
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Computer Assisted Analysis of Classical Cartoon Animations

by

Daniel Sýkora
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Abstract and contributions

In this thesis a novel approach to analysis and processing of classical cartoon animations is
presented. It focuses on a popular animation technique where each frame is created as a
planar composition of two visually distinct layers: static textural background and dynamic
homogenous foreground. The aim of the proposed framework is (1) to precisely detach these
two layers to reach the state before the final composition and (2) to estimate structural
correspondences between animation frames and homogenous regions in the foreground layer.
Such analysis allows to partially understand the 2.5D structure of classical cartoon animations
that is crucial for numerous applications including semi-automatic colorization, example-based
synthesis, and video compression.

The main contributions of the thesis:

1. Unsupervised sub-pixel accurate outline detection and image segmentation algorithms
suitable for cartoon images where outlines represent region boundaries.

2. Hierarchical estimation of frame-to-frame and region-to-region correspondences based
on local structural similarity and neighborhood relations.

3. Example-based approach to semi-automatic colorization of black-and-white cartoon an-
imations dramatically reducing the amount of manual interventions.

4. Example-based synthesis of cartoon animations using an intuitive scribble-based inter-
face allowing to quickly sketch new cartoon characters and poses in the style of masters.

5. Efficient video compression technique for classical cartoon animations based on a hybrid
encoding scheme providing state-of-the-art visual quality for low encoding bit-rates.

Keywords:

cartoon animation, image processing, image registration, image segmentation, edge detection,
colorization, image restoration, example-based image synthesis, video compression.
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SECTION 1. INTRODUCTION 1

1 Introduction

This thesis introduces a novel approach to computer assisted analysis of classical cartoon
animations. The aim is to understand 2.5D structure of the scene by disassembling the original
composition of layers to a set of logical parts and estimating their mutual correspondences
in the animation. Such analysis allows to reduce a large amount of manual intervention in
various renewal tasks including colorization, color restoration, outline enhancement, noise
suppression, dust spots removal, synthesis of new animations in the traditional drawing style,
and also leads to an efficient video compression scheme for classical cartoon animations.

Figure 1.1: Various examples of traditional cartoon animations.

1.1 Motivation

A long history of traditional cartoon animation provides a respectable amount of artistically
advanced works [10, 101] (see Figure 1.1). Generations of children and also adults enjoy typical
characters, drawing/animation styles, scenarios, and soundtracks. They wish to watch favorite
stories again and again in the best possible visual quality. However, lifetime of former archival
formats (such as celluloid negative) is strongly limited. Variety of chemical and mechanical
degradations reduce the level of visual quality and can also completely destroy the original
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artwork. When a classical cartoon is broadcasted, younger audience usually do not understand
why the picture on the screen is so noisy, dilute or even completely black-and-white. They
suppose that this is something like technical failure and often prefer modern visually more
attractive cartoon animations despite of their overall artistic quality.

A common way how to rescue and disseminate cultural heritage of traditional works for future
generations is to transfer motion picture from the original celluloid negative to a digital
video tape using telecine [5] and then perform careful computer assisted restoration [152].
This process usually consists of several independent tasks such as noise suppression, dust
spots and vignetting removal, outline enhancement, color restoration or full colorization when
the original cartoon was shot in black-and-white. Unfortunately, these tasks often require
laborious manual intervention even when professional post-production tools are available.
Consequently, the restoration process is not cost effective and usually the original material is
broadcasted in a raw form without restoration.

The main drawback of such common workflow is that professional post-production tools are
primarily designed for real-world videos and usually do not take into account much simpler
structure of classical cartoon animations. A typical cartoon frame is usually created as a
planar composition of two layers: background and foreground. The background layer is static
textural image and the dynamic foreground layer consists of several homogenous regions en-
closed by well visible outlines (see Figure 1.1). This thesis describes a novel cartoon analysis
framework that utilizes such a priori knowledge in order to reduce the amount of manual in-
terventions in various applications and also to design new cartoon oriented video compression
algorithm.

1.2 Cartoon analysis framework

The aim of the proposed cartoon analysis framework is to detach original layers and estimate
structural correspondences in the foreground layer. To accomplish this goal first an unsuper-
vised image segmentation algorithm is used to separate the original input frame (Figure 1.2a)
into a set of regions. During this step a robust outline detector locates boundaries of regions
(Figure 1.2b) and then region area size is used to roughly estimate whether they belongs to the
background or to the foreground layer. In the next phase foreground layer is converted from
raster to vector representation (Figure 1.2d) and all visible fragments of background layer are
registered and stitched together to form one image (Figure 1.2c) that is immediately reused
to refine the foreground/background classification. Finally patch-based structural similarity
and neighborhood relations are exploited in order to estimate correspondences between ani-
mation frames and foreground regions (Figure 1.2e). To illustrate usability of such analysis
three different applications have been developed.

1.2.1 Colorization and restoration

The first important application of the proposed framework is colorization – a challenging form
of movie restoration that brings new color information into gray-scale images to enhance their
visual appeal. It has been originally developed in 1970 by Wilson Markle [112] who pioneered
color restoration of classical feature films. Despite of recent advances in color transferring
techniques [102, 190] the problem is still very tedious and time consuming.
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Figure 1.2: An overview of the proposed cartoon analysis framework: (a) one ani-
mation frame from the input sequence, (b) outline detection, (c) reconstructed background
layer, (d) vectorized foreground layer, (e) retrieval of correspondences.

Unfortunately, colorization became unpopular in past decades mainly due to belief that it
defiles the original artwork [42] since black-and-white movies require different lighting condi-
tions. However, in the case of cartoon animation, the situation is different. Presence of color
can significantly improve the visual attraction as well as artistic impression [100] therefore it
usually appeals less controversy compared to classical feature films (see Figure 1.3).

Figure 1.3: Semi-automatic colorization of classical black-and-white cartoon ani-
mation.

Since the proposed framework performs precise segmentation and also estimates correspon-
dences between regions, high-quality colorization or color restoration of the foreground layer
become much easier as compared to previous approaches. Moreover, reconstructed back-
ground can be colorized at one snap and then reused in a whole animation. Including the
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assumption of region homogeneity it is also possible to simplify detection and suppression of
typical aged movie artifacts such as additive noise, dust spots, low contrast of outlines, frame
vignetting, and luminance fluctuation.

1.2.2 Cartoon-by-example

In computer assisted cartooning skilled artists first prepare a set of fragments from which
more complex scenarios and animations are composed [48]. However, the problem arises
when sources are hand-made cartoon drawings (a.k.a. master frames). In such a case stand-
alone fragments are no longer available. Similar situation also occurs when one wants to create
new stories in the style of masters using only fragments of the original artwork. The common
question is how to extract and seamlessly compose fragments from ready-made compositions.
Using standard image manipulation tools this task is tedious and time consuming.

Figure 1.4: An intuitive scribble-based interface for designing new poses from
fragments of the original artwork.

Framework described in this thesis allows to reduce burden connected with fragment extrac-
tion and composition. Moreover, for ease of manipulation an intuitive scribble-based interface
is proposed. It allows the user to simply select an interesting part in the original drawing and
then adjust it in a new composition using several control scribbles (see Figure 1.4). Proposed
approach is suitable both for experienced artists and unskilled users (e.g. children) who wish
to create new stories in the style of masters. High-quality cartoon drawings can be produced
from traditional sources with much little effort as opposed to standard approaches.

1.2.3 Video compression

Standard approaches to video compression including MPEG-2 specification [118, 186] assume
that strong spatial and temporal discontinuities are rare in natural image sequences. They
exploit discrete cosine transform (DCT) [3] or discrete wavelet transform (DWT) [157] to appro-
priately rearrange the image energy so that it can be further quantized and encoded efficiently.
However, due to block decomposition and quantization, blocking and ringing artifacts arise
when DCT or DWT is applied to classical cartoon animations where each animation frame con-
sists of many sharp edges.

The proposed framework is used to recover a more natural data representation suitable for
classical cartoon animations. Based on the analysis of the input sequence the background
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Figure 1.5: Detail views compare the visual quality of image sequence compressed
by DivX (top) and by the proposed cartoon-oriented video codec (bottom) using
the same encoding bit-rate.

layer is stored as a single image and the foreground layer as a sequence of vector images.
Such a hybrid form can be encoded more compactly as compared to pure 2D DCT or DWT-
based approaches (see Figure 1.5) therefore it provides superior visual quality for equivalent
coding bit-rates. Moreover, real-time hardware accelerated playback allowing partial spatial
scalability is possible thanks to widely available modern graphic cards.

1.3 Related work

The topic of this thesis is closely related to many research areas. This section briefly highlights
some important pointers to computer-assisted cartoon animation, colorization, restoration,
example-based image synthesis, and video compression. For detailed treatment and more
specific references see also related sections in the main part of this thesis.

1.3.1 Computer-assisted cartoon animation

In 1970’s Nestor Burtnyk together with Marceli Wein [20, 21, 22] pioneered the idea to
simplify tedious and time consuming tasks in classical cartoon animation by utilizing computer
assistance. Since then computer-assisted cartoon animation become popular research area
and is still very active. In preceding decades various semi-automatic animation systems
have been developed [103, 26, 163, 174, 107, 45, 48, 138]. However, these systems were
mainly focused on image synthesis. Their authors do not attempt to perform any deeper
analysis such as correspondence retrieval. This fundamental problem has been studied later
in connection with computer-assisted auto coloring [111, 28, 154, 132, 134, 135, 133] where
region correspondences are used to predict transfer of color markers. Correspondences are also
important in computer-assisted inbetweening [51, 93, 115] to register consecutive key-frames
or in motion capturing [15, 176] where the original motion is reused for new 2D drawings and
3D models.
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Besides retrieval of region correspondences research in past decades focused on many other
important tasks in computer-assisted cartoon animation such as thinning and vectorization of
line drawings [194, 197, 31], synthesis of multi-perspective panoramic backgrounds [188], shape
sensitive texture mapping [43], adding pseudo 3D shadows [129], generating realistic 3D-like
illumination [83] and smoke effects [155], creating simple cartoon animation from real-world
video [1, 178], frame reordering and warping to create much longer animation sequences from
existing footage [85, 63], sketching motion of cartoon character [168], and also several advanced
shape manipulation techniques [77, 151].

1.3.2 Colorization and restoration

Computer-assisted colorization has been studied since 1970 [112]; however, research in this
field did not become popular until quite recently. The problem itself is strongly ill-posed and
thus various semi-automatic approaches have been developed to estimate color-to-intensity
assignment exploiting partial user intervention.

Historically, motion estimation was the first published and patented approach to semi-
automatic colorization [113, 126, 72]. The basic assumption here is that key-frames are
colorized manually and the color information can be propagated to the rest of the sequence
using motion estimation. However, usually a lot of frames have to be colorized or corrected
manually since rapid changes in the image sequence cause incorrect estimation of motion
vectors.

Another popular method to colorization known as colorization-by-example [184, 81, 191, 79,
106] transfers chromatic information from selected source color image to the gray-scale target
using feature-based classification. Feature vector is measured from gray-scale information in a
local neighborhood of each target pixel (or inside the region [164]) and then classified to match
similar sample in the source image. From the selected sample a chromatic information is then
extracted and applied on the corresponding location in the target image. Unfortunately, such
approaches work only when similar gray-scale features represent similar color information in
the target and source images. Only tedious manual pre-classification [32] can alleviate such
limitation.

The last group of techniques can be jointly called color inpainting [70, 102, 74, 131, 149, 190].
Here the aim is to propagate color information directly from the user-specified seed pixels to
the rest of the image (or sequence of images) by exploiting the assumption that homogeneity
in the gray-scale domain usually indicates homogeneity in the color domain and vice versa.
However, in this technique the problem is that typically many seed pixels have to be placed
carefully and also the selection of hue and saturation is very laborious.

Although in this thesis colorization framework is mainly used for enhancement of black-and-
white cartoon animations, the process itself can be also exploited for restoration of color
footage. Research in this area is active since then the digital image processing become appli-
cable and cost effective. The main research interests include detection and removal of common
artifacts such as additive noise [17], dust and dirt sparkles[92, 167], line scratches [84, 11],
missing frames [56], mold caused color/intensity variations [166, 27] and others (for compre-
hensive overview see [91, 152]).
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1.3.3 Example-based synthesis

One of the aims of this thesis is to allow quick creation of new character poses preserving
the original drawing style. This challenging task has still not been solved sufficiently, nev-
ertheless several initial approaches exist. Hertzmann et al. pioneered pixel-by-pixel transfer
of style [67] by matching local image statistics. From this technique colorization-by-example
originates [184]. Similar approach has been also used in 1D [57, 68] to transfer particular draw-
ing styles to line drawings. Jodoin et al. [82] presented hatching-by-example technique that
combines ideas of texture synthesis in order to stylize user-defined curves. Finally Drori et
al. [44] proposed approach where the original image is first decomposed into a couple of small
fragments, and then stitched together to form new image that follows several constraints. The
common problem of these approaches is that the transfer is only local. This is usually insuf-
ficient since typically salient global features are much more important to recognize particular
drawing style.

Several authors attempt to overcome this key limitation by asking an artist to prepare a
set of stand-alone fragments that can be later reused in a variety of different ways [18, 29,
52]. In this thesis the assumption is that only the final composition exists and the original
fragments are no longer available. To create truly new poses and characters, it is necessary
to extract and seamlessly compose fragments of the original artwork. This is challenging
task requiring extensive manual intervention. Barrett and Cheney [6] and later Saund et
al. [150] proposed object-based image editing tools that can significantly reduce the amount
of manual intervention, however, for classical cartoon images the fragment extraction process
is still tedious and the final compositions contain various noticeable artifacts.

