
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling EXPRESSIVE 2015
Ergun Akleman (Editor)

ShipShape: A Drawing Beautification Assistant

J. Fišer†1, P. Asente2 and D. Sýkora1

1CTU in Prague, FEE
2Adobe Research

Figure 1: Examples of drawings created using ShipShape. The final drawings (black) were created from the imprecise user
input (gray) by beautifying one stroke at a time, using geometric properties such as symmetry and curve identity. See Figure 11
for more results.

Abstract
Sketching is one of the simplest ways to visualize ideas. Its key advantage is requiring the user to have neither
deep knowledge of a particular drawing software nor any advanced drawing skills. In practice, however, all
these skills become necessary to improve the visual fidelity of the resulting drawing. In this paper, we present
ShipShape—a general beautification assistant that allows users to maintain the simplicity and speed of freehand
sketching while still taking into account implicit geometric relations to automatically rectify the output image. In
contrast to previous approaches ShipShape works with general Bézier curves, enables undo/redo operations, is
scale independent, and is fully integrated into Adobe Illustrator. We demonstrate various results to demonstrate
capabilities of the proposed method.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—
Paint systems I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation I.3.6 [Computer
Graphics]: Methodology and Techniques—Interaction techniques I.4.3 [Image Processing and Computer Vision]:
Enhancement—Geometric correction H.5.2 [User Interfaces]: Input devices and strategies—

1. Introduction

Sketching with a mouse, tablet, or touch screen is an easy
and understandable way to create digital content, as it
closely mimics its real-world counterpart, pen and paper.
Its low demands make it widely accessible to novices and
inexperienced users. However, its imprecision means that
it is usually only used as a preliminary draft or a concept

† e-mail:fiserja9@fel.cvut.cz

sketch. Making a more polished drawing requires signifi-
cantly more time and experience with the drawing applica-
tion being used. Furthermore, when working with drawing or
sketching software, users are often forced to switch between
different drawing modes or tools or to memorize cumber-
some shortcut combinations.

While we do not question the necessity or usefulness of
complex tools to achieve non-trivial results, we argue that
for certain scenarios, such as geometric diagram design or

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

endpoint snapping endtangent alignment line parallelism line perpendicularity line length equality

curve offset curve identity curve rotation curve reflectionarc center snapping

Figure 2: Supported geometric rules and transformations in our framework. The blue paths represent the data being beautified,
while gray paths are data already processed. For more detailed description of the criteria used to evaluate these constraints,
see Section 3.1.

logo study creation, the interactive beautification [IMKT97]
approach is more beneficial. Such workflows retain the intu-
itiveness of freehand input while benefiting from an underly-
ing algorithm that automatically rectifies strokes based upon
their geometric relations, giving them more formal appear-
ance. With the quickly growing popularity of touch-enabled
devices, the applicability of this approach expands greatly.
However, whatever the potential of automatic beautification
in a more general sketching context, most of the existing ap-
plications focus on highly structured drawings like technical
sketches.

One of the biggest challenges in drawing beautification is
resolving ambiguity of the user input, since the intention and
its execution are often considerably dissimilar. Additionally,
this issue becomes progressively more complex as the num-
ber of primitives present in the drawing increases.

In this paper, we present a system for beautifying free-
hand sketches that provides multiple suggestions in spirit of
Igarashi et al. [IMKT97]. Strokes are processed incremen-
tally (see Figure 3) to prevent the combinatorial explosion of

1 2 3 4 5 6 7 8 I

Figure 3: Incremental beautification workflow. Every newly
drawn stroke (blue) is beautified using previously created
data (gray). The first stroke is left unchanged. As the drawing
continues, more suitable geometric constraints emerge and
are applied, such as curve identity (2,6,7), reflection (2,6)
or arc fitting (3,4). For comparison with the final beautified
output (8), I shows the original input strokes.

possible outputs. Unlike previous work, our approach sup-
ports polycurves composed of general cubic Bézier curves
in addition to simple line segments and arcs. The sys-
tem is scale-independent, and can easily be extended by
new operations and inferred geometric constraints that are
quickly evaluated and applied. The algorithm was integrated
into Adobe Illustrator, including undo/redo capability. We
present various examples to demonstrate its practical usabil-
ity.

