
CESNET Technical Report 2/2010

Implementing Video-Based, Remotely
Accessible Virtual Environment System

R B1, Zǈ Tǁ1, V H2, Jǵ
B2, Jǵ Ž2, P S2, P B3, Jǵ

N4

1 Institute of Intermedia, Faculty of Electrical Engineering, Czech
Technical University in Prague

2 Department of Computer Graphics and Interaction, Faculty of Electrical
Engineering, Czech Technical University in Prague

3 Department of Applied Informatics, Faculty of Mathematics, Physics and
Informatics, Comenius University in Bratislava

4 CESNET, z. s. p. o.

Received 04.03.2010

Abstract
Communication in general incorporates technologies with increasing number of commu-
nication modes (visual mode, audio mode, gestures etc.). Special applications are devel-
oped in the area of virtual reality, multimedia communications and others where combi-
nations of audio, video, 3D data are sent between two (or more) distant users which can
commonly interact with these data. A form of so exchanged information usually requires,
among others, special forms of presentation. ɔus stereoscopic and virtual reality visual-
ization devices are used to present intricately structured information inmulti-modal form.
We describe implementation details of important components of whole communication
chain containing video-grabber and special multichannel player with user-interactive in-
terface in this report. We first show whole chain, then the video-grabber is described,
the multichannel player is presented as next and finally we present ideas concerning re-
mote interactions of user with a virtual world. ɔe last part of this report is devoted to
applications and future development activities.

Keywords: OpenGL, real-time video grabber, streaming video, streamcast, distributed
virtual environments, interactions, collaborative environments, immersion.

1 Introduction
Virtual Collaborative Environments (VCE) and their development is still actual
problem. It concerns increasing accessibility of technologies and growing level of
HCI (Human Computer Interaction). It all makes possible development of appli-
cations where new methods of human-computer communication are applied [1].

Development of applications in the area of VCE makes possible to connect
users which are located at distant places and to work together as in case when being
both in one room. ɔis idea is usually applied in the area of visualizations where
two or more teams interact with a model (e.g. model of a building), all teams are
situated in different locations but all of them work with the same shared data.

ɔe core of such system is a basic chain consisting of server application which
plays role of data source for other – client applications. ɔe client has to collect

© CESNET, 2010



2 R B  .

all types of data and present them in suitable form to the remote users. ɔe users
can also interact with the remote scene/data and thus the client application must
be able to transport information about user’s interactions to the server to update
its state.

Usually, this scheme supposes that each team is equipped with the same (or
similar) device for visualization of the given data and all these devices run under
an unique soɆware. Transmitting the visual information in the form of standard
video-streamwe can get possibility to deliver audiovisual output from an interactive
application running in the VR (Virtual Reality) system to the user equipped just only
with a standard PC or notebook nor a special VR device.

In cases when the presented information is to be rendered in real-time and
transmitted to the remote user in form of a video-stream, the content is presented
on a local visualization device (e.g. CAVE) being simultaneously sent to a remote
device. ɔus a method how to obtain rendered data from graphics hardware in
real-time is necessary.

ɔe problem is how to obtain the rendered data for transmission with minimal
impact on the rendering and visualization process. In the first part of the report, we
present a method how to retrieve video stream from an arbitrary running OpenGL
application, capturing every frame with minimal impact on performance.

ɔe transmitted audiovisual information presented to the remote user is in gen-
eral rendered on device which has different technical parameters and capabilities in
comparison with a device for which the data stream has been originally prepared.
ɔus any kind of content adaptation is necessary to prepare it for presentation on
remote device. ɔe problem concerning the methods of content adaptation is stan-
dalone subject for research but in order to complete whole basic communication
chain we have implemented a special player which can receive the stream of data
and present it to the remote user according to capabilities of its device. ɔe player
represents a special solution but there should be amore complexmethodologymak-
ing possible to retrieve just only simple part of the content (e.g. single video channel
instead of all available content) which can be processed using common application
(like VLC player as video stream receiver). ɔe second part of the report is devoted
to the player and to the interactions which also represent one part of the transmitted
content between client and server.

ɔe presented approach has potentially wide range of applications. We tried
to apply our two-point communication chain in two basic classes of applications.
First, the remote presentation of inaccessible or remote spaces makes possible to
deliver any degree of immersion to group of remote people which can interact with
the presented scene. Second, the visualization of 3D (e.g. industrial) models is ap-
plicable in cases where it is not allowed to give the presented data to the remote user
but it is necessary to present these data him/her interactively. Our approach makes
possible to solve this problem. ɔe third part of the report describes applications
of our approach.