1.3.4 Video compression

Video compression research remains popular for several decades (see survey [139, 39]). The
most of published approaches in this field were aimed to real-world video compression. As
discussed in Section 1.2.3, the key assumption here is that large discontinuities are not so
frequent therefore DCT or DWT can by used to efficiently compress difference images. However,
when such transformations are applied to cartoon images with lots of sharp edges, ringing
and blocking artifacts may arise due to quantization errors even when standard DVD encoding
bit-rates are used.

To address this issue, various post-processing techniques have been developed [189, 47].
However, they usually require additional processing time that is not tractable for real-
time playback. Another strategy is to completely avoid coding across strong edges, i.e. to
partition the input image into a set of homogeneous regions and then process them sepa-
rately [80, 160, 96, 179, 7]. Unfortunately, due to inaccuracy of segmentation, these techniques
require typically much higher bit-rates to preserve compelling visual quality.

Kwatra and Rosignac [95] presented approach where each region is first represented as a 3D
volume by sweeping its 2D shape through the time axis. Then this volume is triangulated and
compressed using custom tailored mesh compression technique. Concolato et al. [41] shown
how to embed existing cartoon animations (yet stored in some vector format such as Flash)
into the MPEG-4 framework [46] to reach lower bit-rates. However, since these approaches
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assume heavily preprocessed input or directly vector representation, region extraction phase
is not discussed and remains an open problem.

Recently, Lee and Kassim [98] proposed an approach that seems to be the first practically
usable video codec for cartoon animations. It utilizes a novel hybrid wavelet-based encod-
ing scheme where the sets of basis functions are called wedgelets and beamlets. Wedgelets
are designed to represent step changes in color (boundaries of homogenous regions) whereas
beamlets are suitable for thin outlines. Despite of an interesting encoding scheme, the central
problem – how to precisely extract regions and outlines – has not been solved sufficiently. Au-
thors only suggest to exploit EDISON library based on mean-shift segmentation algorithm [40]
that is not very precise therefore the image quality can be notably reduced before the encoding
scheme is applied.

1.4 Contributions of the thesis

This thesis introduces a novel cartoon analysis framework suitable for cel- or paper-based
animation techniques where each frame is created as a planar composition of static tex-
tural background and dynamic homogenous foreground. The framework allows to pop-up
the 2.5D structure of the scene by extracting outlines, locating foreground regions, vector-
izing foreground layers, and reconstructing the visible portion of background layer. On the
basis of this decomposition structural similarity analysis is performed to estimate frame-to-
frame and region-to-region correspondences in the foreground layer. To verify the usability of
this framework three different applications have been developed: example-based colorization,
example-based synthesis, and video compression.

The main contributions of the thesis:

1. Unsupervised segmentation algorithm exploiting robust sub-pixel accurate outline de-
tector that utilizes negative response of the Laplacian of Gaussian filter with adaptive
scale selection and outline classification [A.5, A.3, A.1].

2. Hierarchical estimation of structural correspondences between animation frames and
homogenous regions using phase correlation, patch-based similarity and probabilistic
reasoning over neighborhood relations [A.4, A.1].

3. Example-based colorization and color restoration using semi-automatic prediction of
color-to-region assignment together with precise color modulation, temporal and spatial
noise suppression, unsupervised dust-spot and vignetting removal [A.4, A.1].

4. Example-based drawing style preserving synthesis of cartoon animations using an intu-
itive scribble-based interface, unsupervised fragment extraction, and high-quality vec-
torization [A.3].

5. Efficient video compression technique for outline-based cartoon animations using hybrid
coding scheme (adaptively sampled 1D DCT for region shapes and classical 2D DCT
for reconstructed background) with hardware accelerated playback [A.2].
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1.5 Organization of the thesis

The thesis is divided into six sections. This Section 1 introduces and motivates the proposed
cartoon analysis framework and also includes a brief overview of related work and contribu-
tions. The following Section 2 represents the main body of the thesis. Here a novel cartoon
analysis framework is described in detail together with implementation issues and experimen-
tal results. In the next three sections practical applications of the proposed framework are
discussed: colorization and restoration (Section 3), cartoon-by-example (Section 4) and video
compression (Section 5). Section 6 concludes the thesis and presents several new avenues for
the future work.
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2 Cartoon analysis framework

In this section a novel cartoon analysis framework is described. First a brief overview of the
whole processing pipeline is presented and later, in successive sections, each step is described
in more detail including optimization issues and experiments.

2.1 Framework overview

The proposed framework has been designed to process classical cartoon animations created
by cel- or paper-based animation technique where each animation frame is composed of two
planar layers: background and foreground. The key advantage here is that each layer has no-
tably different visual appearance. The dynamic foreground consists of outlined homogeneous
regions while the background is static (except for camera pan and zoom) and contains a more
complicated textural information (see Figure 2.1a).

The input to the proposed cartoon analysis framework is a sequences of animation frames
containing common background layer (Figure 2.1a). For each frame of this sequence the
aim is to detach foreground and background layers and reconstruct the state before the final
composition. For this task a novel outline-based cartoon segmentation algorithm is designed
(Figure 2.4) that utilizes a robust outline detector in order to locate region boundaries with
sub-pixel accuracy (Figure 2.1b). After the segmentation each region is roughly classified
whether it belongs to the foreground (Figure 2.1c) or to the background layer (Figure 2.1d).
Then planar camera movements are tracked through the input animation sequence using stan-
dard image registration techniques. By exploiting estimated motion vectors and pre-classified
parts of the background layer one image is stitched together (Figure 2.1e). Reconstructed
background layer is then reused to further refine foreground/background classification of
regions and outlines. Finally, shape of each region is converted from raster to vector repre-
sentation using standard contour tracing algorithm.

The final step is retrieval of structural correspondences between frames and regions. Such
a valuable information is later used in applications to predict color transfer between regions
and also to lower encoding bit-rate by exploiting frame redundancy in the animation. The
retrieval itself is hierarchical. The most similar animation phase is selected first and then local
structural similarity and neighborhood relations are used to estimate region correspondences
(see Figure 2.1f).

2.2 Segmentation

At the beginning of this section state-of-the-art of image segmentation is discussed briefly
to show why the most of previously published approaches do not suit for the task of precise
segmentation in the case of classical cartoon images. Afterwards a novel outline-based cartoon
segmentation algorithm is described in detail including practical experiments on real cartoon
images.
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Figure 2.1: Cartoon analysis framework in progress: (a) input animation sequence,
(b) outline detection, (c) pre-classified foreground layer, (d) visible portion of background
layer, (e) reconstructed background layer (black arrows denote individual parts used for recon-
struction), (f) correspondence retrieval in refined foreground layer (green arrows show several
corresponding regions). Brown arrows in (f) show regions where the foreground/background
classification was refined by combining information from pre-classified foreground layer (red
arrows) and reconstructed background layer (blue arrows).

2.2.1 Previous work

The first aim of the proposed framework is to perform precise segmentation of cartoon im-
ages. At a first sight the task looks simple, however, several experiments demonstrate that
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common approaches such as single/multi-level thresholding [34] (see Figure 2.2f,b) or water-
sheds [173] produce unacceptable over-segmentation. To alleviate it region merging techniques
are used [64]. However, still in most cases the quality of the final segmentation is not accept-
able since visually important details are typically omitted (see Figure 2.2c). Similar problem
occurs even when more advanced techniques such as mean-shift [40] or normalized cuts [158])
are used (see Figure 2.2d,e).

j

a b c d e

f g h i

Figure 2.2: An overview of image segmentation (top) and edge detection techniques
(bottom): (a) the original image, (b) multi-level thresholding, (c) watersheds with region
merging, (d) mean-shift, (e) normalized cut, (f) simple thresholding, (g) Sobel, (h) SUSAN,
(i) Canny, (j) L ◦G zero-crossings.

Another large family of successful image segmentation techniques exploits edge detection to
estimate locations of dominant step changes in the image luminance. The common assump-
tion is that such locations usually represent region boundaries therefore can be used for
segmentation.

In the literature various edge detection techniques have been proposed (for detailed survey
see [65, 195]). Sobel edge detector is one of the simplest (see Figure 2.2g). It uses two convo-
lution filters of size 3x3 to approximate first-order derivative of the image in the horizontal
and vertical direction. Non-maxima suppression and/or thresholding with hysteresis is then
used to extract salient edges. However, due to additive noise, false edges reveal and true edges
disappear.

Canny [23] addressed this problem using variational approach and derived an optimal convo-
lution filter able to extract edges in the presence of Gaussian noise. Canny’s filter can be ap-
proximated by directional first-order derivative of 2D Gaussian. Comparable results to Canny
edge detector produces also SUSAN (Smallest Univalue Segment Assimilating Nucleus) [159]
– a popular edge detector that is not based on the principle of first-order derivatives thus
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it does not suffer from additive noise. However, what is common for these (and other) edge
detection techniques is the need of some thresholding mechanism that usually tends to omit
important low-contrast details and break edge continuity (see Figure 2.2i,h). To alleviate
such limitation complex edge connecting techniques have to be used [122].

Marr and Hildreth [114] shown that human visual system perceives shapes through the process
that can be modelled using convolution with the Laplacian of Gaussian filter (L ◦G). This
joint filter similarly to Canny’s performs two operations in one pass: Gaussian suppresses
noise and Laplacian estimates second-order derivative of the noise-suppressed image. L ◦G
filter can be derived as follows:

G =
1

2πσ2
e−

x2+y2

2σ2 (2.1)

and

L = ∇2 = ∇ ◦∇ =
∂2f

∂x2
+

∂2f

∂y2
, (2.2)

where G is Gaussian filter and L is Laplace operator (both in two dimensions). Due to
linearity of convolution ∇2(G◦I) = (∇2G)◦I symbolic derivation can be used to precalculate
algebraic form of L ◦G(see Figure 2.3):

L ◦G = ∇2G =
1

πσ4

(
x2 + y2

2σ2
− 1

)
e−

x2+y2

2σ2 . (2.3)

Figure 2.3: Gaussian (left) and the Laplacian of Gaussian (right).

Since L ◦ G response approximates second-order derivatives of the smoothed image, edges
can be located at zero-crossings (local maxima or minima of the first-order derivative). On
a discrete lattice edge detection can be approximated by a simple zero-crossing test: if two
neighbor pixels differ in the sign then the edge is located in-between [38]. The main advantage
in contrast to techniques based on the first-order derivatives is that no explicit thresholding
is needed, all zero-crossings are equally important.

Another interesting feature of L ◦G is that its zero-crossings form continuous closed curves
(see Figure 2.2j) [105]. Consequently, L ◦ G response inside the region enclosed by zero-
crossing should be only positive or negative. In the case of cartoon images, outlines are
darker in contrast to neighbor regions, therefore L ◦G response inside the outline is negative
(see Figure 2.5b). These two important properties allow to design new outline detector that
leads to an accurate cartoon segmentation algorithm. The overall concept of this algorithm
is depicted in Figure 2.4 and its individual steps are described in the following sections.
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Figure 2.4: Flowchart of the proposed segmentation algorithm: numbers on the top
of the individual boxes indicate sections where the corresponding operations are described in
more detail.

2.2.2 Outline detector

The key idea of the proposed segmentation algorithm is to exploit L◦G response not for edge
detection as is usual but directly for outline detection. Instead of performing zero-crossing test
(see Figure 2.2j), L ◦G-negative response is used to mark out outline candidates, i.e. darker
regions surrounded by brighter areas (see Figure 2.5b). It is important to stress the fact that
(as in zero-crossing test) no additional thresholding is needed, each L ◦G-negative area has
the same chance to be later classified as an outline despite of its actual contrast.

2.2.2.1 Algorithm overview

A brief overview of the proposed outline detector is depicted in Figure 2.5. First L ◦ G-
negative mask is generated (Figure 2.5b). In this step proper L ◦G kernel size and scale is
estimated. This is done by adaptive σ-fitting technique that removes need for tedious pa-
rameter tuning. Afterwards an adaptive classification algorithm is used to extract foreground
outlines (Figure 2.5c), remaining L ◦ G-negative areas are removed and the final mask of
outlines is generated (Figure 2.5d).

2.2.2.2 Adaptive σ-fitting

The first important parameter that controls the response of L ◦ G is standard deviation σ
(2.3). By varying σ edges at different scales are focused [185] (see Figure 2.6). When the
thickness of outlines is small (< 6 pixels), constant σ = 1.25 is usually sufficient for most
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a b c d

Figure 2.5: Outline detector in progress: (a) the original image, (b) L◦G-negative mask,
(c) adaptive outline classification, (d) extracted outlines.

images. However, when the thickness is greater (> 6 pixels) then an additive noise and/or so
called phantom edges (minima of the first-order derivatives) [38] may produce small L ◦G-
positive regions inside the outline (see Figure 2.7). In this case it is necessary to retrieve
an optimal σ – large enough to eliminate these artifacts but also small enough to preserve
important details.

Figure 2.6: L ◦G-negative mask with increasing σ (from left to right): 1.0, 1.5, 2.0, 3.0.

To avoid labour-intensive manual tuning, coarse-to-fine strategy is proposed to retrieve an
optimal σ automatically. The basic observation is that typically the number of small L ◦G-
positive regions decreases monotonously with increasing σ and thus a simple iterative interval
subdivision strategy can be used to retrieve optimal σ. Similar approach have been used also
for edge focusing in [62].

