)

pi(Xi j)
. (5)

For a fixed method i and all j, the estimators Fi j are independent
identically distributed random variables with expected value µi:

µi = E[Fi j] =
∫

wi(x) f (x)
pi(x)

pi(x)dµ(x) =
∫

wi(x) f (x)dµ(x). (6)

Observe that

µ =
n

∑
i=1

µi, (7)

and that the variance of Fi j is

σ
2
i = E[F2

i j]−E2[Fi j] (8)

=
∫ (wi(x) f (x)

pi(x)

)2
pi(x)dµ(x)−µ2

i

=
∫

w2
i (x) f 2(x)

pi(x)
dµ(x)−µ2

i .

If samples are statistically independent, the variance of the integral
estimator is

V [F ] = V [
n

∑
i=1

1
ni

ni

∑
j=1

Fi j] =
n

∑
i=1

1
n2

i

ni

∑
j=1

V [Fi j] (9)

=
n

∑
i=1

1
n2

i

ni

∑
j=1

σ
2
i =

n

∑
i=1

1
ni

σ
2
i

=
n

∑
i=1

1
ni

(∫ w2
i (x) f 2(x)

pi(x)
dµ(x)−µ2

i

)
=

n

∑
i=1

∫
w2

i (x) f 2(x)
ni pi(x)

dµ(x)−
n

∑
i=1

1
ni

µ2
i .

The variance of the integral estimator depends on how the
total number of samples N are distributed among the different
techniques. We can state the following theorem:

Theorem 1: For given sequences {ni}, {σ2
i }, 1 ≤ i ≤ n, if

variances {σ2
i } do not depend on sample numbers {ni}, then the

arrangement that minimizes (maximizes) V [F ] in Eq. 9 is given
by the pairing of the {ni}, {σ2

i } sequences in same order (inverse
order) respectively.

Proof It is enough to apply the rearrangement inequality [HLP52,
page 261] to the sequences {ni}, {σ2

i } in the expression for the
variance V [F ] = ∑

n
i=1

1
ni

σ
2
i .

This theorem states that methods of higher variance should be
given more samples than methods of lower variance. For example,
a good strategy to choose the count of samples would be

ni ∝ σ
2
i . (10)

But we can do better, as we will show in the following theorems,
where the proofs can be found in the Appendix B.

Theorem 2: If variances {σ2
i } are independent of the number

of samples, then the distribution {ni},∑n
i=1 ni = N, that minimizes

Eq. 9 is

ni ∝ σi. (11)

Substituting the normalized values of Eq. 11 into the expression
for the variance of the integral estimator, we have the minimum
variance

V [F ] =
1
N

n

∑
i=1

∑k σk
σi

σ
2
i =

1
N

( n

∑
i=1

σi

)2
. (12)
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While if we use equal count of samples for each technique, i.e., for
all i, ni =

N
n , the variance is

V [F ] =
n
N

n

∑
i=1

σ
2
i . (13)

Equality between Eq. 12 and Eq. 13 will only happen when all
variances σ

2
i are equal.

2.1. Cost and efficiency

Let us consider now the cost of sampling. We want to minimize
now the cost times variance, i.e. CT ×V [F ], which is the inverse
of efficiency. Using Lagrange multipliers and Cauchy-Schwartz
inequality we can prove (see Appendix B) the following theorem:

Theorem 3: Let the variances {σ2
i } be independent of the num-

ber of samples, and ci be the cost of sampling technique i, making
the total cost be CT = ∑i nici. Then the product CT ×V [F ] takes its
minimum at the distribution of samples

ni ∝
σi√

ci
. (14)

Using these values into the expression (CT ×V [F ]) we find

(CT ×V [F ])min =

(
∑

i
σi
√

ci

)2

. (15)

3. Variance of balance heuristic estimator

Veach defined balance heuristic estimator setting the weights as:

wi(x) =
ni pi(x)

∑
n
k=1 nk pk(x)

. (16)

The estimator of method i becomes

Fi j =
ni f (Xi j)

∑
n
k=1 nk pk(Xi j)

. (17)

The expected value is

µi =
∫

ni f (x)pi(x)
∑

n
k=1 nk pk(x)

dµ(x). (18)

The variance becomes

σ
2
i =

∫
n2

i f 2(x)pi(x)
(∑k nk pk(x))2 dµ(x)−µ2

i . (19)

Let us now consider the variance of the combined estimator
when method i takes ni samples and predetermining the number
of samples in advance (multi-sample model):