Implementing Video-Based, Remotely Accessible Virtual Environment System 3

1.1 Video Acquisition

With the rise of 3D digital media, stereoscopic movies and upcoming 3D television,
the need for a new sources of stereoscopic signal emerges. ɔe usual sources of such
a signal are cameras in stereoscopic setups or pre-rendered video sequences. ɔere
are many real-time rendering applications, some of them even stereoscopic ones.
ɔose could be great source for such a stream, but they usually do not support
producing a video that could be directly used as a source of video signal for stream
nor support saving video to a file.

Figure 1. A general scheme of grabber.

In order to use such an application we need to be able to retrieve output of the
running application in real-time (see Figure 1). From other point of view, we may
simply want to record output of running application and store it locally for later,
offline use. In order to get those, we could modify the application itself to pro-
duce such a video stream or file. We can also use some screen grabbing application
(streamcast) or have a hardware solution.

As the graphics hardware and soɆware technologies change over the time, the
problem is still actual and new approaches appear. ɔe main problem is related
to the cost of the grabbing process because the data source (typically a graphical
subsystem) produces content in real time. Our goal is that the grabber obtains
pictures with minimal impact on the rendering process.

We first describe knownmethods of the video grabbing which appeared during
a period of the last decade. ɔese methods are evaluated according to our criteria
based on modifications that need to be incorporated to the application, impact
on performance of the application and possibility of grabbing stereoscopic images
from quad buffer. We evaluate the performance loss for multi-core/multi-CPU sys-
tems. Next, our own asynchronous wrapper is described and compared with the
already implemented solutions. Finally, some applications of the described wrap-
per are presented.

1.2 State of the Art
ɔere exist several approaches to the solution of how to acquire a stream of graph-
ical data from an application running on the system. ɔese approaches are oɆen
implemented for various purposes. We can classify them into four basic groups:



4 R B  .

— alteration of the application which is the source of the data,
— screen grabbing,
— combination of previous two methods,
— capturing output of the graphics hardware.

ɔese methods are explained and compared in the next paragraphs.

1.2.1 Modifying an Application

ɔe method of modifying an existing application has an obvious drawback in a
need to have source codes for the application and also modifying every application
we use. ɔis basically limits the usability of it to applications where we have source
code (typically opensource). ɔe solution is also complicated when we use many
different applications.

Aside from that, this method has an advantage in knowing everything about
the application to have full control over the grabbing process. ɔus it can grab the
images synchronously with the rendering speed. Also, for an application rendering
stereoscopic images into quadbuffer, this method can grab images for both eyes.
ɔe implementation is specific to every application as well as the performance loss.
ɔis solution can be seen in special applications (e.g., applications working as real-
time video content generators for network projects or art performances).

1.2.2 Screen Grabber
ɔe screen grabbing represents a next approach where the graphical information is
obtained independently on the application code. Using a standalone screen grab-
ber does not require anymodification of the application, but onmany systems it has
problems on accelerated windows. It is not synchronized with the speed of an ap-
plication as it does not have any information about architecture of the application.
Asynchronous grabbing can introduce image distortions when the frame buffer is
changed during read, it can miss frames when the application renders faster than
the grabber grabs and can unnecessarily grab the same image multiple times, when
the application stalls or is just slower than the grabber. Furthermore, this method
would fail for quad-buffer stereo.

As an example of such an approach, there are applications like scrot1 and xs-
nap2 realized in the GNU/Linux environment. ɔe code of the grabber runs out-
side the context of the application, so the impact on the rendering speed should be
quite small.

1.2.3 Combined Solution
Another solution would be combination of above mentioned two methods. Here,
a separate grabber without modifying the application is used. ɔis can be done
using a wrapper to rendering library, i.e. OpenGL, which would inject some code to
proper place of the rendering process and execute it there. Provided our code could
get enough information about rendering window, we can grab the exact window,

1 http://freshmeat.net/projects/scrot/
2 ftp://ftp.ac-grenoble.fr/ge/xutils/



Implementing Video-Based, Remotely Accessible Virtual Environment System 5

adjust the area being grabbed when the application window changes and we can
start the grabbing exactly once per frame.

ɔere is an opensource project captury3 using this solution. In this project,
the code is executed in context of rendering thread of the application, effectively
slowing down the rendering of every frame by grabbing, compressing and saving
every frame, before it the buffers gets swapped.