The σ-fitting process works as follows. First L ◦G scale-space is divided into a set of smaller
intervals. In each interval a number of small L◦G-positive regions is computed using flood-fill
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a b c

Figure 2.7: An example of adaptive σ-fitting: (a) the original image with thick outlines,
(b) L ◦ G-negative mask with small L ◦ G-positive regions, (c) L ◦ G-negative mask after
σ-fitting.

with pixel counter started at each unfilled L ◦G-positive pixel. Small number of filled pixels
indicates small region. Afterwards an interval I is selected where the lower bound σ produces
L ◦G-positive regions but the upper bound σ guarantees that the number of L ◦G-positive
regions falls under the specified limit. The same strategy is used recursively for I until the
difference between the lower and upper bound σ becomes considerably small (see Figure 2.8).
This full search algorithm is invoked only when the first animation frame is processed. During
the animation the optimal σ is refined using only small initial interval around the optimal σ
from the previous frame.

2.2.2.3 Allowable aliasing energy

Another important parameter that influences the quality of outline extraction is allowable
aliasing energy pa. Due to computational efficiency the infinite support of L ◦G convolution
kernel has to be truncated. However, truncation in the spatial domain causes periodical
repetition in the frequency domain and vice versa. This repetition introduces aliasing energy
expressed as follows:

100− pa

100
=

σ6

2π

α∫
−α

α∫
−α

(
u2 + v2

)2
exp (σ2 (u2 + v2))

dudv, (2.4)

where α is aliasing frequency. For a given pa and standard deviation σ the aliasing frequency α
and consequently the size of L◦G kernel can be precalculated via numerical integration [161].
By increasing pa the truncated convolution kernel increases its low-pass property and conse-
quently produces additional smoothing in the filtered image (see Figure 2.9). According to
many experiments performed on real cartoon images a constant value pa = 10% produces
optimal results.

2.2.2.4 Performance optimizations

Brute force filtering even with kernel truncation is still time consuming. In practice it is
necessary to exploit several optimization techniques to avoid redundant computations. They
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Figure 2.8: An adaptive σ-fitting in progress: an iterative elimination of small L ◦G-
positive regions inside the outline. Two scale-space intervals are selected first: σ ∈ (1.0, 2.0)
and σ ∈ (2.0, 3.0). Then it happens that σ = 2.0 does and σ = 3.0 does not produce small
L ◦ G-positive regions. Thus the interval σ ∈ (2.0, 3.0) is refined by σ ∈ (2.0, 2.5) and
σ ∈ (2.5, 3.0). The same approach is applied recursively until the difference between interval
endpoints is less than 0.25.

FT

Figure 2.9: Truncating L ◦G convolution kernel in the frequency domain.

allows to compute an accurate L ◦ G response more than ten times faster as compared to
brute force approach.

The original image can be first pre-smoothed via separable version of Gaussian filter and
afterwards L ◦G convolution with smaller support can be used [30]. The L ◦G itself is not
separable but can be exactly decomposed into a summed multiplication of two 1D filters [89]:

∇2G(x, y) = h1(x) · h2(y) + h2(x) · h1(y), (2.5)
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Figure 2.10: L◦G-negative mask with increasing allowable aliasing energy (from left
to right): pa = 1%, 5%, 10%, 25%.

where
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2σ2

)
. (2.7)

Additionally when the thickness of outlines requires large σ, it is possible to down-sample the
original image and then use smaller supports for L ◦G kernel [161].

2.2.2.5 Sub-pixel accuracy

Another important advantage of L◦G is that its response can be simply up-sampled using bi-
linear or bi-cubic interpolation and then L◦G-negative areas can be extracted with sub-pixel
precision (this idea has been first presented in the context of sub-pixel accurate zero-crossing
test [75]). Thanks to noise suppression property of L ◦G, up-sampling in the L ◦G-domain
produces considerably less artifacts as compared to common image domain approach. In
practice it is possible to reach fourfold accuracy without noticeable artifacts (see Figure 2.11).
This is valuable especially for applications where highly accurate segmentation is needed.

2.2.3 Outline classification

When the optimal L ◦G-negative mask is generated, the next important step is to estimate
which L ◦ G-negative area is actually an outline. This step can be seen as a variation of
thresholding already rejected in Section 2.2.1. However, the key difference here is that the
process is (1) adaptive (no fixed threshold value is set in advance) and (2) the classification is
done on a coarse level in contrast to common local schemes where strong edges are detected
first and then joined to form region boundary. In the proposed methodology no local joining
is necessary, L ◦G-negative areas are classified entirely.
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Figure 2.11: Comparison of the L ◦G-negative mask generated with pixel (left) and
with sub-pixel (right) accuracy using L ◦G-domain interpolation.

2.2.3.1 Adaptive flood-filling

The prior assumption of the proposed approach is that outlines are dark thus pixels with
minimal luminance over all L ◦G-negative areas can be classified as outlines first (red dots
in Figure 2.12). This initial guess is then propagated to the remaining pixels inside the same
L ◦G-negative area using standard flood-fill algorithm (red outlines in Figure 2.12). At this
point it is easy to see why this technique outperforms local approaches: all pixels in the same
L ◦G-negative area are classified equally despite of their actual local contrast.

However, such a simple one shot algorithm failed when some separated outlines do not contain
pixels with minimal luminance. In this case an adaptive mechanism should be used to estimate
additional brighter seed points (see eye in Figure 2.12). The process is iterative. In each
iteration intensities of already filled L ◦G-negative pixels are used to estimate the luminance
median L̃k. Afterwards a set of new flood-fill seeds is generated at pixels pi (blue points in
Figure 2.12) where the luminance L(pi) < L̃k/2. This process is repeated until the current
luminance median L̃k is lower or the same as the value from the previous step L̃k−1. In most
cases this situation occurs immediately after the first step as is depicted in Figure 2.12 where
almost all outlines have been filled in the first step and only the eye in the second step (blue
outlines in Figure 2.12).

2.2.3.2 Flood-fill with priority

Another rare problem that can reveal during the outline classification is outline leaking caused
by coalescent L ◦G-negative areas in the background layer (see Figure 2.13). In such a prob-
lematic case previous flood-fill based adaptive classification produces unacceptable results (see
red outlines in Figure 2.13) so it is necessary to incorporate pixel-wise classification. How-
ever, as will be discussed later the approach proposed here differs from the local thresholding
scheme used in standard edge-detection techniques since it natively preserves continuity of
outlines.
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Figure 2.12: An adaptive outline classification in progress (1): the original gray-scale
image is masked with L◦G-negative response, then pixels with the minimal intensity over the
masked area (red dots) are selected as seed pixels for the first flood-filling step in the L ◦G-
negative mask (results in red outlines). Luminance of already filled pixels is used to compute
the luminance median L̃k. Then unfilled pixels with luminance L(pi) < L̃k/2 are marked as
new seed points (blue dots) and the next flood-filling step is applied (results in blue outlines).
This operation is repeated until the luminance median does not increase L̃k ≤ L̃k−1.

The first important modification that allows to locally detach dark outlines from brighter
coalescent L ◦ G-negative areas is scale adaptive contrast enhancement. Similar process
is used in the human visual system [114] where proper scale changes considerably affects
perceptual grouping mechanism [125]. Scale-sensitive contrast enhancement can be achieved
by adding full L ◦G response computed with proper scale σ (Section 2.2.2.2) to the original
image I. This operation produces new sharpened image I? = I+∇2Gσ ◦ I where the contrast
between outlines and coalescent L ◦G-negative areas is enhanced (see Figure 2.13).

When the sharpened image I? is computed, the last flood-filling step from Section 2.2.3.1 is
repeated, but instead of stack priority queue is used to store and expand seed pixels during the
propagation. The priority is given from the inverted luminance of the sharpened image I? (in
the middle of Figure 2.13). In contrast to simple stack-based flood-fill used in Section 2.2.3.1,
this modification allows to visit dark pixels first and then gradually expand towards brighter
values. A key issue here is to know where to stop the propagation, i.e. to select proper priority
threshold. Fortunately, a good estimation for this value is the position of the first important
valley (for robust valley detection see [34]) in the priority histogram computed over already
filled L ◦G zero-crossings (see Figure 2.13).

2.2.3.3 Background subtraction

Theoretically the most successful approach to removal of coalescent outlines is to reconstruct
the background layer (see Section 2.2.8) and then subtract it from the original image (see
Figure 2.14). When the sum of absolute differences is small enough the outline pixel can be
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Figure 2.13: An adaptive outline classification in progress (2): a problematic case
when a simple adaptive outline flood-fill failed (red), outline classification using flood-fill
with priority queue (green), in the middle is a mask of priorities derived from L ◦G-negative
response and sharpened image (black means high and white means low priority), the stopping
priority estimated from the histogram of priorities located at L ◦G zero-crossings.

removed. Such technique is usable especially in cases when the flood-fill with priority tends
to fail, i.e. when the contrast between background and foreground outlines is very low (see
Figure 2.14).

However, there is one important issue. When outlines in the background layer coincide with
the foreground layer, small gaps reveal at the point of intersection. To eliminate them,
subtraction is avoided at boundaries belonging to foreground regions. They can be detected
and masked by growing region boundaries (see Sections 2.2.5 and 2.2.6). When this masking
is available only several outer outline recessions remain. They can be healed up by estimating
local thickness of outlines as discussed in Section 2.2.7.

c dba

Figure 2.14: Outline classification using background subtraction: reconstructed back-
ground layer (b) is subtracted from the original image (a), resulting absolute difference im-
age (c) is used for outline classification (d). Portions of outlines belonging to foreground
regions are masked (red color). When the absolute difference falls under a specified limit then
the corresponding unmasked outline pixel can be removed (blue color).

Although outline classification using background subtraction can produce compelling results,
its main drawback is the need of an initial classification of regions. Fortunately, such a
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classification does not need to be perfect. Conservative approaches described in Sections
2.2.3.1 and 2.2.5.1 can be utilized to produce it. However, still there should be a frame in the
original animation sequence where the coalescent outlines are not detected as a part of the
foreground layer, i.e. it is possible to reconstruct the corresponding part of the background
layer.

2.2.4 Region labelling

When outlines are extracted it is easy to assign an unique label to each closed region. This can
be done by scanning the mask of outlines pixel by pixel and running simple flood-fill algorithm
at each unlabelled pixel to fill-in the region with a new label (see Figure 2.15b). The same
result can be obtained using well known scan-line based region labelling algorithm [143].
The only trouble are imprecisely closed regions. For them a variant of edge or line joining
algorithm can be used [122, 153].
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Figure 2.15: Region classification in progress: (a) extracted outlines, (b) region labelling,
(c) initial classification using region area size thresholding, (d) improved classification using
reconstructed background layer.

After the labelling, three important statistics are computed for each region: region area
size, luminance histogram and luminance median (or mean color). Since mean or median
of small regions can be significantly biased by outline anti-aliasing it is recommended to
compute maximum luminance that is not robust but in most cases it better reflects the visual
appearance of such regions.

2.2.5 Region classification

The final task of the segmentation algorithm is to decide whether the given region belongs to
the background or to the foreground layer. In this case the same limitation reveals as in outline
classification (Section 2.2.3), i.e. when a single image is considered only a rough approximation
can be obtained. A more precise classification is possible as late as the background layer can
be partially reconstructed (see Figure 2.15).
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2.2.5.1 Area size thresholding

First good approximation to foreground/background classification is region area size thresh-
olding. According to experiments performed on real cartoon images, critical size of the
foreground region is usually 15% of the total image size. Larger regions are classified as
background. It is obvious that such a simple approach can be very imprecise (for instance it
is unable to recognize small hole between legs in Figure 2.15c), nevertheless, it is simple to
compute and in most cases produces sufficient results.

2.2.5.2 Homogeneity

Another possibility how to classify background regions is to estimate region homogeneity by
examining luminance histogram [34]. Two or more significant peaks may denote inhomo-
geneities caused by underlaying textural information. However, when the occluded part of
background is also homogeneous it is still not possible to distinguish it.

2.2.5.3 Background subtraction

A more precise classification can be obtained when reconstructed background is available (see
Section 2.2.8). In such a case (as in Section 2.2.3.3) background subtraction can be used.
Again the normalized sum of absolute differences is computed over the region area between
the original image and reconstructed background and if this sum falls under a specified limit
then the region can be classified as background (see green arrow in Figure 2.16).

Figure 2.16: Region classification using background subtraction: reconstructed back-
ground is subtracted from the current animation frame (left). Region is classified as back-
ground when normalized sum of absolute differences is small (green arrow). Sometimes por-
tions of background have never been pre-classified as background (chessboard pattern). In
this case it is not possible to refine the initial classification (red arrow).

Similarly to median computation (Section 2.2.4) the background subtraction for small regions
has low discriminative power since the normalized sum of absolute differences can be strongly
biased by outline anti-aliasing. Fortunately such regions are entirely homogenous and thus it
usually does not matter whether they remain in the foreground layer or not (see applications
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in Sections 3 and 5). Much more problematic are larger homogenous parts of background that
have the same mean luminance/color as the foreground layer or have never been visible or pre-
classified as background (chessboard pattern in Figure 2.16). In such locations background
subtraction cannot provide any kind of decision. When a perfect classification is needed they
should be located and marked manually.

2.2.6 Region growing

In cartoon colorization (Section 3) it is necessary to leak the color inside the region outline to
produce seamless colorization of anti-aliased boundaries. An issue here is where to stop the
leaking. A naive approach to this problem is to compute medial axis of the detected outline
(also known as skeleton [156]) (see Figure 2.17d) and then stop the flooding when the medial
axis is reached. However, as is depicted in Figure 2.18c, visually disturbing artifacts may
occur due to significant loss of information as compared to the original gray-scale image.

a b c d

Figure 2.17: Region growing: (a) outline-based segmentation, (b) region growing using
flood-filling with priority queue, (c) intrinsic region boundaries after region growing in contrast
to (d) outline skeleton.