2. Related Work

The need to create diagrams and technical drawings that sat-
isfy various geometric constraints led to the development of
complex design tools such as CAD systems. However, these
systems’ complexity often limits their intuitiveness. Pavlidis
and Van Wyk [PVW85] were one of the first to try to alle-
viate this conflict by proposing a method for basic rectifi-
cation of simple rectangular diagrams and flowcharts. How-
ever, their process became ambiguous and prone to errors
when more complex drawings were considered, since the
method needed to drop many constraints to keep the solu-
tion tractable.

To alleviate this limitation, Igarashi et al. [IMKT97] pro-
posed an interactive beautification system in which the user
added strokes one by one and the system improved the so-
lution incrementally while keeping the previously processed
drawing unchanged. This solution kept the problem tractable
even for very complex drawings. Moreover, the system also
presented several beautified suggestions and let the user pick
the final one. This brought more user control to the whole
beautification process. Following a similar principle, other
researchers developed systems for a more specific scenarios
such as the interactive creation of 3D drawings [IH01], block
diagrams [PG05, WSP05], forms [ZBcLF08], and mathe-
matical equations [LZ04].

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

However, a common limitation of the approaches men-
tioned above is that they treat the image as a set of line
segments. To alleviate this drawback Paulson and Ham-
mond [PH08] proposed a system called PaleoSketch that fit
the user input to one of eight predefined geometric shapes,
such as line, spiral or helix. In a similar vein, Murugappan et
al. [MSR09] and Cheema et al. [CGL12] allowed line seg-
ments, circles and arcs.

Related to drawing beautification, there are also ap-
proaches to beautify curves independently, without con-
sidering more complex geometric relationships. Those ap-
proaches are orthogonal to our pipeline. They use either
geometric curve fitting [BLP10, OK11] or some example-
based strategy [LZC11,Zit13]. Additionally, advanced meth-
ods for vectorizing and refining raster inputs have been pro-
posed [NHS∗13, SLWF14], which enable users to convert
bitmap images into high quality vector output. However
these do not exploit inter-stroke relationships. In our case
we assume that the built-in curve beautification mechanism
of Adobe Illustrator pre-processes the user’s rough input
strokes into smooth, fair paths.

3. Our Approach

A key motivation for our system is wanting to work with ar-
bitrarily curved paths. This capability was not available in
previous beautification systems. Although some can recog-
nize a variety of curves including spirals and general 5th
degree polynomials (PaleoSketch [PH08]), they recognize
them only in isolation and do not allow to take other existing
paths into consideration, which is important for interactive
design.

Systems like that of Igarashi et al. [IMKT97] generate a
set of potential constraints and then produce suggestions by
satisfying subsets of these. A key challenge that prohibits
simply generalizing these systems to support general curved
paths is the number of degrees of freedom, which boosts
the number of potential constraints that need to be evalu-
ated. Moreover, unlike line or arc segments, many of a gen-
eral path’s properties, for example the exact coordinates of
a point joining two smooth curves, do not have any mean-
ing to the user. It would not be helpful to add constraints for
this point. Finally, satisfying constraints on a subset of the
defining properties might distort the path into something that
barely resembles the original. Supporting generalized paths
requires a different approach.

Our system is based on an extensible set of self-contained
geometric rules, each built as a black box and independent
of other rules. Every rule represents a single geometric prop-
erty, such as having an endpoint snapped or being a reflected
version of an existing path. The input to each rule is an input
path consisting of an end-to-end connected series of Bézier
curves, and the set of existing, resolved paths. The black
box evaluates the likelihood that the path conforms to the

geometric property, considering the resolved paths, and out-
puts zero or more modified versions of the path. Each modi-
fied version gets a score, representing the likelihood that the
modification is correct.