V [F ] =
n

∑
i=n

1
ni

σ
2
i (20)

=
n

∑
i=n

1
ni

(∫ n2
i f 2(x)pi(x)

(∑k nk pk(x))2 dµ(x)−µ2
i

)
=

n

∑
i=n

1
ni

∫
n2

i f 2(x)pi(x)
(∑k nk pk(x))2 dµ(x)−

n

∑
i=n

1
ni

µ2
i

=
∫

f 2(x)
∑

n
k=1 nk pk(x)

dµ(x)−
n

∑
i=1

1
ni

µ2
i

=
1
N

(∫ f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−
n

∑
i=1

1
αi

µ2
i

)
,

where αk = nk/N.

Let us set N = 1, i.e. take just a single sample, and call the esti-
mator F1. With abuse of language we call it the primary estimator,
although in fact primary estimators will only exist for each of the
techniques used, i.e., only each separated technique can be used
with a minimum of 1 sample. Then the variance for F1 is

V [F1] =
∫

f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−
n

∑
i=1

1
αi

µ2
i (21)

= ∑
i

1
αi

(∫
α

2
i f 2(x)

∑
n
k=1 αk pk(x)

dµ(x)−µ2
i

)
= ∑

i

1
αi

σ
2
i .

Eqs. 18 and 19 can be written in terms of the αi

µi =
∫

αi pi(x)
∑

n
k=1 αk pk(x)

f (x)dµ(x), (22)

and

σ
2
i =

∫
α

2
i f 2(x)pi(x)

(∑k αk pk(x))2 dµ(x)−µ2
i . (23)

The task would be again the determination of optimal mixture
α1, . . . ,αn. Note, however, that we cannot apply the results of the
previous section, as σ

2
i depends on ni (or αi) both in the numerator

and the denominator of the integrand.

Without a criterion for optimal mixture, different sampling meth-
ods are usually given the same number of samples. The weighting
defined by Eq. 16 is then

wi(x) =
pi(x)

∑
n
k=1 pk(x)

. (24)

4. A new estimator

We introduce a new estimator that belongs to the category of multi-
sample methods when the weights are independent of the number
of samples. The weighting scheme is similar to that of balance
heuristic taking equal number of samples, i.e. Eq. 24, but we al-
low arbitrary number of samples. So, let us consider in Eq. 1 the
weights

wi(x) =
pi(x)

∑
n
k=1 pk(x)

. (25)

The estimator F in Eq. 1 becomes

F =
n

∑
i=1

1
ni

ni

∑
j=1

f (Xi j)

∑
n
k=1 pk(Xi j)

. (26)

The estimators Fi j in Eq. 5 become

Fi j =
f (Xi j)

∑
n
k=1 pk(Xi j)

. (27)
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and the variance Eq. 8 is

σ
2
i =

∫
pi(x) f 2(x)(

∑
n
k=1 pk(x)

)2 dµ(x)−µ2
i . (28)

The variance Eq. 9 of the integral estimator is

V [F ] =
n

∑
i=1

1
ni

σ
2
i (29)

=
n

∑
i=1

1
ni

(∫
pi(x) f 2(x)(

∑
n
k=1 pk(x)

)2 dµ(x)−µ2
i

)
.

Observe two things. First, that we can apply Theorems 1&2,
as now the variances σ

2
i do not depend anymore on the count

of samples ni, and second, that this estimator, when all ni are
equal, is the balance heuristic with equal count of sampling.
However, we can use now the results of Theorems 2&3 and
prove that by the careful selection of sample numbers, the new es-
timator is better than balance heuristic with equal count of samples.

The application of Theorem 2, i.e., taking ni ∝ σi, guarantees
that we always improve on balance heuristic with equal weight
when using estimator Eq. 26, up to the statistical error in estimating
the σi values. The following inequality shows, on the left side, the
optimal variance expressed in Eq. 12, on the right side, the variance
for balance heuristic with equal count

1
N

(
n

∑
i=1

σi

)2

≤ n
N

(
n

∑
i=1

σ
2
i

)
. (30)

It is easy to see that there is a significant gain only when the differ-
ences between the σi values are high, and that the maximum attain-
able gain is up to n times. Observe also that the same optimization
can be applied to cut-off, power, and maximum heuristic [Vea97]
when those heuristics use equal count of samples for each tech-
nique.