To produce correct results simple region growing algorithm is used instead of outline skele-
tonisation. For each outline pixel the nearest region is found using flood-filling with priority
queue (as in Section 2.2.3). In contrast to outline classification the priority here is the original
luminance and the stop condition is a reaching of the first region pixel. Since the algorithm
expands brighter pixels first and since the 3D luminance profile of an outline is conformable
to a valley, a correct region boundary is retrieved (see Figures 2.17b and 2.18d).

2.2.7 Fragment extraction

In cartoon-by-example (Section 4) there is a need to extract user-defined subset of regions
from the foreground layer. Since two neighboring regions share the same outline, an issue is
to decide which part of the original outline belongs to the selected region. In general case this
problem can be ambiguous (see e.g. [127]) and only additional constraints such as convexity
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da b c

Figure 2.18: Region growing (detail view): (a) the original image, (b) outline-based
segmentation, (c) region growing using skeletonisation, (d) region growing using flood-filling
with priority queue.

may help to resolve it. However, in cartoon animations outlines are usually smooth and
have constant thickness that can be estimated using an approximation to Euclidean distance
transform [13].

a b c

fed

Figure 2.19: Fragment extraction: (a) the green shoe needs to be extracted from the red
leg, (b) distance field for the shoe and (c) for the leg, (d) partition where the distance to the
shoe and to the leg is the same, (e) refined partition, (f) final extraction.

Two distance fields are computed: one for selected and one for remaining regions (see Fig-
ure 2.19b,c). Then distances from both fields are compared in each outline pixel to decide
whether it is closer to the desired fragment or to the remaining part of the foreground layer.
Pixels with the same distance in both fields form medial axis (see Figure 2.19d). From dis-
tances assigned to those pixels median is computed and treated as a one half of the overall
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outline thickness. Using this value the outline can be refined by adding remaining pixels
that have distances from the selected regions smaller than the estimated thickness (see Fig-
ure 2.19e). Finally the region together with corresponding outline can be easily extracted
(see Figure 2.19f).

2.2.8 Background reconstruction

In the proposed framework the key assumption is that the background layer is static and
that the camera motion is restricted only to planar panning and zooming. Moreover, since
the foreground layer is dynamic and usually does not appear on the same position during the
sequence, it is possible to reconstruct a large portion of the background layer by combining
visible fragments of background from different animation frames.

To accomplish this task, visible fragments have to be registered. Variety of image regis-
tration techniques can be used (for survey see [196]). According to experiments performed
on real cartoon animations with textural backgrounds, feature-based approaches (namely
SIFT-keys [16, 109]) proven to be useful. Their main advantage is robustness to occlusions
(due to superimposed foreground layer), scale changes (due to camera zooming), luminance
fluctuation and vignetting (due to inhomogeneous lighting conditions). The robustness can
be further improved since only three parameter translation-scale model is necessary (Fig-
ure 2.20). However, when the background layer is nearly homogenous or contains repetitive
patterns SIFT-keys tend to fail and it is better to use robust area-based methods such as [124]
that are sensitive to occlusions but thanks to background pre-classification the foreground
parts of the image can be omitted from estimation.

Figure 2.20: Background reconstruction: the original image sequence (left), reconstructed
portion of background layer including original frame positions (right).

After the registration, pre-classified background regions are stitched together using Poisson
image editing [128]. This technique allows to unify different levels of luminance caused by
variable light conditions and image vignetting.
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2.2.9 Vectorization

In example-based synthesis of cartoons (Section 4) the original foreground layer is rendered
in different deformations/resolutions and thus the visual quality may suffer from sampling
artifacts. This problem can be avoided by converting the shape of each region from raster to
vector representation. Afterwards only resolution independent vector images are processed.
Vector representation is also crucial for video compression (Section 5) where it allows to lower
encoding bit-rates.

For the conversion an implementation of a standard contour tracing algorithm [181] is used.
This technique extracts topology-based depth ordering of layers containing only simple regions
without holes (see Figure 2.21). Afterwards a chain of Bézier cubics is fitted to the shape of
each region using adaptive sub-division and least square fitting. By rendering Bézier regions
in a correct depth order the original image can be easily reproduced (see Figure 2.21).

layer 0 layer 1 layer 2

Figure 2.21: Topology-based depth ordering of region layers: the original image (left)
is arranged into layers (right). Each layer contains several simple regions (without holes) that
can be represented by single boundary curves. By drawing layers in a correct depth order the
original image can be easily reproduced.

The key advantage is that the proposed framework performs precise preprocessing of the
input image where all regions have constant color and boundaries are refined with sub-pixel
accurate L ◦ G-negative response (see Figure 2.22b). This allows to produce state-of-the-
art vectorization (see Figure 2.22c) that significantly outperforms professional tools such as
VectorEye [171] (see Figure 2.22d). Such output become useful especially when one wants to
create high-quality prints from low-resolution footage (see Figure 2.23).

2.2.10 Experiments

To evaluate the proposed segmentation algorithm several experiments have been performed
on real cartoon images from classical cartoon O loupežńıku Rumcajsovi created by Radek Pilař
in 1967. The original black-and-white negative has been scanned using Spirit 2K DataCine
in the resolution of 720x576.

The processing pipeline was the following: first the outline detector with flood-fill based
classification has been used to extract outlines. Then regions where labelled and pre-classified
to foreground and background layer using region area size thresholding and homogeneity test.
Using pre-classified parts of background the background layer was reconstructed and then
background subtraction applied to refine the classification of regions and outlines.
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Figure 2.22: High-quality vectorization: (a) the original image, (b) result of the pro-
posed sub-pixel accurate segmentation algorithm, (c) vectorization based on this segmenta-
tion, (d) vectorization using Vector Eye.

Final results are presented in Figures 2.30, 2.31, and 2.32. Each row represents one experiment
where the input image sequence is foreshadowed by four thumbnails and currently processed
frame. The output consists of the corresponding vectorized foreground layer and part of the
reconstructed background layer. Results are divided into the three groups of five different
image sequences to represent various levels of difficulty:

• The first group (Figure 2.30) stands for an easy set where the background layer is almost
homogenous, contrast of outlines is high and all region shapes have only low frequency
content that can be represented in the given resolution without aliasing. In such a
favorable scenario resulting vectorization output is of high-quality without noticeable
artifacts. Simple flood-fill based outline classification is sufficient for this type of images.
The problem here is only wrong classification of regions. There are two typical examples
when a large portion of background was not reconstructed from the given sequence and
thus the background/foreground classification is not perfect (see small regions between
legs in the 3rd and 5th row).

• The second group (Figure 2.31) contains more complicated backgrounds with visible tex-
tural information. The contrast of outlines is moderate and region shapes contain higher
frequencies. Nevertheless segmentation and vectorization is still compelling. Sometimes
outline waving and sharp-shaped artifacts arise due to coalescent textural information



SECTION 2. CARTOON ANALYSIS FRAMEWORK 29

in the background layer (see Rumcajs’s leg in the 2nd row and Don Miracles’s nose in
the 5th row). A new artifact arising in this group is outline fusion at high-frequency
shape details (Rumcajs’s eye in the 1st row and soldier’s curls in the 3rd row). It is
also interesting to notice that even if the underlaying part of the background layer is
reconstructed successfully the foreground/background classification is still not accurate.
Several small regions are classified incorrectly due to significant bias of the sum of ab-
solute differences caused by outline anti-aliasing (e.g. small regions between Manka’s
hands and skirt in the 2nd row).

• The third group (see Figure 2.32) represents images with highly textured background
layer where the contrast between foreground and background is low. Outline waving
and sharp-shaped artifacts are also visible (see e.g. Rumcajs’s hat and Manka’s body
in the 1st row and dragon’s neck in the 2nd row, etc.). In the last example background
subtraction has been used to eliminate outlines in the background layer.

In the context of colorization (Section 3) discussed vectorization artifacts are not so important
since only coarse pixel-level precision is needed to produce high-quality outputs. In the video
compression application (Section 5) shape artifacts usually disappear since the foreground
layer is superimposed back on the original background layer. Much more sensitive is example-
based cartooning (Section 4) where parts of the original foreground layer are placed on a
different background and possibly distorted. In this case smoothness of the curve can be
locally edited by the user when required. The outline fusing artifact can be avoided by
scanning the original film negative at higher resolution.

2.3 Correspondences

In this section correspondence retrieval between animation frames and regions is discussed.
This additional information will be later useful especially for color-to-region assignment pre-
diction (Section 3) and also for video compression (Section 5) to lower encoding bit-rate by
retrieving redundant animation frames and reusing their shapes.

2.3.1 Frame-to-frame correspondences

In classical cartoon animations each frame is typically used more than once. To alleviate
tedious manual inbetweening artists usually decide to reduce frame rate. Usually only each
second frame is different and for long animations repetitive sequences of same frames are used
(see Figure 2.24).

To retrieve redundant frames phase correlation [94] can be used first to quickly align down-
sampled thumbnails of already processed outline-extracted frames. From this set the best
matching candidate is selected by computing a map of absolute differences followed by distance
transform [13] to obtain weighted difference map where large changes are emphasized against
small global shifts (see Figure 2.25). Finally the frame with the lowest sum of weighted
differences is selected. When this sum falls under a user-specified threshold the frame is
considered as a copied instance of the frame in the database otherwise it is used as a best
matching reference for the following region-to-region correspondence retrieval.
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Figure 2.23: Creating high-quality prints from low-resolution footage: sub-pixel
accurate vectorization allows to reproduce the original low-resolution artwork (left top) in
professional print quality (right). In this example the output has been used to create the title
page of the Pixel magazine (left bottom).

2.3.2 Region-to-region correspondences

Correspondence retrieval between regions of non-rigid cartoon drawings has been extensively
studied in the context of computer assisted auto-coloring [111, 28, 154, 132, 134, 135, 133].
Here an issue is to reduce the amount of manual intervention in cel painting – a challeng-
ing variant of colorization where only hand-made outline drawings are available. For such
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Figure 2.24: An example of animation sequence where frames are used more than
once. The same frames are emphasized with the same color rectangle.

= DT

DT=

Figure 2.25: Similarity metric for measuring frame-to-frame correspondences: first
a map of absolute differences is computed between outline-extracted frames (left), then the
distance transform (DT) is used to emphasize large changes against small global shifts (right).
By summing only the difference map it is usually not possible to distinguish small global
distortions/shifts (bottom) from real movements (top).

scenario typical suggestion is to use region shape, size, position, and topology to estimate
region correspondences. However, such features are sensitive to occlusions and topology vari-
ations imposed by virtual depth (see Figure 2.26), consequently the relative number of correct
matches is moderate. Similar complications arise also in the context of general shape match-
ing [36, 9, 59, 49]. Point correspondence retrieval on non-rigid shapes under occlusion is
known to be difficult problem.

The situation becomes simpler when regions contain additional information such as luminance
or color. A simple descriptor based on the median of luminance or on the mean color can dra-
matically decrease the number of false matches. However, in practice similar luminance/colors
are used for many regions and thus the problem reduces to the cel painting scenario.

To address limitations of previous approaches a new structural matching scheme is introduced.
Its main purpose is to avoid usage of global occlusion sensitive features such as region shape
and topology. Only local structural similarity and local neighborhood relations are used in
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Figure 2.26: Examples of common structural differences between consecutive
frames. Red arrows indicate important shape and topology variations.

the estimation. This apparent restriction allows to estimate reasonable correspondences also
for partially occluded or distorted regions.

2.3.2.1 Structural similarity

In order to compare local structural similarity of the input source and target animation frames,
two sets of salient curvature points and junctions – feature points F s

k and F t
l (blue letters in

Figure 2.27) are localized using Kanade-Lucas-Tomasi detector [169].

Structure of each source and target feature point is represented via square patch P s
k and P t

l

(red letters in Figure 2.27) that cover local neighborhood of the corresponding feature point
F s

k and F t
l .

For each source and target region Rs
i ∈ Rs and Rt

j ∈ Rt (white letters in Figure 2.27) a set of
associated patches Ps

i = {P s
k : P s

k ∩ Rs
i 6= ∅} and Pt

j = {P t
l : P t

l ∩ Rt
j 6= ∅} is assigned (white

lines in Figure 2.27, P ∩R 6= ∅ denotes non-empty spatial intersection between patch P and
region R).

Using sets Ps
i and Pt

j the structural similarity Sim(Rs
i , R

t
j) of any combination of the target

and source region Rt
j and Rs

i can be estimated using the most similar mapping between
corresponding sets of associated patches (Ps

i and Pt
j):

Sim(Rs
i , R

t
j) = |Ps

i | ·

 ∑
P s

k
∈Ps

i

min
P t

l
∈Pt

j

Diff(P s
k , P t

l )

−1

. (2.8)

In (2.8) an issue is the implementation of function Diff(A,B) which stands for the metric
to compare patches A and B in terms of their structural similarity. This metric should be
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Figure 2.27: Source and target regions (Rs
i and Rt

j , white color) with couple of associ-
ated patches (P s

k and P t
l , red color) covering structure of the corresponding feature

points (F s
k and F t

l , blue color).

discriminative, fast to compute, and also invariant to a reasonable subset of global deforma-
tions.

In case of classical cartoon animations rigid deformation model is sufficient since non-rigid
changes can be modelled locally by translation, rotation and scale. Moreover, scale can be also
omitted since it usually depends only on the camera field-of-view. Whenever camera zooming
is detected during the background reconstruction phase it is later possible to resample the
whole image and reach constant scale for all objects.