1.2.4 Hardware Solution
A hardware solution means plugging some device into output of graphics card and
process it on other computer or in the device itself. ɔis solution needs separate
hardware, it is quite expensive, and is not synchronizedwith the application’s speed.
ɔe output signal needs to be cropped when rendering only into a window. In addi-
tion, the captured signal has given parameters, like resolution, which are not easily
controllable during the grabbing process. On the other hand, it has absolutely no
impact on the application itself, as there’s no processing on the rendering machine.

As the acquisition of the video from graphics hardware in real-time is an inter-
esting problem new solutions implemented directly in the graphics boards rises. In
August 2009, nVIDIA released solution to record/output SDI uncompressed video
directly to/from Quadro GPU’s memory. As this information is too much new, we
had no chance to test it before fiinalizing the text.

1.3 Communication Chain Architecture
Various configuration of communication chain have been described in [3]. ɔe
common characteristics of the chain is in generalized form presented by scheme in
Figure 2. ɔe scheme represents the actual state of implementation consisting of
components which will be described in next parts of this report in more detail.

ɔe main subjects of interest are black boxes representing already mentioned
video-grabbing component which is in our case implemented as soɆware video grab-
ber. ɔe second is the multichannel video player which can receive all available data
channels (up to this time multiple channel video stream and interaction command
stream). Both of these components are now described in the next sections.

2 Multi-ɔreaded Real-ɓme Video Grabber
ɔe solution we propose is a modified approach to wrapping rendering library’s
calls and injecting our code there.

ɔe key is in using a wrapper, that “hooks” onto few library calls in order to
retrieve information about application’s window and to grab the window in a right
time.

ɔegrabbing itself is done in the context of the rendering thread using standard
methods to retrieve the content of framebuffer. ɔis directly implies that, when
rendering in quadbuffer mode for active stereoscopy, we can easily get both images
as we can control the flow of the code. AɆer getting the frame we send it to an other
thread to next process. ɔis ensures that the impact will be as small as possible,

3 http://gitorious.org/captury



6 R B  .

Figure 2.ɔe general scheme of the communication chain inside architecture of ex-
perimental Distributed Collaborative Environment (DCE). More client de-
vices present content (consisting of more data types - video, 3D data,
tracked data) served by remote source device.

provided the machine has multi-core CPU or multiple CPUs. ɔe processing itself
can also be done in multiple threads to use more available cores more effectively. In
the processing threads, we can save the video to the local storage or stream it over
network and optionally compress it.

ɔe implementation we present was done under GNU/Linux environment, us-
ing an OpenGL applications and nVIDIA QUADRO FX cards to render active
stereoscopic images in quad-buffered mode.



Implementing Video-Based, Remotely Accessible Virtual Environment System 7

Figure 3. Scheme of the wrapped grabber.

2.1 Wrapping

ɔe wrapping utilizes linux dynamic loader, which takes care of loading libraries
and resolving symbols. Using LD_PRELOAD environmental variable recognized by
the loader, we tell it to preload a shared object before an application and use it for
symbol resolving with higher priority. In the shared object we provide hooks on
few function that inject our code before the real call to the library function.

Namely we “hook” onto glViewport in order to get information about the win-
dow size and its changes. We also use this as a point to initialize the processing
threads. We also hook onto framework specific functions in order to swap buffers
(glxSwapBuffers, SDL_GL_SwapBuffers). When the application calls swap buffers,
it signalizes it has finished rendering a frame, so it is the right place for us to grab the
frame and send it to the next process. It is also the place where we can drop frames
if the application is rendering too fast. Our implementation also wraps dlsym call



8 R B  .

to catch symbol resolving done in realtime and not by dynamic loader.

2.2 Grabbing

During a rendering process the rendered images are stored in two (or four in case of
stereoscopic output) frame buffers which are periodically swapped. On principle,
there are two types of frame buffer reading:
— asynchronous – based on so called Pixel Buffer Objects4,
— synchronous – direct buffer reading.

First, retrieving the image is implemented by calling glReadPixel with cor-
rectly set read buffer in OpenGL context, optionally on initialized Pixel Buffer Ob-
ject (PBO). PBO approach moves the reading into background so it does not block
the rendering thread. But it introduces a delay of 1 frame, because we get the data
on the next buffer swap.

ɔe direct approach introduces delay into the rendering thread, which means a
slowdown of the application, but we get the data sooner. We support bothmethods.
By changing actual buffer and repeating the read, we can retrieve data for the other
eye, if we have quadbuffer stereo.