Suppose we take into account the cost ci of sampling each tech-
nique, then the total cost is CT = ∑i nici. We want to minimize now
the cost times variance, i.e., CT ×V [F ], which is the inverse of effi-
ciency. Applying Theorem 3, we know that the optimal values are

ni ∝
σi√

ci
, (31)

and then the optimal CT ×V [F ] value is the left hand side of Eq. 32,
while the right hand side is the value corresponding to taking equal
count of sampling.(

n

∑
i=1

σi
√

ci

)2

≤

(
n

∑
i=1

ci

)(
n

∑
i=1

σ
2
i

)
. (32)

The increase in efficiency is not anymore limited to n times.

5. One-sample balance heuristic estimator

We can define now the following primary estimator, i.e., using only
one sample (in this case it is fully legitimate to use this term) F1

for µ =
∫

f (x)dµ(x) as

F1 =
f (x)

∑k αk pk(x)
. (33)

Indeed it is an unbiased estimator

E[F1] =
∫

f (x)∑k αk pk(x)
∑k αk pk(x)

dµ(x) (34)

=
∫

f (x)dµ(x) = µ.

The estimator F1 was introduced by Veach as the one-sample bal-
ance heuristic estimator. We first sort out with the αi distribu-
tion which technique to use and then we sample this technique.
One-sample balance heuristic is the same as the Monte Carlo es-
timator using the mixture of probabilities p(x) = ∑

n
k=1 αk pk(x),

∑
n
k=1 αk = 1. The αi are called the mixture coefficients, and rep-

resent the average count of samples from each technique. The vari-
ance of this estimator can be obtained by simple application of the
definition of variance,

V [F1] = E[(F1)2]−E2[F1] (35)

=
∫ ( f (x)

∑k αk pk(x)

)2(
∑
k

αk pk(x)
)

dµ(x)−µ2

=
∫

f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−µ2.

Observe that, if we write the second moment of F1 with respect to
technique i as Ei[(F1)2], we can write

E[(F1)2] =
n

∑
1=1

αiEi[(F1)2]. (36)

The expected value µ′i of F1 with respect to technique i, which
we write as Ei[F1], is

µ′i = Ei[F1] =
∫

f (x)pi(x)
∑k αk pk(x)

dµ(x) =
µi

αi
, (37)

and its variance σ
′2
i with respect to technique i, which we write as

Vi[F1], is

σ
′2
i =Vi[F1] =

∫
f 2(x)pi(x)

(∑k αk pk(x))2 dµ(x)−
( µi

αi

)2

=
1

α2
i

(∫
α

2
i f 2(x)pi(x)

(∑k αk pk(x))2 dµ(x)−µ2
i

)
=

σ
2
i

α2
i
. (38)

Using Eq. 38, V [F1] in Eq. 21 can be written as

V [F1] =
n

∑
i=1

αiσ
′2
i . (39)

By isolating the second moment integral in the first equality in
Eq. 38, weighting by αi, and taking into account Eq. 35, the vari-
ance of estimator V [F1] can be written as a function of the σ

′2
i

V [F1] =
n

∑
i=1

αi

(
σ
′2
i +µ′i

2
)
−µ2 (40)

=
n

∑
i=1

αi

(
σ
′2
i +µ′i

2−µ2
)
.
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5.1. Minimum variance

Observe that we cannot apply the rearrangement inequality, neither
Theorem 2, to Eq. 39, as σ

′2
i depends on αi. Should we be able to

apply the rearrangement inequality, then αi would be now inversely
proportional to the variances σ

′2
i , i.e., the higher the variance, the

less the count of samples. Havran and Sbert found in [HS14] the
condition for the minimum variance of the one-sample estimator,
and which happens when all Ei[(F1)2] values are equal, i.e., for all
i, j,

Ei[(F1)2] = E j[(F1)2]. (41)

This can be written as

σ
′
i
2
+µ′

2
i = σ

′
j
2
+µ′

2
j . (42)

Observe that the {αi} values are implicit in the Eqs. 41 and 42. A
similar relationship exists for the multi-sample estimator, i.e., the
minimum variance happens when (see proof in Appendix C), for
all i, j,

σ
′2
i +2µ

∫
f (x)pi(x)

(∑n
k=1 αk pk(x))2 dµ(x) (43)

= σ
′2

j +2µ
∫ f (x)p j(x)

(∑n
k=1 αk pk(x))2 dµ(x).

For the sake of completeness, let us give the minimum variance
condition in terms of σ

′
i values when Theorem 2 can be applied.