Following previous assumptions only translation and rotation invariant metric can be used:

Diff(A,B) = min
[x0,y0,α]

∑
x

∑
y

(A(x + x0, y + y0)− Rot(B(x, y), α))2 (2.9)

where Rot denotes bitmap rotation.

2.3.2.2 Implementation issues

Although a brute force approach to evaluation of (2.9) guarantees exact value it is not tractable
for interactive applications. To speed it up an approximation has to be used providing nearly
exact value much faster.

A number of approximations have been tested, namely: log-polar phase correlation [137],
gradient descent [110], fast Fourier transform [88] and hierarchical block-matching [119]. The
best ratio between discriminability and computational overhead has been reached when each
feature point was approximated by a set of rotation patches (see Figure 2.28, left). Over
this set hierarchical block-matching together with winner-update strategy [33] has been used
to found the best matching translation and rotation (see Figure 2.28, right).
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Figure 2.28: Retrieving the best matching position and orientation: a set of rotation
patches generated from the neighborhood of the source feature point (left), each rotation
patch is aligned using hierarchical block-matching (right), best matching rotation is selected
and the corresponding sum of square differences is returned (red square).

Using optimized version of (2.9) it is still time consuming or even counterproductive to com-
pute (2.8) for each source-target pair. When black-and-white or color cartoons are processed,
it is reasonable to compare only regions that have similar median luminance or mean color.
Also the region area size ratio is important. Experiments shown that it is undesirable to
match regions when their potential counterparts are two times larger. Although small regions
can represent visible parts of larger occluded regions they usually have not enough features
to be classified correctly.

Another possibility how to speed up the computation of (2.8) is to exploit the fact that
neighbor regions share one or more associated patches (see Figure 2.27). In such a case
simple look-up table is used to store already computed structural differences (2.9). Anytime
a comparison of the source and target patch is needed the look-up table is examined and
when an appropriate value is found it is reused.

2.3.2.3 Neighborhood relations

When all feasible region-to-region similarities (2.8) are estimated it is possible to express the
probability that the region Rs

i corresponds to the region Rt
j (denoted Rs

i .Rt
j) by normalizing

the structural similarity Sim(Rs
i , R

t
j) as follows:

P0(Rs
i . Rt

j) = Sim(Rs
i , R

t
j) ·

 ∑
Rs

k
∈Rs

Sim(Rs
k, R

t
j)

−1

. (2.10)

To incorporate local neighborhood into the estimation the prior probability (2.10) can be
refined iteratively using probabilistic relaxation scheme inspired by [2]. This simple approach
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infers posterior probability using the following equation:
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is the region compatibility function which expresses how feasible is the assignment Rs
i . Rt

j

in the context of the local neighborhood N s
i of the source region Rs

i and N t
j of the target

region Rt
j (regions are in local neighborhood if they share part of the boundary outline, see

Figure 2.29). After a few iterations of (2.11) when a relative difference between prior Pn and
posterior Pn+1 falls under a specified limit the maximum a posteriori (MAP) solution is used to
assign the most probable source region to each target region. Although this approach does not
guarantee to find a global minimum (NP-complete problem [54]), in most cases it produces
better results than a simple MAP solution based only on the local structural similarity.

Figure 2.29: Neighborhood relations between regions in the source (left) and in the
target (right) image. Regions are in local neighborhood if they share part of the boundary
outline.

2.3.3 Experiments

In this section a performance of the proposed correspondence retrieval algorithm is evaluated.
In all experiments scanned images from cartoon O loupežńıku Rumcajsovi are used as in
Section 2.2.10. Nine pairs of near consecutive frames were selected and the proposed image
segmentation algorithm was used to locate and classify regions. For three selected pairs the
original gray-scale information has been removed to simulate cel-painting scenario. In this
case foreground/background classification based on the background subtraction is impossible
and thus several background regions are considered as foreground.

Results are presented successively in Figures 2.33, 2.34, and 2.35. Each row represents one
experiment. The source image is on the left and target image on the right side. In each
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experiment 200 feature points have been detected (depicted as small red dots). Size of patches
was 32x32 with 32 possible orientations and the luminance median threshold for pruning
dissimilar regions was set to 16. For the cel-painting scenario the allowable region area
size ratio has been changed to 1.5x. Each source region has assigned unique numerical label.
Regions in the target frame are labelled according to estimated correspondences. By carefully
examining experimental results it is possible to observe several interesting properties:

• When a local structure does not change significantly and when only a global trans-
formations are applied, correspondences are almost perfect regardless region area size.
However, when the local structure changes, smaller regions become sensitive to errors
(e.g. regions 30, 31, 41, and 53 in Figure 2.33, middle row). By considering Fitts’ law [53]
from experimental psychology this phenomenon unfortunately complicate hand-driven
corrections since hitting small regions is much more tedious than large ones.

• When two or more source regions have similar structure, one-to-many correspondences
typically occur in the target image (e.g. Rumcajs’s hands in Figure 2.34, bottom row
and legs in top row). Such behavior can be advantageous for occluded regions. When
they share local structural similarity with a fully visible region in the source image they
can be labelled correctly thanks to possibility of one-to-many correspondences (e.g.
boots in Figure 2.33, top row).

• In a challenging cel-painting scenario the tighter area size ratio provides a good pre-
selection rule so the resulting classification is still usable (see Figure 2.35). However,
when a large self-occlusion or region (dis)joining arises in the target image, several
region pairs crosses the limit and wrongly estimated structural similarity can affect
the posterior in a larger spatial context (e.g. Rumcajs’s hand and gun in Figure 2.35,
bottom row). In such cases correspondences based only on stand-alone local structural
similarity may produce better results.

2.4 Summary

In this section a central part of the thesis – a novel cartoon analysis framework has been
introduced. Its main purpose is to revert the process of layer composition and return the
state before the final shot was taken. To accomplish this super-resolved outlines are extracted,
homogeneous regions in the foreground layer are located, converted to vector representation,
and the background layer is reconstructed from several observations. In the following phase
global and local structural similarity with probabilistic reasoning over region neighborhood are
used to estimate frame-to-frame and region-to-region correspondences. After that point the
underlaying 2.5D structure of the analyzed cartoon is partially known and opens a possibility
to simplify various practical tasks. Some of them are discussed in next three sections.
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Figure 2.30: Experiments – segmentation and vectorization (1): the original image se-
quence – four selected thumbnails and currently processed frame (left), vectorized foreground
layer (middle), reconstructed background layer (right).
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Figure 2.31: Experiments – segmentation and vectorization (2): the original image se-
quence – four selected thumbnails and currently processed frame (left), vectorized foreground
layer (middle), reconstructed background layer (right).
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Figure 2.32: Experiments – segmentation and vectorization (3): the original image se-
quence – four selected thumbnails and currently processed frame (left), vectorized foreground
layer (middle), reconstructed background layer (right).
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Figure 2.33: Experiments – region correspondences (1): each region in the source image
(left) has unique numerical label, regions in the target image (right) are labelled according to
estimated correspondences. Features are depicted using red dots.
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Figure 2.34: Experiments – region correspondences (2): each region in the source image
(left) has unique numerical label, regions in the target image (right) are labelled according to
estimated correspondences. Features are depicted using red dots.
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Figure 2.35: Experiments – region correspondences (3): each region in the source image
(left) has unique numerical label, regions in the target image (right) are labelled according to
estimated correspondences. Features are depicted using red dots.
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3 Application I: Colorization and restoration

In this section the proposed cartoon analysis framework is applied to the problem of col-
orization and color restoration of classical cartoon animations. First a detailed study of
previous work on colorization is presented and later a novel approach is described together
with experimental results.

3.1 Previous work

Colorization as a digital image processing problem has been studied since 1970 [112]. However,
research in this field became popular until quite recently. During last five years number of
semi-automatic approaches have been published. They exploit several heuristics to estimate
color-to-luminance assignment automatically or with a partial user intervention. In this sec-
tion these methods are described in more detail including description of main disadvantages
to substantiate development of new approach.

3.1.1 Motion estimation

Historically motion estimation was the first published and patented approach to semi-
automatic colorization [113]. Recently Pan et al. [126] and Horiuchi et al. [73] provided
some improvements to this original method. The common workflow is to colorize key-frames
manually and then propagate color information to the rest of the sequence using dense pixel
correspondences given by the estimated optical flow.

=+

Figure 3.1: Colorization using motion estimation: it is necessary to correct many pixels
manually when the motion estimation failed.

However, usually lots of frames have to be colorized or corrected manually since motions
and other rapid changes in the scene cause incorrect estimation of correspondences. This
problem is common especially in the case of cartoon animation where the extent of motion is
significantly large as compared to real-world movies (see Figure 2.26 and 3.1). Due to these
circumstances optical flow based colorization remains tedious and labour intensive.

3.1.2 Luminance keying

Another well-known colorization technique called luminance keying (also known as pseudo-
coloring [61, 99]) became popular for its simplicity. This method is a limited version of more
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general technique – chroma keying frequently used for recoloring and color correction tasks in
standard image manipulation or post-production tools. It utilizes user-defined look-up table
to transform each level of luminance into a specified hue, saturation and optionally brightness
(see Figure 3.2). In practice colors are blended in the table to reach smooth color transitions.

Figure 3.2: An example of luminance keying: the original gray-scale image (left), the
look-up table that maps luminance into hue, saturation and brightness (middle), and the
resulting colorization (right).

A crucial limitation of the luminance keying is inability to apply different colors on the pixels
that have the same level of luminance but differ in a spatial location (see Figure 3.2). In
practice tedious manual pre-segmentation is needed to overcome this limitation. Another
problem arises when an adaptive noise, luminance fluctuation and/or image vignetting cause
large derangement in the luminance. To address this issue the look-up table should be refined
spatiotemporally which is rather tedious and time consuming.

3.1.3 Color-by-example

To partially overcome limitations of pure luminance keying Welsh et al. [184] proposed an
example-based approach to colorization. Instead of pixel luminance they incorporates distri-
bution of luminance from a local neighborhood of the given pixel. A similar idea has been used
for color transfer between images [140] and in a popular framework of image analogies [67].

The method works as follows: first luminance and color components in the source and tar-
get image are separated via lαβ color space [147] to minimize correlation between individual
channels. Afterwards the luminance distribution from a small neighborhood of each target
pixel is matched with a set of similar distributions in the source image. This set is selected
either by jittered sampling or manually using predefined rectangular swatches. Finally chro-
matic information from the source pixel with the best matching distribution is transferred
into the target pixel. The original luminance remains unchanged (see Figure 3.3).

Welsh’s technique is surprisingly successful when applied to images that contain distinct tex-
tural information (see Figure 3.3). However, generally it still suffers from the same problems
as luminance keying. When the target image contains several homogeneous regions then local
luminance distributions collapse to a single peak with the same discriminative power as the
look-up table used in the luminance keying. Color noise is another typical problem that arises
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when two neighbor pixels in the target image are matched with two different source pixels
that have similar luminance distribution but different color.

=+

=+

Figure 3.3: Color-by-example in progress: a natural scenario (top), cartoon image where
several swatches have been used to perform the color transfer (bottom). Top images are
from [184].

Several authors attempt to improve this technique. Blasi and Recupero [12] propose antipole
method to retrieve best matching distribution. They report significant speed ups while the
quality of colorization remain same or slightly worse as compared to the original technique.
Vieira et al. [172] remove the need of manual selection of source images. For a given target
image they automatically select an optimal source from a large database of annotated images.
Ji et al. [81] suggest to use texture spectrum instead of luminance distribution to classify pix-
els. Ying et al. [191] added texture entropy to the feature vector to improve discriminability,
KD-tree to decrease time complexity of retrieval of the best matching sample, median k-NN
rule to reduce the influence of outliers, and median color filter to suppress color noise in the
output image. Recently Lipowezky [106] incorporate advanced classification scheme based on
textural features. His method is suitable especially for colorization of aerial images. However,
despite of mentioned advances, the core idea remain unchanged therefore it is still impossible
to distinguish large homogenous areas with similar luminance.

3.1.4 Segmentation

To overcome the fundamental limitation of locality, Chen et al. [32] used manual image
segmentation to divide the original gray-scale image into a set of layers. Then for each layer
the alpha channel is estimated using Bayesian image matting [35]. This decomposition allows
to apply e.g. Welsh’s technique in each layer separately using different color sources. Final
color image is reconstructed using simple alpha blending. However, this method brings no
significant advantage as compared to tedious and labour intensive workflow commonly used
in standard image manipulation tools.
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Tai et al. [164] proposed different segmentation-based method that utilizes expectation max-
imization to automatically infer smooth (probabilistic) segmentation of the source and target
image. Color information is then transferred directly between regions with similar luminance
mean and variance. However, as in the luminance keying such a simple matching technique
provide no possibility to distinguish regions with similar mean and variance.

3.1.5 Color inpainting

Another approach to colorization exploits well-known channel dependency property saying
that homogeneity in the luminance indicates homogeneity in the color and vice versa [24].

Horiuchi [69, 70] was the first who adopted this premise. In his method color information
is propagated from several seed pixels to the rest of the image. More formally, his aim is to
minimize cost function E which penalizes color discontinuities over all pixels i in the target
color image I:

E =
∑
i∈I

∑
j∈Ni

||Ii − Ij ||2, (3.1)

where Ni denotes neighborhood of a pixel i and || . . . ||2 is L2-norm which measures color
similarity in RGB color space. Proposed minimization is performed subject to following con-
straints: color of the seed pixel is fixed and other pixels must satisfy gray-scale conversion
equation:

Yi = (0.299, 0.587, 0.114) · It
i, (3.2)

where Yi denotes luminance of corresponding pixel in the original gray-scale image.