2.3 Processing

ɔe processing threads perform color space conversions and re-sampling. Other
threads take care of possible video compression and others stream it or save it lo-
cally. ɔe performance of processing stereoscopic signals is increased by using pairs
of threads.

2.4 Summary

A scheme of the process is shown in Figure 3. Original application is wrapped and
its call to Swap Buffers (usually glxSwapBuffers) is intercepted and instead of it,
our code is executed. Content of the framebuffer is then grabbed as described in
Section 2.2 and sent for processing to other threads. ɔen original SwapBuffers
method is called and control is returned to the application. Meanwhile the data
from framebuffer are processed in other threads and eventually streamed out (or
recorded).

ɔewhole grabbing process is carried out in the context of the rendering thread,
but the rest of the processing is in other threads, not directly affecting the applica-
tion’s performance. So the impact to application is mostly defined by the slowdown
that takes place in the grabbing functions. Of course, in case the application would
do some CPU intensive operation the video (i.e. compression), it may place load
to the CPU and indirectly slowing down the application.

4 http://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt



Implementing Video-Based, Remotely Accessible Virtual Environment System 9

3 Multichannel Interactive Player

Our grabber is based on widely used standard protocol RTP [8], so virtually any
common player can act as passive receiver (provided it can decode the codec than
we use in that particular case). However to simultaneously display more than one
stream and to be able to reproduce stereoscopic effect, we need specialized player.
Moreover to use the remote control capabilities of our solution, the special player
is also needed.

ɔe requirements for such a player are:
— ability to receive many streams simultaneously,
— configurable stereoscopic projection of stream pairs,
— mapping of the streams into virtual scene (i.e. onto CAVE like scene),
— support for local movement in the virtual scene,
— support to control the remote device,
— support for uncompressed video,
— as low latency as possible.

In this section we present our proof-of-concept solution that meet all of the
above requirements.

3.1 Architecture overview
ɔe player is based on library libyuri version 0.3. ɔis library, which is developed
simultaneously with the C2C project in IIM (Institute of Intermedia), was also
greatly expanded during development of this application. Libyuri gives us a basis
for multi-threaded application for mainly video processing, interface for configura-
tion files and some prepared objects for video processing.

ɔe player uses many distinct threads for receiving data, rendering and for
user interaction. Based on the configuration file, the player open windows on spec-
ified displays and render appropriate parts of the scene into them. Each window is
rendered in separate thread. ɔe RTP reception is done separately in one or more
threads, the received streams are decoded (one decoder thread per stream) and sent
to main thread. When any of the rendering threads requests data for new frame, the
input queues are traversed and only the latest images are returned.

User input is handled independently in input thread (spawned only when re-
quested by configuration and when the specified device is available) and the state
is made available to every renderer upon request.

In the basic CAVEmode, the connected control devicemoves avatar in the local
virtual scene, unless specified button is pressed, which forces the player to records
events for remote control (only when requested by configuration). ɔe current im-
plementation simply outputs the events to a file. More details follow in Section 4.

3.2 Features
Current implementation can handle RTP streams with uncompressed video packed
as defined in RFC4175[5] (support is limited to RGB/RGBA color spaces) and com-
pressed streams in DV format [7]. Support for other formats will be implemented
soon. It can retrieves partial information about stream from it’s SDP description,



10 R B  .

though the support is not complete yet. At the moment we support either flat
projection (one stream over one full window) or CAVE-like projection, when the
streams are mapped onto walls of virtual cube.

Support for stereoscopic projection is handled by having two identical pro-
jections using windows on different screens which are expected to be projected to
different eyes. Adjustments of interocular distance are supported. Each of the pro-
jections can consist of several windows. As basic support for user avatars we have
implemented “faces” - tiles floating in the scene (meant for “backward” streams
from cameras installed in the cave, but the player can use streams from any source
for this purpose). Support for movement in the local scene - in predefined range to
simplify control. If output events are generated, they are written to a file specified
by configuration.

3.3 Future Enhancements
In short-term future work, we would like to address problems already mentioned -
Complete support for SDP [6] description (this would simplify the configuration of
incoming streams), external models of a virtual scene (currently there is only hard-
coded CAVE-like cube) and support for active stereoscopy. Also we want to have
the application to be distributed over several computers.

4 Interaction
Whenwe want to turn the passive receiver into an active participant, we need to give
him chance to control the remote application. ɔis section describes our proof-of-
concept solution. As most of the applications, we use now, have their inputs based
on trackd5 daemon, our solution is targeted to applications using trackd. Our goal
is to give the user ability to control the remote application, without need to modify
the application.