For example, the same-line-length rule would, for input
that is a line segment, create output versions that are the
same lengths as existing line segments, along with scores
that indicate how close the segment’s initial length was to
the modified length. Each rule also has some threshold that
determines that the score for a modification is too low, and
in that case it does not output the path.

The rules also mark properties of the path that have be-
come fixed and therefore can no longer be modified by future
rules. For example, the endpoint-snapping rule marks one
or both endpoint coordinates of a path as fixed. The same-
line-length and parallel-line rules do not attempt to modify a
segment with two fixed endpoints.

Since the rules do not depend on each other, it is easy to
add new rules to support additional geometric traits. Figure 2
shows an illustrated list of rules supported in our system.

Chaining the rules can lead to complex modifications of
the input stroke and is at the core of our framework. We treat
the rule application as branching in a directed rooted tree of
paths, where the root node corresponds to the unmodified
input path. Each branch of the tree corresponds to a unique
application of one rule and the branch is given a weight cor-
responding to the rule’s score.

To find suitable transformations for the user input, we tra-
verse down to the leaf nodes (see Figure 4).

Formally, given a node ni with Bézier path pi, the set of
resolved paths S, and the set of all rules r j ∈ R, we compute

an output set Pi =
{

r j

(
pi,S

)}
. We then create a child node

ni
j for each pi

j ∈ Pi. If Pi is empty, ni is a leaf node.

As previously described, each rule outputs a likelihood
score for the transformed path. Since we need to compare
scores among different rules, they are always normalized
into the interval [0,1]. We can then use all scores from the
nodes we visited while descending into a particular leaf node
n to calculate the overall likelihood score for the chained
transformation as

Li = 1−
d−1

∏
k=1

(
1−L

(
r j

(
ak,S

)))
, (1)

where d is the depth of n in the tree, ak is the kth ancestor
of n, and L

(
r j

(
ak,S

))
denotes the likelihood score from

applying rule r j to node ak.

We expand the search tree in a best-first search manner,
where the order of visiting the child nodes is determined by
the overall score L of the node’s path. While traversing the
tree, we construct a suggestion set Q of leaf nodes, which is

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

1.0 0.5 0.75

0.25 1.0

0.75

Figure 4: Successive rule evaluation and application. In
this example, the evaluation engine consists of three geomet-
ric rules—endpoint snapping, perpendicularity, and length
equality. The old data (gray path) is fixed in the canvas.
When a new path (blue) is added, it becomes the root node
of the evaluation graph and the expansion begins by test-
ing all rules on it. A likelihood score is calculated for each
rule application and the tree is expanded using a best-first
search scheme, until leaf nodes are reached. Due to the sig-
nificant redundancy in the search space, many leaf nodes
will contain duplicate suggestions. Therefore, we prune the
graph during the expansion step using the information from
already reached leaf nodes (see Section 3 and Figure 5 for
more information).

initially empty and gets filled as the leaf nodes are encoun-
tered in the traversal. Once not empty, Q helps prune the
search. Before we expand a particular subtree, we compare
the geometric properties of its root with properties of each
path q ∈ Q. If all tested properties are found in some path
q, the whole subtree can be omitted from further processing
(see Figure 5).

Furthermore, to keep the user from having to go through
too many suggestions, we limit the size of Q. Since we tra-
verse the graph in a best-first manner, we stop the search
after finding some number of unique leaf nodes (10 in our
implementation).

3.1. Supported Rules and Operations

Geometric transformations in our framework are evaluated
by testing various properties of the new path and the set of
previously drawn and processed paths. While tests of some
properties are simple, others, such as path matching, require
more complex processing. We first summarize rules sup-
ported by our system (illustrated in Figure 2), and then we

(a) (b) (c)

n Q

q0

q1

q2

Figure 5: Search graph pruning. The rules are represented
by colored boxes with hue being distinct rules and lightness
their unique applications (e.g., if red color represents end-
point snapping, then different shades of red correspond to
snapping to different positions). An inner node n has been
expanded into three branches (a,b,c). Before further traver-
sal, all subtrees stemming from the child nodes of n are
tested against suggestions q ∈Q. Here, branches (a) and (c)
are fully contained in q0 and q2 respectively and thus only
branch (b) is evaluated further.

present some additional implementation issues including a
more detailed description for non-trivial rules.