In that case the optimal values are for all i αi =
σi

∑k σk
, and as σi =

αiσ
′
i, we have σi =

σi
∑k σk

σ
′
i, thus σ

′
i values are the same for all i.

5.2. Variance of multi-sample balance heuristic against
variance of one-sample balance heuristic

Observe that the expressions for the variance, Eq. 35 and Eq. 21
differ in

V [F1]−V [F1] =
n

∑
i=1

1
αi

µ2
i −µ2. (44)

We can state the following theorem:

Theorem 4: The expression in Eq. 44 is always positive, and
becomes zero only in two cases: 1) when for all i all values µi

αi
are

equal, implying that all techniques used are the same and, 2) when
f (x)∝ ∑p αk pk(x).

Proof Consider µ′i = Ei[F1], then by Eq. 37:

µ′i =
µi

αi
. (45)

Using Eq. 22 we can write
n

∑
i=1

1
αi

µ2
i −µ2 =

n

∑
i=1

αiµ
′2
i −
( n

∑
i=1

αiµ
′
i

)2
. (46)

Applying now Jensen’s inequality [HLP52] to the convex function
y = x2, ( n

∑
i=1

αiµ
′
i

)2
≤

n

∑
i=1

αiµ
′2
i (47)

and thus the difference in variances V [F1]−V [F1] is always posi-
tive or zero.
Equality in Eq. 47 will happen when all µ′i are equal, which implies
that either
1) for all i

αi =
µi

µ
, (48)

and all techniques used are the same, as

µi

αi
=

∫
f (x)pi(x)

∑
n
k=1 αk pk(x)

dµ(x), (49)

which only happens when for all i, pi(x) are equal, or
2) the zero variance case,

f (x) =C×
n

∑
i=1

αi pi(x), (50)

with C constant, because in this case for all i, µ′i = Ei[F1] =C.

5.3. Zero variance

Both multi-sample and one-sample balance heuristic can have zero
variance, where (excluding the trivial case of f (x) constant) for
some mixture {α?

i }, f (x) ∝ ∑k α
?
k pk(x). By choosing the values

{α?
i } we obtain zero variance. Observe that in this case the dif-

ference in Eq. 46 is zero and thus ∑i
µ2

i
αi

= µ2. This case of zero
variance was not considered in the derivation of Theorem 9.5 of
Veach’s thesis [Vea97].

Observe also that for a function f (x) equal to a product of func-
tions (such as in the rendering equation) and taking these functions
as sampling techniques, the zero variance case can never happen,
except in the trivial case where all functions are equal.

6. Discussion

Theorem 1 and Theorem 2 tell us how to take the samples when the
variances of the multiple importance sampling estimators do not
depend on the weights. Theorem 3 extends Theorem 2 to take into
account the cost of sampling. We are able to exploit Theorems 2&3
to obtain a provably better estimator than balance heuristic with
equal count of samples. This new estimator requires the knowledge
of the σ

2
i quantities, and it is worth using when there is a big differ-

ence between these quantities and also between the costs ci.

Theorems 1-3 are not applicable in general to balance heuristic,
so we cannot state that methods of higher σ

2
i value deserve more

samples. In fact, supposing that the rearrangement inequality were
applicable, we would assign rather less samples to higher σ

2
i value

methods because of Eq. 39. Veach recommended the use of equal
count of samples for all techniques, but there are better strategies
and it can even happen that excluding one or more high variance
methods from the sampling increases the accuracy.

In Table 1 we show the conditions for minimum variance that
have to be met by the different estimators.

In Appendix A we give four examples of equal count of samples
versus the count of samples computed by our new estimator and the
heuristic in [HS14].
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We have shown by Theorem 4 that it always pays off to use
the multi-sample balance heuristic against the one-sample balance
heuristic. Intuitively it means that the random decision always adds
some variance. Again, Theorems 1-3 are not applicable, so our ob-
jective should be to mimic the integrand with the linear combina-
tion of the probability densities of the methods. In an ideal linear
combination, zero variance can be achieved. The formulae for the
variance of the two balance heuristic estimators are shown in Ta-
ble 2. Observe that, although the first terms of both variances are
formally equal, the first term of the multi-sample heuristic does not
represent the expected value of the second moment of an estimator
of the integral I, as it is the case for the one-sample heuristic. Also,
in the multi-sample case, the αi values do not represent any proba-
bilities, as they do in the one-sample case, but only the proportion
of samples for each technique.