4.1 Implementation

As the development platform for our project is Linux based operating system, we
describe some details using terminology originating from this environment. But
the principles of main ideas are generally independent of used platform even if the
implementation on other platforms can be more complicated. ɔe implementation
has three main parts:
— new driver for trackd,
— kernel module for virtual input device,
— player capable of generating the events.

5 http://www.mechdyne.com/integratedSolutions/software/products/trackd/trackd.htm



Implementing Video-Based, Remotely Accessible Virtual Environment System 11

4.1.1 Trackd Driver
ɔe idea for the driver is to make it receive events from several input devices and
to present events from any of the devices equally. Using this approach we can have
the configuration unchanged for the normal single controller operation, but we
can have several input devices that controls the scene. When we add some kind of
virtual device as one of those, we can insert our own events very simply and cleanly.

4.1.2 Virtual Event Device
To get the virtual device mentioned in Section 4.1.1, we implemented linux kernel
module simulating an input device. It is controlled by an interface in /proc6 filesys-
tem. Basically it receives events in the form of input_event7 structure and simply
replicates them in kernel.

4.1.3 Capable Player

Our player is capable of generating the event structure recognized by the device
described in Section 4.1.2. It outputs them into a file specified by configuration.
In order to give those to the remote virtual event device, we dump them into a
pipe instead of file and then redirect the pipe through a ssh tunnel to the remote
machines /proc interface.

4.2 Data Transmission
ɔe transmission of tracked data in our plans should be handled by a transparent
methods defined in context of all other data types transport management. For now,
the proof-of-concept implementation uses ssh for data transmission.

5 Applications

ɔe possibility to capture rendered video in real-time and present it on a distant
place has lot of applications in wide area. AɆer we described some implementation
details we canmention some applications which already use our grabber and player.

5.1 Project C2C

ɔe methods introduced above in Section 1.3 have been successfully used in the
Cave2Cave project (C2C) [3] to stream a stereoscopic video signal from applications
running in CAVE-like system (CAVE visualization projection device used in the area
of virtual reality applications [4]) and to present it on remote site (see Figure 4)
using multichannel video player (Section 3).

We use the the multi-threaded grabber to get video of the application, scale it,
optionally compress it and stream it using standard protocol RTP [8]. ɔe grabber
also creates RTSP [9] server to provide SDP descriptions [6] of the streams. ɔis
way we can (and we do) present applications from our CAVE system to distant

6 Dynamically generated pseudo filesystem used to access process information from theUNIX kernels
7 C-language structure used by linux kernel to send notification about events from input devices



12 R B  .

viewers. ɔe use of standard streaming protocols allows us to partially preserve
possibility of receiving data by standard players used by remote user.

5.2 Prerendering

Another use of the method is to allow prerendering with applications that does not
support it natively. For example, application rendering complex model which can
not be rendered in real-time could be used to render it as fast as it could while
having it’s whole run recorded. ɔen we simply playback the recorded video at
the requested speed. ɔis allows us to present output of any application even in
cases, when the application itself can not do it in real-time. We successfully used
this method for presenting walks through very complex VRML (Virtual Reality
Modeling Language) models to public.

5.3 Industrial Applications

As the grabber can wrap theoretically any OpenGL application (it depend on cor-
rectness of application implementation in relation to OpenGL library), it offers
itself in such situations where some industrial product (like an architectural model
or model of a car) is to be, probably interactively, presented to a remote user with-
out necessity to send these data to his/her computer. It is important when there is
not possible to move real data or soɆware, e.g. due to license limitations. Using
systems like CAVE, running our grabber on each wall, as a source of content, an ap-
plication then allows to mediate immersive environment remotely using standards
described in already referenced RFC documents.

6 Conclusion
ɔe proposed method allows real-time retrieval of rendered stereoscopic images
from arbitrary OpenGL application without a need to modify the application itself.
It can be used as base for a system to record an output of an application to local
storage for offline use or to stream the content over network in real-time.

ɔe solution has potentially lot of applications in wide area of remote visu-
alizations also on immersive devices or in the area of collaborative environments.
As it has been already mentioned above the problem with grabbing methods is in
continuous development and follows possibilities of contemporary technologies.
For know, we can expect that the support of hardware solutions will be probably
accessible for wider area of applications.