Line Detection We estimate path’s deviation from straight-
ness by measuring the ratio between its length and the dis-
tance between its endpoints, as in QuickDraw [CGL12].

Arc Detection We compute the approximate curvature by
calculating angles between tangents of successive path
samples. We check whether it is sufficiently uniform and
whether the angular span is within an expected range, to
prevent treating slightly bent lines or spirals as circular arcs.
When the span is close to 2π or the path is closed, we replace
it with full circle.

Endpoint Snapping We look at the distance between each
of the path endpoints and resolved endpoints. Additionally,
we also try snapping to inner parts of the resolved paths.
Specialized tests based on the properties of line segments
and circular arcs lower the computational complexity of this
operation. Note that we do not explicitly join adjacent seg-
ments, as this would change their semantic meaning. How-
ever, this effect can be easily mimicked by using round caps
on the curves.

End Tangent Alignment If the path endpoint is snapped,
we measure the angle between its tangent and the tangent of
the point it is attached to.

Line Parallelism and Perpendicularity We compare the
angle between two line segment paths with the angle needed
to satisfy the parallelism or perpendicularity constraint. Ad-
ditionally, we also take the distance between the line seg-
ments into account to slightly increase the priority of nearby
paths.

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

Line Length Equality We evaluate the ratio of length of
both tested line segments. As in previous case, we incorpo-
rate their mutual distance in the final likelihood computation.

Arc and Circle Center Snapping Similar to endpoint
snapping, we evaluate the distance between the current arc
center and potential ones, in this case endpoints of other
paths, other centers, centers of rotations, and centers of
regular polygons composed from series of line segments.

Path Identity To detect that two paths have similar shapes,
we align them and compute their discrete Fréchet dis-
tance [EM94]. We also account for different scales. More
details are given in Section 3.4.

Path Offset Offset paths generalize line parallelism. To de-
tect them, we go along the tested path and measure its dis-
tance to the reference path. More details are given in Sec-
tion 3.5.

Path Rotational Symmetry For a tested path x and re-
solved reference path y of the “same shape” (determined by
successful application of the path-identity rule), we find the
optimal rotation matrix (i.e, center point c and angle of ro-
tation α) that transforms y to y′ and minimizes the distance
between endpoints of x and y′. Similarly to arc center snap-
ping, we try to adjust the position of the rotation center and
snap it to some existing point. Since our system works in in-
cremental fashion, we also adjust the angle of rotation to the
nearest integer quotient of 2π, so that additional paths can be
placed to form full n-fold rotational symmetry.

Path Reflection Symmetry Similar to rotational symme-
try, we find an axis that minimizes the difference between
the reflected version of existing path y and the tested path x.
Nearby existing reflection axes are tested, and we also try to
make the found axis parallel with a coordinate axis.

3.2. View-Space Distances

Testing paths for different geometric properties ultimately
requires measuring lengths and distances. While many path
attributes can be compared using relative values, absolute
values are still necessary, e.g., for snapping endpoints. Us-
ing absolute values, however, leads to unexpected behav-
ior when the canvas is zoomed in and out. To eliminate
this problem, we compute all distances in view-space pix-
els, making all distance tests magnification-independent.