Horiuchi suggested to minimize E using probabilistic relaxation [90]. In this method each
gray-scale pixel i has assigned a set of candidate colors Ii satisfying gray-scale conversion
equation (3.2). Initially the probability of the color-to-luminance assignment P 0

i (c) is equal
for all colors in this set except in the seed pixels where it is set to 1 for the color defined by
the user and 0 for other colors. Final solution is obtained by iterating over all pixels using
the following relaxation formula:

P t+1
i (c) =

P t
i (c) ·Qt

i(c)∑
k∈Ii

P t
i (k) ·Qt

i(k)
(3.3)

where Qt
i(c) is a neighbor color compatibility function defined as follows:

Qt
i(c) =

∑
j∈Ni

max
l∈Ij

{
P t

j (l) ·
(

2− 2||c− l||2√
3(|Ii| − 1)

)}
. (3.4)

Practical usability of Horiuchi’s method is strongly limited by the number of candidate colors
|Ii|. For common 8-bit representation this number becomes extremely large. Horiuchi tried
to overcome this using 4-bit quantization, but also in this case the number of possible
candidates can exceed 400, therefore still too much for practical application. Despite of
this limitation Horiuchi performed several experiments on very small images using parallel
implementation. They confirm that relatively small number of seed pixels is required to
reconstruct the original color image (see Figure 3.4).
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To overcome large computational overhead Horiuchi and Hirano [71] later proposed a much
faster approximation similar to well-known flood-fill algorithm. In this method color infor-
mation is propagated directly from already colorized pixels towards its color-free neighbors.
During the propagation color is modified accordingly to the original luminance by selecting
candidates which satisfy equation (3.2) and minimize following term:

Ij = arg min
c∈Ij

||Ii − c||2. (3.5)

Although this propagation scheme is really fast, it introduces lots of visible artifacts that
significantly reduce the final visual quality. Takahama et al. [165] tried to alleviate this issue
by setting additional partitions that prevent unwanted propagation of color, however, their
results are still not satisfactory.

10%9%8%7%6%

1% 2% 3% 4% 5%

Figure 3.4: Color propagation using probabilistic relaxation: increasing visual quality
as compared to increasing number of randomly selected seed pixels (from [70]).

Levin et al. [102] introduced another framework similar to Horiuchi’s. In their approach user-
defined seed pixels are specified by a set of carefully placed color scribbles (see Figure 3.5).
In contrast to Horiuchi they formulated the problem as a constrained weighted least squares
optimization. The aim is to minimize difference between color components u and v (YUV color
space is used here) in the pixel i and the weighted average of the same color components in
the local neighborhood of the pixel i:

E =
∑

i

||ui −
∑
j∈Ni

wij · uj ||2 +
∑

i

||vi −
∑
j∈Ni

wij · vj ||2. (3.6)

Accordingly to the assumption of channel dependency, two different affinity functions [182]
are exploited to assign more weight to those pairs of pixels that have similar luminance:

wij ∝ exp

(
−(Yi − Yj)2

2σ2
i

)
or wij ∝ 1 +

1
σ2

i

(Yi − µi)(Yj − µi). (3.7)

Mean µi and standard deviation σi are computed on a small neighborhood around the pixel
i. These two affinity functions were later refined by local linear embedding [131], connectivity
and distance factor [121], and by adaptive edge detection [74].
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Resulting constrained optimization scheme yields a large sparse system of linear equations
that is overdetermined therefore can be solved using number of standard least-squares solvers.
Levin et al. used Matlab’s built-in solver which is good for profiling but very slow for real
applications. Fortunately they also suggest to exploit fast multi-grid solver [130] that produces
visually acceptable approximation in much shorter time frames (see Figure 3.5) though still
not interactively.

Levin’s framework is also suitable for image sequences. In this case standard motion estima-
tion technique [110] is used to compensate movement between consecutive frames and then
the color information is propagated both over the time and space.

Another possible extension of Levin’s framework is recolorization. Here the affinity function
is computed using information from each color channel. It is only necessary to add a special
type of scribble to mark pixels which should have the same color as in the original image.

Despite of the advances in the speed and precision, colorization using Levin’s method is still
tedious and labour intensive by the reason that usually a large number of well-placed color
scribbles is required to produce satisfactory results. Irony et al. [79] tried to overcome this
limitation by combining ideas of Welsh’s approach with Levin’s. They developed new spatially
coherent pixel classification scheme based on DCT features to transfer color information from
pre-segmented source image. A plausibility of the resulting classification is deduced and pixels
with high confidence are used as micro-scribbles. Levin’s framework is then used to produced
the final colorization. Although authors present several interesting results, the usability of
their approach is still strongly limited since the classification scheme is almost local and works
only when the image contain well distinctive textural features.

Figure 3.5: Color propagation using least-squares optimization: user-defined color
scribbles (left), Levin’s colorization (middle), original color image (right). Top images are
from [102].



SECTION 3. APPLICATION I: COLORIZATION AND RESTORATION 49

Sapiro [149] proposed another scribble-based color propagation scheme. In his approach in
contrast to Levin’s framework the optimization is performed in the gradient domain. More
formally, he minimizes following cost function:

E =
∫

I
||∇Yi −∇Ci||2, (3.8)

where ∇ := ( ∂
∂x , ∂

∂y ) is the gradient operator, Y is the original gray-scale image and C color
component channel. This yields a large sparse system of Poisson equations (see e.g. [128]):

4Y = 4C, (3.9)

where 4 := ( ∂2

∂x2 , ∂2

∂y2 ) is Laplace operator that can be approximated using simple forward
differences as follows:

4I(x, y) = I(x + 1, y) + I(x− 1, y) + I(x, y + 1) + I(x, y − 1)− 4I(x, y). (3.10)

The solution of (3.9) can be obtained using number of known rapid Poisson solvers which
exploit several speed up techniques to outperform classical Gauss-Seidel elimination or con-
jugate gradient approaches (see e.g. [55, 183]). Using rapid Poisson solver Sapiro’s method
outperforms Levin’s framework in terms of computational overhead. The approach can be
extended for image sequences using 3D version of Laplace operator for which rapid Poisson
solver also exists [142].

An interesting property of Sapiro’s method is that the minimization can be performed also
in full RGB color space. This is possible since the solution of (3.9) preserves (in the least-
squares sense) the original gray-scale gradient in each color channel. However, the problem
is that the method is not based on discontinuity preserving energy function and so produces
noticeable color bleeding artifacts (see Figure 3.6). This behavior is common for all pure
least-squares approaches. Yet discussed extensions of Levin’s framework [121, 74] partially
overcome this limitation using discontinuity preserving weighting factor allowing to change
color more dramatically when the local magnitude of gradient in the original gray-scale image
is large.

Noda et al. [123] formulates colorization as a maximum a posteriori estimation of a color image
given a monochrome image modelled as Markov random field. They decomposed computa-
tionally prohibitive global inference into the several local MAP estimation problems leading to
a constrained quadratic programming. Zeng et al. [193] presented another variational model
that can be though as a combination of Sapiro’s and Levin’s frameworks. Unfortunately,
authors of these two methods do not present sufficient number of experimental results to
substantiate practical usability.

Recently, Yatziv and Sapiro [190] introduced a novel color inpainting scheme that outperforms
previous approaches both in the speed and visual quality. In order to transfer color to the
pixel i they compute geodesic distance [25] to each seed pixel j. This distance is defined as
follows:

di,j = min
Pi,j

∫ 1

t=0
|∇Y · P ′(t)|dt (3.11)

where Pi,j denotes curve following one of possible paths between pixels i and j. The final
color for the pixel i is computed as a weighted sum of colors stored in the seed pixel j:

Ci :=
∑

j wi,j · Cj∑
j wi,j

. (3.12)
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Figure 3.6: Color propagation in the gradient domain: user-defined scribbles (left),
Sapiro’s colorization (middle), original color image (right). Top images are from [149].

The weight wi,j is a function of di,j computed as wi,j := d−r
i,j , where r is blending factor that

controls smoothness of color transition. To speed up computation Yatziv and Saprio suggested
greedy best first approach to approximate geodesic distance. The process starts at seed pixels
and gradually expands towards neighbor pixels while in each turn the shortest geodesic is
expanded first. Authors reported that such an approximation is sufficient and produces
compelling results (see Figure 3.7). Nevertheless it is also possible to use more sophisticated
algorithms to compute geodesic distance [170]. Another issue is connected with the number of
different color scribbles. For each stand-alone scribble it is necessary to propagate information
to the whole image. However, experiments show that it is only necessary to propagate color
information from a few closest scribbles. This approximation does not produce noticeable
artifacts but significantly reduces both time and memory complexity.

Similarly to other color propagation schemes also Yatziv-Saprio’s approach can be easily
extended for image sequences. In this case the color is propagated both in space and time
using 3D geodesic distance. Moreover, Yatziv and Sapiro introduced simple extension that
allows the user to change the original luminance. Using two different scribbles marked as
background and foreground they annotate image and compute color propagation. This process
results in an approximate alpha-matte that can be used for various image editing tasks such
as color brightness manipulation.

Although Yatziv-Sapiro’s color propagation scheme produces visually compelling results in
much shorter time frames, it is still necessary to draw many well-placed scribbles to produce
good-looking colorization. This problem become really tedious when two neighbor regions
have similar texture and share weakly contrasted boundary. In this problematic case scribbles
have to be drawn extremely carefully since the visible color transition occurs actually near
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Figure 3.7: Color propagation using geodesic distance: user-defined color scribbles
(left), Yatziv-Sapiro’s colorization (middle), original color image (right). Top images are
from [190].

the medial axis between scribbles. This is due to underlaying geodesics which in this case
simply reduces to the Euclidian distance.

3.2 Colorization and restoration framework

In this section a novel approach to colorization and color restoration of classical cartoon
animations is described. It is fully based on the cartoon analysis framework proposed in
Section 2 that allows to significantly reduce the amount of manual intervention as compared
to previous approaches. First an overview of the colorization pipeline is presented and later,
in successive sections, details of each step are discussed including specific implementation
issues and experimental results.

3.2.1 Framework overview

The key assumption in the proposed cartoon analysis framework is that animation frames are
created as planar compositions of two layers (foreground and background) with considerably
different visual appearance. Each layer has its pros and cons regarding colorization. The
foreground layer contains only homogenous regions that seem to be easy to locate and colorize
but the problem is that they are dynamic and so require frame-by-frame care. On the other
side background is usually more complicated but the advantage is that it is static during the



52 SECTION 3. APPLICATION I: COLORIZATION AND RESTORATION

.
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Figure 3.8: Colorization pipeline: a static background (top) is reconstructed from several
animation frames. Color is then applied on the whole background layer at one snap using
standard image manipulation tool. The dynamic foreground (bottom) is colorized semi-
automatically frame-by-frame.

animation and so it can be processed only once and then reused in the whole sequence (see
Figure 3.8). The aim of the proposed colorization pipeline is to exploit pros and alleviate
cons listed above. To do so layers have to be detached and processed separately using custom
tailored technique.

ge f h

dcba

Figure 3.9: Colorization in progress: (a) the original gray-scale image, (b) outline detec-
tion, (c) outline extraction, (d) foreground layer segmentation, (e) foreground layer coloriza-
tion, (f) background layer reconstruction, (g) background layer colorization, and (h) final
composition.

In the first stage unsupervised image segmentation (Section 2.2) is used to divide the input
frame (Figure 3.9a) into a set of regions (Figure 3.9b,c,d). In the next phase camera motion is
tracked through the sequence and the visible portion of the background layer is reconstructed
(Section 2.2.8, Figure 3.9f). Such an image is then colorized at one snap using color inpainting
technique or any standard image manipulation tool (see Figure 3.9g and 3.10).
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The dynamic foreground layer need to be colorized in the frame-by-frame manner. To speed
up this tedious process frame-to-frame and region-to-region structural correspondences (Sec-
tion 2.3) are exploited to predict proper color-to-region assignment for uncolored frames using
already colorized frames as an example. During this step limited manual intervention avoids
propagation of prediction errors into the consecutive frames and consequently guarantee the
final visual quality.

Color image synthesis phase follows (Section 3.2.3). In this step hue and saturation from a
user-defined palette are applied automatically on each pixel in the foreground layer. Bright-
ness of the final color is modulated using the original luminance (see Figure 3.9e). Also
dust spots and band scratches are removed in this phase automatically by exploiting the
assumption on region homogeneity.

Finally, the knowledge about the camera movement allows to extract visible portion of already
colorized background and make the final composition with colorized foreground layer (see
Figure 3.8 and 3.9h).

3.2.2 Foreground layer colorization

After the pre-processing (Section 2.2) the structure of each animation frame is represented
by a reference map where each pixel contains pointer to the underlaying region. Using this
map the user can exploit standard point-and-click approach to assign desired color labels to
regions.

When the first animation frame is processed it is necessary to mark out all regions. However,
in proceeding frames frame-to-frame and region-to-region correspondences (Section 2.3) can
be used to reduce the number of point-and-click operations. The advantage is that the color
prediction can be helpful even if the region correspondences are inexact.

As was discussed in Section 2.3.3 small regions are very sensitive to errors. One of the reasons
of this phenomena is that for small regions no distinct set of patches can be associated and so
the similarity metric (2.8) does not provide enough discriminative power to distinguish them.
To reduce the number of wrong predictions region-to-region correspondences are used only to
estimate the spatial context. For more precise color transfer technique called patch pasting is
proposed.

3.2.2.1 Patch pasting

The idea of patch pasting is to transfer color information pixel-by-pixel using small color
patches extracted around the salient points in the source image and pasted on the best
matching location in the target image (see Figure 3.11). Such a location can be predeter-
mined using already estimated region-to-region correspondences therefore only local matching
between the sets of associated patches can be performed. Such hierarchical approach provide
better robustness as compared to global feature matching since it incorporates larger spatial
context and neighborhood relations to prune set of possible candidates.