7 Future Work
ɔe work described in this report is part of project CAVE to CAVE (C2C) which
addresses to development and application of new approaches in the area of dis-
tributed collaborative environments. ɔe report describes already implemented
parts which has been used to get a proof-of-concept. ɔe next activities in frame-
work of the project will tend to extension of actual state according to ideas already
mentioned in [2]. ɔese extensions should be based mostly on technical improve-



Implementing Video-Based, Remotely Accessible Virtual Environment System 13

Figure 4. Scheme of the configuration based on multi-projection screen. A scene
rendered in the resource device with 3 projection walls is grabbed and the
resulting video is transmitted to the remote device where it is presented
on remote projection wall.

ment of several parts in whole communication chain presented in Section 1.3 (Fig-
ure 2). ɔis includes more flexible processing of tracked data to allow higher vari-
ability of tracking devices. Next, a “back” video channel (with pictures of remote
users) and its composition with the presented scene directly on screen is standalone
problem which is now solved by authors.

ɔe next significant topic for the C2C project is a definition of new generation
of concept which will be based on higher level of communication control among



14 R B  .

VR devices. ɔe new level should be characterized by the ability to realize adap-
tation of multimedia content according to end-point device taking into account
bandwidth, number of information channels (e.g. mono vs. stereo video), security
or/and permissions of each endpoint-device. Such communication platform offer
its possibilities for more applications then only for collaborative distributed envi-
ronments. ɔe ideas about this level of communication forms new visions where
multi-modal information does not overload the user but improves his/her creative
potential.

8 Acknowledgments

ɔis work has been partially supported by:
— CESNET, Association of Legal Entities, Prague, Czech Republic, under the

research program MSM 6383917201;
— Czech Technical University in Prague, Institute of Intermedia, Center for Com-

puter Graphics, under the research program LC-06008.

References

[1] BAIK, S.; BALA, J.; JO, Y. Knowledge-Based Intelligent Information and Engi-
neering Systems, vol. 3681/2005, chapter Distributed Visual Interfaces for Col-
laborative Exploration of Data Spaces, p. 887–892. Berlin: Springer, 2005.
ISBN: 978-3-540-28894-7.

[2] BERKA, R.; TRÁVNÍČEK, Z.; HAVRAN, V.; BITTNER, J.; ŽÁRA, J.;
SLAVÍK, P.; NAVRÁTIL, J. CAVE to CAVE: Communication in a Distributed
Virtual Environment. Technical report 23/20088, Praha: CESNET, 2008.

[3] BERKA, R.; TRÁVNÍČEK, Z.; HAVRAN, V.; BITTNER, J.; ŽÁRA, J.;
SLAVÍK, P.; NAVRÁTIL, J. CAVE to CAVE: Communication in a
Distributed Virtual Environment. In LHOTKA, L.; SATRAPA, P. (ed.).
Networking Studies III: Selected Technical Reports, Praha: CESNET, 2009,
p. 161–174. ISBN: 978-80-904173-4-2.

[4] CRUZ-NEIRA, C.; SANDIN, D.; DEFANTI, T.; KENYON, R.; HART, J.
ɔe CAVE: Audio Visual Experience Automatic Virtual Environment. Com-
munications of the ACM, vol. 35, no. 6, 1992, p. 65–72.

[5] GHARAI, L.; PERKINS, C. RTP Payload Format for Uncompressed Video.
RFC 41759, IETF, September 2005.

[6] HANDLEY, M.; JACOBSON, V.; PERKINS, C. SDP: Session Description
Protocol. RFC 456610, IETF, July 2006.

[7] KOBAYASHI, K.; OGAWA, A.; CASNER, S.; BORMANN, C. RTP Payload
Format for DV (IEC 61834) Video. RFC 318911, IETF, January 2002.

8 http://www.cesnet.cz/doc/techzpravy/2008/cave-to-cave/
9 http://tools.ietf.org/rfc/rfc4175

10 http://tools.ietf.org/rfc/rfc4566
11 http://tools.ietf.org/rfc/rfc3189



Implementing Video-Based, Remotely Accessible Virtual Environment System 15

[8] SCHULZRINNE, H.; CASNER, S.; FREDERICK, R.; JACOBSON, V.
RTP: A Transport Protocol for Real-ɓme Applications. RFC 355012, IETF, July
2003.

[9] SCHULZRINNE, H.; RAO, A.; LANPHIER, R. Real ɓme Streaming Proto-
col (RTSP). RFC 232613, IETF, April 1998.

12 http://tools.ietf.org/rfc/rfc3550
13 http://tools.ietf.org/rfc/rfc2326