3.3. Path Sampling

Working with cubic Bézier curves analytically is inconve-
nient and difficult. Many practical tasks, such as finding a
path’s length or the minimal distance between two paths,
can only be solved using numerical approaches. Therefore,

(a) (b)

(c) (d)

< ε

Figure 6: Path sample simplification. The original Bézier
path (a) is equidistantly sampled, giving a polyline (b). The
Ramer–Douglas–Peucker algorithm then recursively simpli-
fies the polyline by omitting points closer than ε (c) to the
current approximation, finally constructing simplified poly-
line (d).

we perform all operations on sampled paths. Since the re-
solved paths do not change, we can precompute and store
the samples for resolved paths, and sample only new paths.
Furthermore, to reduce the memory requirement and compu-
tational complexity of different path comparisons, we sim-
plify the sampling using the Ramer–Douglas–Peucker algo-
rithm [Ram72, DP73]. For a polyline p, this finds a reduced
version p′ with fewer points within given tolerance ε, i.e.,
all points of p′ lie within the distance ε of the original path
(see Figure 6). Our implementation uses ε = 4 view-space
pixels at the time the path was drawn.

3.4. Path Matching

A significant part of our contribution involves resolving
higher-level geometric relations like path rotational and re-
flection symmetry. To identify these relations, we must first
classify paths that are the “same shape”—paths that are dif-
ferent instances of the same “template”.

To evaluate the similarity between two sampled paths
pa and pb, we employ a discrete variant of Fréchet dis-
tance [EM94], a well-established similarity measure. For-
mally, it is defined as follows: Let (M,d) be a metric space
and let the path be defined as a continuous mapping f :
[a,b] → M, where a,b ∈ R, a ≤ b. Given two paths f :
[a,b]→ M and g : [a′,b′]→ M, their Fréchet distance δF
is defined as

δF (f ,g) = inf
α,β

max
t∈[0,1]

d (f (α(t)) ,g(β(t))) , (2)

where α (resp. β) is an arbitrary continuous non-decreasing
function from [0,1] onto [a,b] (resp. [a′,b′]). Intuitively, it
is usually described using a leash metaphor: a man walks
from the beginning to the end of one path while his dog on a
leash walks from the beginning to the end of the other. They
can vary their speeds but they cannot walk backwards. The
Fréchet distance is the length of the shortest leash that can
allow them to successfully traverse the paths.

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

(a) (b)

Figure 7: Discrete Fréchet distance. The minimum length of
the line connecting ordered sets of point samples (a). Since
we store the resolved paths in the simplified form, we com-
pute the Fréchet distance between an ordered set of points
and an ordered set of line segments (b) rather than between
two point sets.

As outlined by Eiter and Mannila, this can be computed
for two point sets using a dynamic programming approach.
The extension to point and line-segment sets (Figure 7b) is
then straightforward. However, the measure takes into ac-
count the absolute positions of the sample points, while we
are interested in relative difference. Therefore, we have to
adjust the alignment of the two tested paths (Figure 8). First,
we translate, rotate, and uniformly scale the two paths so
that their endpoints match. Second, we scale them (possibly
non-uniformly) so that their bounding boxes match. We then
compute the discrete Fréchet distance divided by the length
of the tested path to obtain the relative similarity measure.

Because the new path might be a flipped and/or reversed
version of an existing path, we perform four tests between
them to determine the correct match.

(a) (b) (c) (d)

Figure 8: Path alignment for the computation of the simi-
larity measure. When testing a new path (blue) for similarity
with an old one (gray) (a), we match the endpoints of the
two paths (b). Then we scale them so their bounding boxes
match (c). If the new path is then evaluated as being suf-
ficiently similar, a new, properly-positioned instance of the
old path replaces the tested path (d).

3.5. Offset Path Detection

Offset paths extend the concept of parallelism from line seg-
ments to paths. To detect them, we construct a normal line
from each sample of the new path. If the line hits an existing
reference path, we measure the distance between the sam-
ple point and the closest point on the reference. Note that
we do not use the distance between the sample point and
the line-path intersection, since this would require the user

to draw the approximate offset path very precisely. We store
the measured distance along with its sign, i.e., on which side
of the new path the hit occurred. We then sort all the hit in-
formation according to the distance, creating a cumulative
distribution function, and pick two values corresponding to
(50±n)-th percentiles (n being 25 in our implementation).
By comparing the sign and distance values of these samples,
we calculate the likelihood of the new path being an offset
path of the reference path (see Figure 9). If the likelihood is
high, we replace the new path with an offset version of the
reference.