7. Results

We show below the results for the new estimator described in
Section 4 for environment map illumination, using four sam-
pling strategies, in terms of mean square error (MSE). The ren-
dered images and charts as dependence of MSE on the number
of samples taken are shown in Fig. 1. The first sampling strat-
egy samples according environment map, the second according to
BRDF.cos(θ), the third one uses balance heuristic as described by
Veach and Guibas [VG95, Vea97], the fourth one according to Lu
et al. [LPG13]. The last fifth line in charts gives the results for the
proposed heuristic in Section 4.

We have modified the algorithm in adaptive way. Each pixel
is sampled independently, taking N samples for each pixels. The
adaptive sampling algorithm has 2 stages, a pilot one and a main
stage. During pilot stage, which contains 0.2N samples, we esti-
mate σ

2
i given by Eq. 28 for both sampling strategies, taking equal

number of samples from the two sampling techniques. Then the
main sampling stage is subdivided into 8 sampling substages, each
taking 0.1N samples. Values σ

2
i are incrementally updated in each

substage. Parameter α defined by Eq. 31 is computed at the end
of the sampling substage, which is then used for the next sampling
stage. Note that for arbitrary α value, the sampling scheme is unbi-
ased, so the fact that this parameter is estimated from the samples
of the previous stages does not compromise the unbiasedness of the
multi-stage sampling scheme. Via modifying α, earlier substages
affect the variance of the later substages but not their mean.

We have used two objects (sphere and dragon), various BRDFs
including varying one on the objects’s surface and 8 different en-
vironment maps to create 10 test cases. The occluder as a grid is
put around the objects to make the illumination more complicated
and less predictable. This is why the images with objects contain
visible shadow structures on their surfaces.

It is possible to see that the new algorithm described in Section 4
reaches faster convergence for all 10 scenes tested. The improve-
ment against the balance heuristic is from moderate to even signif-
icant, depending on the setting of BRDF and environment map.

8. Conclusions

We have reexamined the variance for the Multiple Importance Sam-
pling estimator and obtained the optimal sampling, taking also into
account the cost of sampling, in case the weights do not depend
on the number of samples taken from the different techniques. This
has allowed us to obtain a new estimator, provably better than bal-
ance heuristic with equal count of sampling. For balance heuristic
estimator, where the weights are defined as a function of the num-
ber of samples, we have compared the variances of multi-sample
and one-sample balance heuristic, and given the expression of their
difference. We have given the value of this difference for examples
with different distribution of the count of samples, namely equal
count and a recently introduced heuristic.
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Model Condition: ∀i, j

{σ2
i } independent of {αi} σ

′2
i = σ

′2
j

one-sample σ
′
i
2
+µ′2i = σ

′
j
2
+µ′2j

multi-sample σ
′2
i +2µ

∫ f (x)pi(x)
(∑n

k=1 αk pk(x))2 dµ(x) = σ
′2

j +2µ
∫ f (x)p j(x)

(∑n
k=1 αk pk(x))2 dµ(x)

Table 1: Minimum variance conditions for MIS when {σ2
i } are independent of the {αi}, Theorem 2, first row, and balance heuristic one-

sample estimator, second row, and multiple-sample estimator, third row. µ′i and σ
′
i are defined in Eq. 37 and Eq. 39, respectively.

Model Variance as a sum Variance

one-sample ∑
n
i=1 αi

(
σ
′2
i +µ′2i −µ2

) ∫ f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−µ2

multi-sample ∑
n
i=1

1
αi

σ
2
i = ∑

n
i=1 αiσ

′2
i

∫ f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−∑
n
i=1

1
αi

µ2
i

Table 2: Formulae for the variance of balance heuristic estimators, for N = 1, of one-sample model, V [F1] (first row) and multi-sample
V [F1] (second row), second column as a sum of variances of independent estimators. µi and σi are defined in Eq. 22 and Eq. 23, respectively.
µ′i and σ

′
i are defined in Eq. 37 and Eq. 39, respectively.
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Appendix A: 1D examples

Below, we provide four 1D examples for the two heuristics on the
number of samples for balance heuristic. First, equal count of sam-
ples and second, the one in [HS14], where the count of samples
was taken inversely proportional to the variances of the estimators
of each technique taken independently. We also provide the values
of the difference in Eq. 44, V [F1]−V [F1].

We will extend here the example from [HS14]. We additionally
provide in supplemental material Mathematica code to try any
function with any pdfs.