In more detail patch pasting is implemented as follows: from each example feature point
(see Figure 3.12a) two rectangular patches are extracted. The first one contains the original
luminance and second one the associated color information. After the extraction the best
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Figure 3.10: Background layer colorization: camera motion estimation through the orig-
inal sequence (top), intermediate gray-scale background reconstruction (middle), final back-
ground reconstruction followed by manual colorization (bottom).

matching translation and rotation is searched using the luminance patch as in Section 2.3.2.1.
Such transformation is then applied to the example color patch that is afterwards pasted on
a proper position in the target color buffer (see Figure 3.12b). To avoid possible random
overlapping, associated patches are sorted in lexicographic order according to non-decreasing
structural similarities (2.8) and (2.9) so that more suitable patches are pasted after inferior
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ones. Ordering is also performed on the pixel level. In this case an analogy of well-known
z-buffer called quality buffer (see Figure 3.12e) is used:

if |Ie(x′, y′)− Pt(x, y)| < Qt(x, y) then
{ Qt(x, y) = |Ie(x′, y′)− Pt(x, y)|

Ct(x, y) = Ce(x′, y′) }
(3.13)

Before the pixel (x′, y′) (from the transformed color patch Ce) is pasted on the proper position
(x, y) in the target color buffer Ct, the absolute luminance difference between the correspond-
ing pixel in the transformed target patch Pt and in the example image Ie is computed. If
such a difference is smaller than the actual value stored in the quality buffer Qt, color label is
pasted on the target color buffer and then the value in quality buffer is updated. Otherwise,
the original color label and difference remain unchanged. Finally, when all patches are pasted,
non-maxima suppression over each region is used to select the most frequent color label (see
Figure 3.12c).

Figure 3.11: Patch pasting (main idea): yet colorized foreground layer with superimposed
feature points (left), target frame after patch pasting (right).

3.2.3 Color image synthesis and restoration

In this section the final stage of the colorization pipeline is presented. It will be shown
how to apply color information on the gray-scale image and how to seamlessly compose
foreground and background layers. Additionally a simple dust spot removal technique and
other restoration steps are discussed.

3.2.3.1 Color brightness modulation

Previous works on colorization assume that only the color components are modified and the
brightness remain unchanged. However, the problem is that especially in cartoon animations
the brightness defined by an artist usually does not correspond to the luminance in the original
gray-scale image. When a user wants to apply brighter color on a dark region and vice versa,
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Figure 3.12: Patch pasting (in detail): (a) source color buffer, (b) target color buffer after
patch pasting, (c) target color buffer after non-maxima suppression, (d) source image with
superimposed feature points, (e) quality buffer, (f) target image with superimposed feature
points.

it is necessary to either shift or scale the original luminance to reach the required level of
brightness. However, luminance shifting produces step changes and scaling empowers noise
scattering inside the region. Both artifacts are visually disturbing (see Figure 3.13). One
possible solution to this problem is to estimate the alpha channel of the region boundaries as
in [32, 190], manipulate the brightness and then reconstruct the color image through alpha
blending. However, the problem is that alpha estimation is usually slow and produces lots of
artifacts when the contrast between the region and outline is negligible.

In the proposed framework an approximation to alpha estimation is used to produce accept-
able results much faster. The main idea is to use smooth transition between additive and
multiplicative brightness modulation. Brightness of pixels near the region boundaries are
multiplied and interior pixels vary color brightness via additive modulation. This technique
can be formulated as follows:

C = (1− α)
(
C0 + L− L̂

)
+ αC0L/L̂, (3.14)

where C0 is the user-defined color, L̂ represents the region luminance median, L is luminance
of the current pixel in the original gray-scale image, and α is spatially driven blending factor
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Figure 3.13: Changing color brightness: (a) the original gray-scale image, (b) brightness
shifting produces step changes, (c) brightness scaling empowers noise, (d) proposed approach.

that allows to smoothly combine additive and multiplicative modulation. It can be estimated
for each pixel by slightly blurring original outlines (see Figure 3.14).

3.2.3.2 Layer composition

Similar technique is used for seamless compositions of foreground and background layers. In
general, the original background layer is not homogeneous, therefore it is necessary to compute
luminance median in a small neighborhood (e.g. 7x7) around the current pixel. For median
computation only pixels that do not belong to detected outlines and foreground regions are
considered. In contrast to (3.14) the original color in the background layer is blended with
its scaled version using the following formula:

C = (1− α) Cb + αCbL/L̂b, (3.15)

where Cb denotes the color of the actual pixel in the background layer, L is the luminance of
the current pixel in the original gray-scale image, and L̂b is the luminance median of pixels
from a local neighborhood of the current pixel. See Figure 3.14 for results of the proposed
background and foreground color modulation.

3.2.3.3 Restoration

Thanks to the background reconstruction and region homogeneity assumption, well-known
degradations such as dust spots, band scratches, vignetting, and luminance fluctuation can be
easily detected and suppressed. In the case of reconstructed background layer all degradations
are removed at one snap in a single image. In the foreground layer luminance fluctuation and
vignetting are removed automatically since mean of color brightness remain fixed as results
from (3.14). Also dust spots and band scratches can be removed automatically by assigning
region luminance median L̂ to all interior pixels. However, such simple technique produces
well-known flat appearance that can be undesirable from an aesthetic point of view.

To preserve natural grain as much as possible, dust spots and band scratches are detected
at pixels that have significantly different luminance as compared to region luminance median
L̂: (L − L̂)2 > σ2

L (L is pixel luminance and σ2
L standard deviation of luminance inside the

region). These outliers are restored using new luminance taken as a random sample from the
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Figure 3.14: Color brightness modulation and layer composition: (a) the original
gray-scale image, (b) an example of the final color image, (c) the case where a bright color is
applied on a dark region, (d) blending factor: white color denotes α = 0 and black α = 1.

ca b

Figure 3.15: Unsupervised dust spot removal: (a) the original color image, (b) dust spot
removal, (c) white dust spot removal.

Gaussian distribution (see Figure 3.15b) with the following probability density function:

pdf(x) = exp
(
−(x− Î)2/σ2

I

)
. (3.16)

Such a simple dust spot removal technique is not suitable for regions where some intended
inhomogeneities exist (e.g. cheek in Figure 3.15a). Usually the digital conversion is performed
from the original celluloid negative where dust spots are black (white after inversion), therefor
whenever the local inhomogeneities are darker it is possible to perform only white dust spot
removal (see Figure 3.15c).
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3.3 Results

In this section several colorization results and experiments are presented. They confirm
superiority of the proposed framework both in the reduction of manual intervention and in the
improvement of the visual quality. Images used in these experiments (as in Section 2.2.10) are
scanned in the resolution of 720x576 from the original celluloid negative of classical cartoon
O loupežńıku Rumcajsovi.

3.3.1 Overall results

The proposed colorization framework has been implemented as a stand-alone application in
which the colorization pipeline consists of three independent stages. In the first stage off-
line precalculations are performed to prepare raw input data for interactive processing. This
phase covers outline detection, image segmentation and structural similarity computations.
It takes in average about ten seconds per frame on commodity hardware. In the second phase
the camera motion estimation is performed and visible parts of background are extracted
to form one large image which is colorized manually using standard image manipulation
software. Then starts the interactive phase where the user colorizes the foreground layer
frame-by-frame. Mouse or tablet is used to select predefined color labels from a predefined
palette and correct color markers when the proposed prediction scheme fails. The colorization
pipeline is finished by the color image synthesis phase. Here already colorized foreground and
background layers are automatically putted together to produce the final color image.

Selected colorization results of several still images are presented in Figure 3.16, 3.17 and
animations in Figure 3.18. At average two trained users were able to colorize one episode
(roughly 30 animation sequences consisting of 10 000 frames) during one week (80 man-hours)
in contrast to previous approaches which takes more than two months to process the same
amount of frames. Using the proposed framework most of the time was spent on background
colorization which is manual therefore requires large amount of hand-driven interventions. In
the case of foreground colorization the user interaction takes in average 5 seconds per frame.
However, the real processing speed strongly depends on the complexity of currently processed
sequence.

3.3.2 Prediction performance

To verify the performance of the proposed color prediction scheme (Section 3.2.2) two experi-
ments have been performed. In each experiment four representative pairs of nearly consecutive
frames were selected. In the first group (Figure 3.19) it is possible to observe how the pro-
posed approach behaves in a typical situation. In the second group (Figure 3.20) difficult
cases are presented where the proposed approach tend to fail, however, still produced helpful
results.

The proposed color prediction scheme is compared to a simple luminance-based technique
where the color transfer is done between regions that have similar luminance (as in luminance
keying). The amount of needed user intervention is expressed by the number of prediction
errors. Each error requires to move mouse or table cursor over the region and place a marker



60 SECTION 3. APPLICATION I: COLORIZATION AND RESTORATION

Figure 3.16: Results – still image colorization (1): original gray-scale image (left) and
the final color image (right). See how the color brightness varies as compared to the orig-
inal luminance and how the image looks when a slightly different background layer is used
(bottom).
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Figure 3.17: Results – still image colorization (2): original gray-scale image (left) and
the final color image (right). See how the color brightness varies as compared to the original
luminance and how the image looks like a slightly different background layer is used (bottom).
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Figure 3.18: Results – colorization of animation sequences: selected frames with dom-
inant structural changes. Slightly different color version of the background layer has been
used in the first sequence.
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with correct color label. This action takes usually several seconds per error depending on the
region size and relative position (according to Fitts’ law [53]).

Numbers of errors in Figure 3.19 confirm that in contrast to the simple luminance-based ap-
proach the proposed technique significantly reduces the amount of hand-driven interventions.
Results are also interesting in the cel painting scenario where the crucial gray-scale informa-
tion is not available (Figure 3.20). Nevertheless, the method usually fails to predict correct
color labelling for some small or partially occluded regions. The fundamental problem is also
how to assign appropriate color labels when a new structural pattern arises. Due to these
circumstances limited manual interaction is still required to produce errorless results.

3.3.3 Visual quality

In this section the proposed color transferring technique is compared to Levin’s framework in
the sense of visual quality (see Figure 3.21). Besides the visual quality it is also interesting
to compare the amount of user intervention needed to produce the final colorization.

The most significant limitation of Levin’s framework is that only U and V components of
Y UV color space are modified. As was discussed in Section 3.2.3 artists prefer to prepare
colors in the full color space by the reason that color components provide only a limited
variance of appearance. Consequently in Figure 3.21 soldier’s epaulets have slightly darker
color in contrast to the real luminance in the original image. Similar situation is visible on the
soldier’s hand where the same color is preserved for the uniform although the hand is slightly
darker in the original image. Also low contrast of outlines is observable due to Y UV ⇒ RGB
conversion which does not preserve contrast as compared to proposed multiplicative color
brightness modulation. The another artifact is color bleeding that arises since the least-
square fashion of the Levin’s optimization problem tends to redistribute error smoothly along
discontinuities.

3.4 Summary

This section introduced a novel approach to colorization of black-and-white cartoon anima-
tions. The proposed cartoon analysis framework has been extended by the technique called
patch pasting that allows to transfer color information locally while still maintaining the
global context of region correspondences. Another important steps toward were automatic
color brightness modulation, layer composition and dust spot removal techniques allowing to
produce final color images in broadcast quality without additional user intervention.

Numerous practical experiments confirm that using the proposed framework considerably less
manual effort is required as compared to previous approaches. The colorization pipeline re-
duces from laborious frame-by-frame scribbling to a simple one-click correction workflow that
makes the overall process tractable and cost effective. Moreover, the introduced framework is
not limited only to the colorization of black-and-white cartoon animations. It can be directly
applied to semi-automatic cel painting (see Figure 3.20) or to the restoration and enhance-
ment of aged color cartoons (see Figure 3.22). In this case the additional color information
simplifies the retrieval of region correspondences.
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Figure 3.19: Experiments – color prediction performance (common case): luminance-
based prediction versus proposed color prediction scheme. Pink regions denote prediction
errors and numbers in images represent the overall number of prediction errors. White dots
in the source and target image denote extracted features.



SECTION 3. APPLICATION I: COLORIZATION AND RESTORATION 65
so

ur
ce

 im
ag

e
ta

rg
et

 im
ag

e
co

lo
r 

ex
am

pl
e

ou
r 

ap
pr

oa
ch

in
te

ns
ity

−b
as

ed 28

09

23

10

52

16

13

10

Figure 3.20: Experiments – color prediction performance (difficult case): the same
ordering as in Figure 3.19. Two difficult cases where many regions arise or change posi-
tion/shape (left side) and color-to-region assignment for two cel paintings where no gray-scale
information is available (right side).
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Figure 3.21: Experiments – visual quality comparison: colorization produced by Levin’s
framework (left) in contrast to the proposed approach (right): color markers (top), foreground
layer colorization (middle), detail views (bottom).
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Figure 3.22: Experiments – color cartoon enhancement: the proposed colorization
framework is not limited only to black-and-white cartoons, it can be exploited to enhance
aged color cartoon animations. Detail views of degraded images (left) and the same images
after enhancement (right).
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4 Application II: Cartoon-by-example

Traditional cartoon drawings and animations contain visual style which is unique and typical
for their authors [101]. Generations of children and adults enjoy these classical works and
wish to watch new stories in the same style. However, when a classical cartoonist is deceased
it is usually very tedious and time consuming to mimic his or her style in order to create new
poses and characters undistinguishable from the original.