Figure 9: Offset path detection. A line is constructed from
each point on the sampled path (blue circles) in the normal
direction. If an existing reference path is hit (red rays), the
minimal distance from the sample to the reference path is
calculated (dashed lines) and used in offset-path-likelihood
computation (see 3.5).

4. Implementation Details

While using an existing API requires us to conform to its de-
sign rules, it also eliminates the need to handle many tasks
unrelated to the research project, such as tracking the in-
put device, fitting paths to the samples, and managing the
undo/redo stack. It also benefits the users, as they are not
forced to learn yet another user interface, and can instead
take advantage of built-in tools of the existing program.
Therefore, we decided to integrate our system into Adobe
Illustrator as a plugin using its C++ SDK.

As described previously, our method is based on evaluat-
ing different geometric rules on a new path using the previ-
ously drawn and resolved paths. Thus, we need to be able
to detect when a new path is created or an old one is modi-
fied or deleted. To this end, we serialize all the path data and
store a copy in the document. Illustrator activates our system
whenever the user modifies the document. We deserialize the
data and compare the paths to the actual paths in the docu-
ment to detect changes. If we find a new path, we process
the new path and update the serialized data. Similarly, when
a path is modified, it is treated as new one and reprocessed.
Deleting paths does not affect the remaining ones. To sup-
port undo and redo, we store the serialized data into a part of
document that is managed by the undo/redo system.

The presentation of the suggestions is deliberately kept as
simple as possible and only one suggestion is shown at the

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

time. The user switches among the suggestions using an ad-
ditional Illustrator tool panel. The last suggestion in the list
is always the original input path and is thus easily accessible.
Currently, the list of inferred constraints is shown in textual
form in the order in which they were traversed in the search
space tree (see Figure 10c). The user selects the current sug-
gestion by drawing a new path or changing the selection.

To further exploit the built-in tools, we support the
“Transform Again” feature for rotational symmetry. If the
resolved path is a rotated copy of an existing path, it is noted
as such so that a new, properly-rotated copy will be created if
the user invokes the “Transform Again” command. The user
only needs to draw two rotated instances of a path and then
can create additional properly-rotated paths without draw-
ing them (see Figure 10d). Recall that the rotation angle is
adjusted to the nearest integer quotient of 2π, so additional
paths can form full n-fold rotational symmetry.

(a) (b)

(d)(c)

Figure 10: Exploiting the “Transform Again” feature. Il-
lustrator allows the user to repeat the last transformation.
When a new path is added (b) to the canvas (a), it is pro-
cessed and output suggestions are generated. If the user
chooses a suggestion that is a rotation (c) we enable the
“Transform Again” feature. The user can then easily com-
plete the 8-fold rotational symmetry drawing (d). See Sec-
tion 4

5. Results

We created a plugin for Illustrator that created the results
shown in Figures 1 and 11. To evaluate our method, we con-
ducted an informal study. We showed four people the Ship-

Shape prototype and asked them to try it out. None of the
users was professional artist, however, they were all gener-
ally proficient at common computer work. The overall feed-
back was positive. The users considered the workflow easy
to learn and liked the simplicity of the interaction style, using
the Pencil Tool exclusively. Generally, the users mentioned
the need to draw more precisely as the drawings got more
complex, which stems from the fact that with more paths,
the probability of the input satisfying some unintended geo-
metric constraints rises. Users also appreciated being able to
use “Transform Again” feature (see Figure 10) as they often
found it tedious to draw rotated elements manually.

The displayed results vary from relatively simple sketches
to quite complex drawings. Despite the limited set of sup-
ported operations, the users often found ways to mimic ad-
ditional constraints. For example, we do not currently sup-
port snapping of an endpoint or midpoint to a reflection axis.
However, it can be achieved by drawing a line segment rep-
resenting the axis, using it as the anchor, and later deleting it
(done in Figure 11a,f and the supplementary video).