Example 1

Suppose we want to solve the integral

µ = I =
∫ π

3
2π

x
(

x2− x
π

)
sin(x)dx = 10.2876 (51)

by MIS sampling on functions x, (x2 − x
π
), and sin(x) respec-

tively. We first find the normalization constants:
∫ π

3
2π

xdx = 4.82082,∫ π
3

2π

(x2− x
π
)dx = 8.76463,

∫ π
3

2π

sin(x)dx = 1.88816.

Then we find the three variances when doing importance sam-
pling with all three pdfs respectively. If G1,G2, and G3 are the three
independent estimators of I for the three techniques, then:

V [G1] = 4.82082
∫ π

3
2π

x
(

x2− x
π

)2
sin2(x)dx− I2

= 26.6759

V [G2] = 8.76463
∫ π

3
2π

x2(x2− x
π
)sin2(x)dx− I2

= 23.507

V [G3] = 1.88816
∫ π

3
2π

x2(x2− x
π
)2 sin(x)dx− I2

= 111.065

Taking αi ∝ 1
V [Gi]

, we obtain

(α1,α2,α3) = (0.42105,0.47782,0.10113)

Using Eq. 35 to compute V [F1]:

V (α1,α2,α3) =∫ π

3
2π

x2(x2− x
π
)2 sin2(x)

2α1x
π2 + α2

8.764 (x
2− x

π
)+ 1

2 α3 sin(x)
dx−µ2

(52)

Substituting the (α1,α2,α3) values found above, we have that
V (0.42105,0.47782,0.10113) = 24.2211. On the other hand,
V ( 1

3 ,
1
3 ,

1
3 ) = 30.1676, and there is a gain of 24.55%.

We take now into account the sampling costs given in [HS14],
i.e., αi ∝ 1

ciV [Gi]
, with c1 = 1, c2 = 6.24, c3 = 3.28. The relative ef-

ficiency increases from 1.24 for equal sampling costs to 2.12 when
taking into account the different sampling costs.

Example 2

Now let us solve the integral

µ = I =
∫ π

3
2π

(
x2− x

π

)
sin2(x)dx = 3.59615 (53)

using the same functions x, (x2− x
π
), and sin(x) as before.

We find (V [G1],V [G2],V [G3])=(5.6334,9.41988,4.54464),
and thus (α1,α2,α3)=(0.35241,0.21075,0.43684), and
V (5.6334,9.41988,4.54464) = 4.6041. On the other hand,
V ( 1

3 ,
1
3 ,

1
3 ) = 5.01917, and there is a small gain of 9%.
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Figure 1: Rendered images and MSE errors for 10 scenes. The images were rendered for 200 samples per pixel for the representative cases
and multiple importance sampling with balance heuristic α1 = α2 = 0.5 and new estimator as described in Section 4. The proposed heuristic
has pilot stage sampling 0.2N samples from all N samples taken, N ∈ {100,200,500,1000,1500}. The rest of computation is organized in
sampling stages 0.1N samples each, evaluating the number of samples for the next sampling stage as described Eq. 31. Legend for charts
with MSE errors. On x-axis is number of samples, on y-axis is MSE for 5 importance sampling algorithms. Lines: red color – sampling
according to environment map, green color – sampling according to BRDF.cos(θ), blue – sampling according to balance heuristic, orange –
sampling method according to Lu et al. [LPG13], black – sampling according to the newly proposed heuristic described by Eq. 31.

Considering now the cost of sampling each technique, for the
heuristics inversely proportional to variance times cost we have a
quotient of efficiencies of 1.87.

Example 3

As third example let us solve the integral

µ = I =
∫ π

3
2π

x+
(

x2− x
π

)
+ sin(x)dx = 15.4736 (54)

using the same functions as before. In this case we find
(V [G1],V [G2],V [G3]) = (4.09963,35.3278,9586.73), and
thus (α1,α2,α3) = (0.89568,0.10394,0.00038), so that
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αk ∝ 1
n αk ∝ 1

V [Gi]
Eq. 44( 1

n ) Eq. 44( 1
V [Gi]

)

1 30.167 24.221 1.004 0.10946
2 5.01917 4.6041 0.102 0.05131
3 13.354 2.050 2.666 0.02897
4 0 0.121 0 0.00039

Table 3: In the two first columns, the variances, V [F1], for the
4 examples for balance heuristic, and for the two heuristics on
the number of samples taken from each sampling technique using
one-sample estimator. The best results are in bold. In the two last
columns, we show the values for Eq. 44, V [F1]−V [F1], for the two
heuristics considered.