An important part of the workflow was relying on Illus-
trator’s built-in support for curve smoothing when creat-
ing original paths—those that are not copies of other paths.
These are shown in blue in Figure 11, and they function as
“template” paths for the beautification. Other strokes drawn
afterwards can be much more imprecise (see Figure 1 and
11c–g).

6. Limitations and Future Work

A common problem of drawing beautification techniques
is the quick growth of the number of possible suggestions
as the drawing becomes more complex and many satisfi-
able geometric constraints emerge. Our approach addresses
this by combining best-first search with a limited suggestion
set size, but additional heuristic-based pruning of the search
space, possibly based on empirical measurements, could im-
prove the suggestion set.

Currently, when the user changes an already-resolved
path, it is treated as a new one. In some cases, however, it
would be beneficial to not only reprocess the modified path
but also all other paths being in relationship with it, for ex-
ample changing any reflected or rotated versions of the path.

While we deliberately kept the user interface minimalis-
tic, we believe that a visualization of the inferred constraints
could help the users to better understand which rules were
applied. For example, we could visualize a reflection axis
or highlight the existing paths that contributed to the current
result.

7. Conclusion

In this paper, we presented an efficient method for beauti-
fication of freehand sketches. Since the user input is often

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

imprecise and thus ambiguous, multiple output suggestions
must be generated. To this end, we formulated this problem
as search in a rooted tree graph where nodes contain trans-
formed input stroke, edges represent applications of geo-
metric rules and suitable suggestions correspond to different
paths from root node to some leaf nodes. To avoid the com-
putational complexity of traversal through the whole graph,
we utilized a best-first search approach where the order of
visiting tree nodes is directed by the likelihood of applica-
tion of the particular geometric rules.

On top of this framework, we developed a system of self-
contained rules representing different geometric transforma-
tions, which can be easily extended. We implemented vari-
ous rules that can work not only with simple primitives like
line segments and circular arcs, but also with general Bézier
curves, for which we showed how to detect previously un-
supported relations such as curve identity or rotational and
reflection symmetry.

We demonstrated the usability and potential of our
method on various complex drawings. Thanks to the ability
to process general curves, our system extends the range of
applicability of freehand sketching, which was limited pre-
viously to drawings in specialized, highly-structured appli-
cations like forms or technical diagrams. We believe that
this advantage will become even more apparent with the
widespread adoption of touch-centric devices, which rely
much less on classical beautification techniques that are
based upon menu commands and multiple tools.

8. Acknowledgements

We would like to thank all the anonymous reviewers for
their constructive comments. This research began as an in-
ternship by Jakub Fišer at Adobe Research, and was partly
supported by the Technology Agency of the Czech Repub-
lic under the research program TE01020415 (V3C – Vi-
sual Computing Competence Center) and partially by the
Grant Agency of the Czech Technical University in Prague,
grant No. SGS13/214/OHK3/3T/13 (Research of Progres-
sive Computer Graphics Methods).

References
[BLP10] BARAN I., LEHTINEN J., POPOVIC J.: Sketching

clothoid splines using shortest paths. Computer Graphics Forum
29, 2 (2010), 655–664. 3

[CGL12] CHEEMA S., GULWANI S., LAVIOLA J.: Quickdraw:
Improving drawing experience for geometric diagrams. In Pro-
ceedings of SIGCHI Conference on Human Factors in Computing
Systems (2012), pp. 1037–1064. 3, 4

[DP73] DOUGLAS D. D., PEUCKER K. T.: Algorithms for the
reduction of the number of points required to represent a digitized
line or its caricature. Cartographica: The International Journal
for Geographic Information and Geovisualization 10, 2 (1973),
112–122. 5

[EM94] EITER T., MANNILA H.: Computing discrete Fréchet
distance. Tech. rep., Technische Universität Wien, 1994. 5

[IH01] IGARASHI T., HUGHES J. F.: A suggestive interface for
3d drawing. In Proceedings of ACM Symposium on User Inter-
face Software and Technology (2001), pp. 173–181. 2

[IMKT97] IGARASHI T., MATSUOKA S., KAWACHIYA S.,
TANAKA H.: Interactive beautification: A technique for rapid
geometric design. In Proceedings of ACM Symposium on User
Interface Software and Technology (1997), pp. 105–114. 2, 3

[LZ04] LAVIOLA JR. J. J., ZELEZNIK R. C.: Mathpad2: A sys-
tem for the creation and exploration of mathematical sketches.
ACM Transactions on Graphics 23, 3 (2004), 432–440. 2

[LZC11] LEE Y. J., ZITNICK C. L., COHEN M. F.: Shadowdraw:
real-time user guidance for freehand drawing. ACM Transactions
on Graphics 30, 4 (2011), 27. 3

[MSR09] MURUGAPPAN S., SELLAMANI S., RAMANI K.: To-
wards beautification of freehand sketches using suggestions. In
Proceedings of Eurographics Symposium on Sketch-Based Inter-
faces and Modeling (2009), pp. 69–76. 3

[NHS∗13] NORIS G., HORNUNG A., SUMNER R. W., SIM-
MONS M., GROSS M.: Topology-driven vectorization of clean
line drawings. ACM Transactions on Graphics 32, 1 (2013), 11.
3

[OK11] ORBAY G., KARA L. B.: Beautification of design
sketches using trainable stroke clustering and curve fitting. IEEE
Transactions on Visualization and Computer Graphics 17, 5
(2011), 694–708. 3

[PG05] PLIMMER B., GRUNDY J.: Beautifying sketching-based
design tool content: Issues and experiences. In Proceedings of
Australasian Conference on User Interface (2005), pp. 31–38. 2

[PH08] PAULSON B., HAMMOND T.: Paleosketch: Accurate
primitive sketch recognition and beautification. In Proceedings of
International Conference on Intelligent User Interfaces (2008),
pp. 1–10. 3

[PVW85] PAVLIDIS T., VAN WYK C. J.: An automatic beauti-
fier for drawings and illustrations. ACM SIGGRAPH Computer
Graphics 19, 3 (1985), 225–234. 2

[Ram72] RAMER U.: An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics and Image
Processing 1, 3 (1972), 244–256. 5

[SLWF14] SU Q., LI W. H. A., WANG J., FU H.: Ez-sketching:
Three-level optimization for error-tolerant image tracing. ACM
Transactions on Graphics 33, 4 (2014), 9. 3

[WSP05] WANG B., SUN J., PLIMMER B.: Exploring sketch
beautification techniques. In Proceedings of ACM SIGCHI
New Zealand Chapter’s International Conference on Computer-
human Interaction: Making CHI Natural (2005), pp. 15–16. 2

[ZBcLF08] ZELEZNIK R., BRAGDON A., CHI LIU C., FORS-
BERG A.: Lineogrammer: Creating diagrams by drawing. In
Proceedings of ACM Symposium on User Interface Software and
Technology (2008), pp. 161–170. 2

[Zit13] ZITNICK C. L.: Handwriting beautification using token
means. ACM Transactions on Graphics 32, 4 (2013), 8. 3

c© The Eurographics Association 2015.

J. Fišer, P. Asente & D. Sýkora / ShipShape: A Drawing Beautification Assistant

(g) (h)

(e) (f)

(c) (d)

(a) (b)

Figure 11: Various results obtained using our method. The side-by-side pairs show the beautified output (black) and the original
input strokes (gray). Note that we do not perform any curve smoothing, beyond what is provided by Illustrator. Therefore, when
dealing with general curves, the first “template” strokes (blue) have to be drawn more precisely or be smoothed using built-in
Illustrator capabilities.

c© The Eurographics Association 2015.