αk ∝ 1
n αk ∝ 1

ciV [Gi]

1 105.788 49.750
2 19.470 10.466
3 46.827 4.047
4 0 0.110

Table 4: Variance times cost (i.e. inefficiency, the smaller the bet-
ter) for the 4 examples in this appendix for balance heuristic us-
ing the two heuristics on the number of samples taken and for
the one-sample estimator (second column equal number of sam-
ples for each technique, third column - variance based heuristic for
the number of samples). The best results are in bold.

V (0.89567,0.10393,0.00038) = 2.04964. On the other hand,
V ( 1

3 ,
1
3 ,

1
3 ) = 13.354, and there is a gain of 551.21%. Considering

now the cost of sampling each technique, for the heuristics
inversely proportional to variance times cost we have a quotient of
efficiencies of 11.57.

Example 4

As a last example, and to see the limitations of the heuristic, con-
sider the integral of the sum of the three pdfs used

µ = I =
∫ π

3
2π

x
4.82082

+

(
x2− x

π

)
8.764

+
sin(x)

1.88816
dx = 3 (55)

It is clear that the variance is zero for equal count of samples, as in
this case g(x) = f (x), while it can not indeed be zero for the other
heuristic considered. The variance for inverse of variances heuristic
is 0.121359. Introducing the costs, the value of variance times cost
is 0.110. Results are summarized in Tables 3 and 4.

In Table 5 we compare balance heuristic with equal number of
samples with the estimator defined in Section 4 with the optimal
number of samples obtained from Eq. 14. We see that if we know
in advance the σi values, or estimate them with enough precision,
we always improve using the new estimator, and can even get the
zero optimal zero variance. If we do not use the cost of sampling,
the improvement for our first three examples is very small, but we
are still able to get the zero variance solution.

αk ∝ 1
n αk ∝ σi√

ci

1 102.26 89.40
2 17.244 15.441
3 37.478 31.08
4 0 0

Table 5: Variance times cost (i.e. inefficiency, the smaller the bet-
ter) for the 4 examples in this appendix for the estimator with opti-
mal number of samples defined in Section 4 and for balance heuris-
tic with equal number of samples for multiple-sample estimator
(second column equal number of samples for each technique, third
column - Eq. 14 for the number of samples). The best results are in
bold.

Appendix B: Proofs of Theorems 2&3

We present here the proofs of Theorems 2&3.

Proof To optimize the variance in Eq. 9 we take as the expression
for the variance V [F ] =∑

n
i=1

1
ni

σ
2
i , and we use Lagrange multipliers

with the constraint ∑
n
i=1 ni = N and objective function

Λ(ni,λ) =
n

∑
i=1

1
ni

σ
2
i +λ(

n

∑
i=1

ni−N).

Taking partial derivatives and equating to zero, as the σi do not
depend on the ni,

∂Λ(ni,λ)

∂n j

=
∂

(
∑

n
i=1

1
ni

σ
2
i

)
∂n j

+
∂(λ(∑n

i=1 ni−N))

∂n j

(56)

= −
σ

2
j

n2
j
+λ = 0

Thus for all j

λ =
σ

2
j

n2
j

(57)

and the second term in Eq. 57 has to be equal for all j, which im-
plies that n j ∝ σ j.
The Hessian Matrix, obtained with the second derivatives of V [F ],
is a diagonal matrix with positive diagonal values

∂V [F ]

∂n j ∂n j

= 2
σ

2
j

n3
j

(58)

and thus is positive-definite. The variance function is then strictly
convex in its convex domain ∑

n
i=1 ni =N, where for all i, 0< ni < n,

meaning that the critical point is unique and a minimum.
Substituting the optimal values, i.e., n j ∝ σ j, we find the minimum
variance,

Vmin[F ] =
1
N

(
n

∑
i=1

σi

)2

(59)

Let us extend Theorem 2 now to include the cost of sampling. Let
us consider ci the of sampling each technique, and the total cost is
thus CT = ∑i nici. We want to minimize now the cost times vari-
ance, i.e., CT ×V [F ], which is the inverse of efficiency. We use
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Lagrange multipliers with the constraint ∑
n
i=1 ni = N and objective

function

Λ(ni,λ) = CT ×V [F ]+λ(
n

∑
i=1

ni−N) (60)

=

(
∑

i
nici

)(
n

∑
i=1

1
ni

σ
2
i

)
+λ(

n

∑
i=1

ni−N).

Taking partial derivatives and equating to zero, as the σi do not
depend on the ni,

∂Λ(ni,λ)

∂n j

=
∂(∑i nici)

∂n j

V [F ]+CT

∂

(
∑

n
i=1

1
ni

σ
2
i

)
∂n j

(61)

+
∂(λ(∑n

i=1 ni−N))

∂n j

= c jV [F ]−CT
σ

2
j

n2
j
+λ = 0

Multiplying by n j and adding over j

∑
j

n jc jV [F ]−∑
j

n jCT
σ

2
j

n2
j
+∑

j
n jλ (62)

= V [F ]CT −CTV [F ]+Nλ = 0

and thus λ = 0. Substituting this value in Eq. 61 we find that the
optimal sampling counts are

n j =

√
CT

V [F ]

σ j√c j
∝

σ j√c j
(63)

Using these values into the expression (CT ×V [F ]) we find

(CT ×V [F ])min =

(
∑

i
σi
√

ci

)2

. (64)

Let us show that this value is indeed a global minimum. Instead
of using the Hessian matrix of CT ×V [F ], let us prove it by ap-
plying Cauchy–Schwartz inequality to the sequences { σi√

ni
} and

{√cini}. Cauchy–Schwartz inequality states that for any two se-
quences of n real numbers {xi} and {yi}, the inequality holds
(∑i xiyi)

2 ≤ ∑i x2
i ∑i y2

i . We have then(
∑

i
σi
√

ci

)2

=

(
∑

i

√
cini

σi√
ni

)2

(65)

≤ ∑
i
(
√

cini)
2
∑

i

(
σi√
ni

)2

=

(
∑

i
cini

)(
∑

i

σ
2
i

ni

)

Appendix C: Proof of minimum variance condition for
multi-sample estimator

Consider the variance Eq. 21, in the form

V [F1] =
∫

f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−
n

∑
i=1

1
αi

µ2
i (66)

=
∫

f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−
n

∑
i=1

αiµ
′2
i

We use Lagrange multipliers with the constraint ∑
n
i=1 αi = 1 and

objective function

Λ(αi,λ) =
∫

f 2(x)
∑

n
k=1 αk pk(x)

dµ(x)−
n

∑
i=1

αiµ
′2
i +λ(

n

∑
i=1

αi−1).

Taking partial derivatives and equating to zero,

∂Λ(αi,λ)

∂α j

=
∂
∫ f 2(x)

∑
n
k=1 αk pk(x)

dµ(x)

∂α j

(67)

− ∂∑
n
i=1 αiµ′

2
i

∂α j

+λ

= −
∫ f 2(x)p j(x)

(∑n
k=1 αk pk(x))2 dµ(x)+µ′

2
j

+ 2
n

∑
i=1

αiµ
′
i
∂µ′i
∂α j

+λ

= −σ
′2

j +µ′
2
j

− 2
n

∑
i=1

αiµ
′
i

∫ f (x)p j(x)
(∑n

k=1 αk pk(x))2 dµ(x)+λ

= −σ
′2

j +µ′
2
j

− 2(
n

∑
i=1

αiµ
′
i)
∫ f (x)p j(x)

(∑n
k=1 αk pk(x))2 dµ(x)+λ

= −σ
′2

j +µ′
2
j

− 2µ
∫ f (x)p j(x)

(∑n
k=1 αk pk(x))2 dµ(x)+λ = 0

Eq. 67 means that for all i, j

σ
′2
i +2µ

∫
f (x)pi(x)

(∑n
k=1 αk pk(x))2 dµ(x) (68)

= σ
′2

j +2µ
∫ f (x)p j(x)

(∑n
k=1 αk pk(x))2 dµ(x) = λ

Thus, the {αi} values implicit in Eq. 68 correspond to a critical
point in the variance of F1, which is convex as stated by Douc et
al. [DGMR07] (in fact, Douc et al. stated the convexity of the vari-
ance of one-sample F1 estimator, but the difference in variances of
F1 and F1 estimators amounts to a convex function), and thus the
critical point is a global minimum. Multiplying the final equality
of Eq. 67 by α j and adding over j, we can obtain the value of the
minimum variance Vmin[F1] by isolating it in the following equa-
tion together with Eq. 68

∑
j

α jσ
′2

j (69)

+ ∑
j

α j2µ
∫ f (x)p j(x)

(∑n
k=1 αk pk(x))2 dµ(x)

= Vmin[F
1]+2µ

∫
f (x)

∑
n
k=1 αk pk(x)

dµ(x) = λ.
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