In this application the proposed cartoon analysis framework is used to reduce the amount of
manual interventions connected with creation of new cartoon compositions and animations
from the existing footage. First main limitations of previous image extraction and composition
techniques are discussed and later in successive sections a novel scribble-based approach is
described.

4.1 Previous work

The aim is to create novel cartoon poses and characters by extracting and composing frag-
ments of the original artwork. Using standard image manipulation tools this task is tedious
and time consuming. The proposed approach allows the user to simply (1) extract an inter-
esting part in the original image and then (2) adjust it in a new composition using only few
selection and deformation scribbles.

4.1.1 Fragment extraction

Interactive image segmentation (or fragment extraction) is one of the central problems in
computer vision. First important group of methods exploit a coarse selection lasso (also
called wire, lane or snake) drawn by the user [86, 60, 117] to encompass the desired fragment.
After the coarse selection some sort of refinement is performed to augment lasso’s shape so
that it fits the real object boundaries. Such technique is suitable especially for extracting
salient objects from almost homogenous backgrounds which is not the case of cartoons where
the selection lasso typically crosses outlines of the neighboring regions.

The second approach exploits free-from strokes called scribbles to select desired fragments
directly. Research in this filed became popular since Boykov and Jolly [14] proposed their
revolutionary graph-cut based technique. This approach allows to infer binary segmentation
of an arbitrarily gray-scale image from user-defined foreground/background scribbles. Boykov
and Jolly formulate this variant of image segmentation as a min-cut problem and show that
the optimal solution can be found quickly using a slightly modified version of max-flow algo-
rithm. Later, several authors improve this technique to process color images [104, 146]. They
additionally present several post-processing steps to obtain smooth alpha-channel from hard
segmentation. Recently, Wang and Cohen [177] proposed joint interactive segmentation and
alpha estimation using fast version of belief propagation algorithm [50]. In Figure 4.1 it is
possible to compare interactive segmentation based on Boykov’s and Wang’s approaches in
contrast to the technique proposed in this section. Against common expectations (likewise
in Figure 2.2) and despite of large amount of precise manual selection also these modern
techniques fail to produce clean and accurate segmentation for cartoon images.
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Boykov et al. Wang et al. proposed

Figure 4.1: Comparison of scribble-based fragment extraction techniques: Boykov’s
hard segmentation [14] (left), Wang’s joint segmentation and alpha estimation [177] (middle),
and the proposed approach (right). See also the amount of user intervention (top) needed to
produce the final segmentation (bottom).

The most conformable to the framework proposed here are works of Barret and Cheney [6] and
Saund et al. [150] that share similar motivation, i.e. to simplify the selection and manipulation
of objects in images. Barret and Cheney call this workflow object-based image editing. For
the fragment extraction they exploit a set of pre-segmented watershed basins that can be
selected one by one or by intersection with selection scribble. However, this is tractable only
for homogenous parts e.g. interiors of regions in cartoons. For thin outlines this technique
produces lots of small basins. The similar limitation occurs also in Saund’s system ScanScribe
that works effectively only with simple blueprints on homogeneous background. There is no
built-in mechanism able to simplify the extraction of region together with its corresponding
outline.
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4.1.2 Fragment composition

When a desired fragment is selected it is necessary to define its new pose in a target compo-
sition. This typically requires from the user to define proper translation, rotation, scale and
also some amount of a free-form deformation. Using standard vector manipulation tools such
task is typically nonintuitive and tedious since it is necessary to combine a number of basic
transformations including translation, rotation, scale, bend, shear, etc.

The task of fragment composition can be also seen as a special form of image warping (for
nice overview see e.g. [116]) where the common workflow is to first select a subset of salient
features such as points [6], lines [8] or free-form curves [43] and interactively adjust their
new positions in the target composition. Proper warping algorithm then produces the final
deformation by considering these user-defined constraints.

The framework proposed here adopts the concept of popular intuitive technique called
warp [43] that has been successful used in Teddy [76] and in other 3D interactive sys-
tems [87, 120]. The technique exploits two curves to define the free-form deformation. In
the context of cartoon-by-example framework they can be called composition scribbles. The
first scribble is drawn in the source image and the second in the target composition (see
Figure 4.2). The basic assumption here is that scribbles are drawn in a constant speed so
they have the same parametric length therefore point correspondences can be estimated by
exploiting simple arc length parameterization.

This technique allows to define proper position and free-form deformation simultaneously. The
another advantage is that typically the selection scribble can be also used for composition.
However, the problem is that in previous works used warp only for scale preserving local
deformation. In cartoon-by-example scenario the most prominent task is to define proper
scale for fragments to match the scale of the final composition that is typically different.
The original warp technique does not handle this requirement well since scale changes are
propagated only in the direction parallel to the composition scribble (see Figure 4.3).

4.2 Cartoon-by-example framework

In this section a novel framework for interactive synthesis of cartoons from existing footage
is described in detail. As in colorization and restoration application (Section 3) also in this
framework most of components built upon the techniques presented in the proposed cartoon
analysis framework (Section 2). They allows to reduce the amount of manual intervention
connected with fragment extraction and manipulation in the target composition. First an
overview of the cartoon-by-example pipeline is presented and later implementation details
and results are discussed in detail.

4.2.1 Framework overview

The aim of the cartoon-by-example framework is to (1) alleviate shortcomings of previous
scribble-based approaches, i.e. to simplify fragment extraction and allow scale invariant ma-
nipulation in the final composition, and (2) to increase visual quality of the final composition
by exploiting the proposed raster-to-vector conversion scheme (Section 2.2.9) that allows to
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compositionselection extraction vectorization

Figure 4.2: Framework overview: the user first selects a desired fragment in the original
image (left), then the system automatically extracts it and perform vectorization (middle),
finally the fragment is arranged in a new position using two composition scribbles (right).

avoid sampling artifacts and produce compelling compositions in the resolution independent
manner.

In the first step (follow Figure 4.2) an unsupervised image segmentation (Section 2.2) is used
to partition the input image into a set of regions. Each region is then classified (Section 2.2.5)
whether it belongs to the background or to the foreground layer. An interactive phase follows.
In this step the user simply selects a subset of regions forming the desired fragment. The
selection process is remarkably simplified since the underlaying structure of the original image
is known (see Figure 4.1). Afterwards, the system extracts the fragment together with the
corresponding outlines (Section 2.2.7) and performs vectorization (Section 2.2.9). Finally the
user arranges the fragment in a new position by drawing two composition scribbles that allow
to simultaneously define a combination of uniform scale and free-form deformation.

4.2.2 Fragment selection

After the pre-processing (Section 2.2) the user is allowed to select an interesting part in the
pre-segmented image. Since in this phase it is already known which pixel belongs to which
region and vice versa, it is possible to use various selection tools, e.g. to simply click on the
desired regions or to draw selection scribbles over them.

Preferred approach is to draw the selection scribbles in such a way that they can be later
reused as composition scribbles. Whenever this approach does not allow to cover all important
regions, additional scribbles are used to add them to the selection. To further simplify the
selection, regions that have non-zero spatial intersection with an area of which the selection
scribble is boundary curve are also selected (first and last points of the selection scribble are
connected to form closed curve). Similar approach has been used also in ScanScribe [150],
however, in the framework proposed here the selection scribble can be rather sloppy (see
Figure 4.1) since background regions are automatically excluded from the selection process.

When the desired regions are selected the fragment extraction technique (Section 2.2.7) is used
to extract corresponding outlines and form the final selection (see Figure 2.19). Afterwards
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uniform warpstandard warp

Figure 4.3: Standard vs. uniform warp: free-form deformation using standard warp (left),
when the scale of target fragment position is different, the user intuition is to change it
uniformly (right).

Figure 4.4: Visual feedback for composition scribbling: the user can see the compo-
sition scribble as well as the corresponding fragment deformation during scribbling. This is
useful especially when it is necessary to get the correct proportions of fragments in the final
composition.

super-resolved raster-to-vector conversion scheme is used (Section 2.2.9) to obtain resolution
independent representation of regions and outlines.

4.2.3 Fragment composition

As was discussed in Section 4.1.2 the aim is to adopt the idea of warp [43], where the source
fragment is deformed according to changes in positions and tangent orientations of the cor-
responding points on the composition scribbles (see Figure 4.3, left).

However, the problem is that the original warp produces non-uniform scale distortion that
can be sometimes useful but in cartoon-by-example workflow usually does not fit the user’s
intuition since the source fragments have typically different scale and it is necessary to adjust
them to meet the scale of the final composition (see Figure 4.3, right).

To address this issue a novel composition tool called uniform warp is proposed. It utilizes
length ratios of source and target scribbles to obtain proper scale normalization. The source
fragment is first scaled together with its composition scribble to meet the actual length of
the target scribble and then the standard warp is applied to perform free-form deformation.
Moreover, since the uniform warping can be implemented in real-time, it is possible to visualize
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Figure 4.5: Scribbling key-frame animation: the user scribbles start (left) and stop (right)
position of the selected fragment and the system interpolates these two positions to obtain
smooth inbetweening.

the composition process by displaying intermediate warps of the fragment interactively to
bring invaluable feedback to the user (see Figure 4.4).

Although users are not limited to use only uniform warp (the system offers common ma-
nipulators such as translation, rotation, scale, flipping, mirroring and also standard warp)
experiments prove that they often prefer uniform warp since it allows to define a proper scale
and deformation at one snap. Such simplification is useful especially when the composition
serves as a key-frame for a novel animation. The user can quickly scribble new key-frame posi-
tions and the system automatically interpolates them (see Figure 4.5). This intuitive workflow
is attractive especially for young children who wish to create own cartoon animations but are
not familiar with professional tools.

4.2.4 Implementation issues

The original warp operates with smooth curves. In the framework proposed here mouse or
tablet is used to acquire composition scribbles therefore it is necessary to implement warp in a
discrete domain. To accomplish this a set of drawn pixels is approximated via piecewise linear
curve (line strip). The length of each scribble is computed as a sum of individual lengths of
line segments. Then uniform arc length parameterization allows to estimate new positions of
source control points on the target strip (see Figure 4.6). When the shape of the source strip
does not fit the target shape well it is necessary to perform subdivision in a problematic area
and recompute new locations of the corresponding points.

The another implementation issue is a depth ordering of fragments. When the fragment is
selected the user has to assign proper depth value to obtain a correct visibility of fragments
in the final composition. This task is simple for planar layers. However, when the fragment is
not strictly planar, i.e. when a part of it should be in front and the rest behind some different
fragment (e.g. hand and body, see Figure 4.7a,b), it is necessary to assign two different values
and then perform smooth spatial transition between them (see Figure 4.7d). To be able to
render such compositions correctly z-buffer technique should be used instead of simple depth
ordering. Another possibility is to cut the fragment via special cutting scribble and then
assign two different depth values for each individual part (see Figure 4.7c). This solution is
much more practical when formats like PDF or SVG are used for the final output since they do
not support per-pixel depth tests. Cutting scribbles are also useful when the user wants to
extract only a part of the homogenous region regardless of existing outlines.
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source

target

Figure 4.6: Linear mapping between composition scribbles: the source strip is subdi-
vided to match the shape of the target strip and then a simple arc length parameterization
is used to map source control points on the target strip.

b ca d

Figure 4.7: A solution to the depth ordering problem: one part of the hand should
be behind and the second part in front of the body (a). Fragment cut using special cutting
scribble (b) or smooth depth assignment (c) allow to produce the correct composition (d).

4.3 Results

This section presents several cartoon-by-example experiments. Similarly to previous exper-
imental sections source cartoon images are scanned in the resolution of 720x576 from the
original celluloid of cartoon O loupežńıku Rumcajsovi and additionally colorized using frame-
work proposed in Section 3.

In the first experiment non-experienced user scribbled five new characters in the style of Radek
Pilař from a set of twelve different images (see Figure 4.8). Using the proposed framework
it takes only tens of seconds to complete them. For the same task experienced user needs
minutes to obtain comparable results with a standard image manipulation tool.

In the second experiment a simple cartoon animation has been created by scribbling six
new key-frames (see Figure 4.9). Simple linear interpolation of scribbles has been used to
produce smooth inbetweening. Although such a simple approach does not preserve rigidity
of fragments the final animation looks still compelling. Nevertheless, more advanced rigidity
preserving techniques [4, 77] can produce similar results with lower number of key-frames.
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4.4 Summary

In this section a novel framework for example-based synthesis of cartoons has been presented.
Practical experiments performed on real cartoon images confirm that it allows one to synthe-
size new cartoon drawings within much shorter time frames as compared to standard image
manipulation tools. Namely it has been shown how the proposed cartoon analysis framework
simplifies the fragment extraction phase and increases the visual quality of the final composi-
tion. Also a new intuitive scribble-based composition tool – uniform warp has been presented.
It successfully extends toolbox of existing vector manipulation tools since it allows to define
relative change of scale and free-form deformation of the selected fragment at one snap.
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Figure 4.8: Results – five new cartoon characters created by example: desired frag-
ments have been selected with several selection scribbles marked as dashed curves (top). Pairs
of composition scribbles marked as solid curves have been used to sketch new compositions
(bottom). Note that some composition scribbles serve also as selection scribbles.
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Figure 4.9: Results – simple cartoon animation created by example: six new key-
frames have been scribbled by the user (top). Proposed system interpolates them to produce
smooth in-betweens (bottom).
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5 Application III: Video compression

In this section a novel approach to video compression suitable for outline-based cartoon
animations is presented. Similarly to previous two applications also here the assumption is
that foreground and background layers have considerably different appearance. The aim is
to fully exploit this prior knowledge and provide better visual quality for the same storage
requirements as compared to standard video compression techniques. Moreover, the aim is
not only to compress the animation efficiently but also to replay it in real-time and reach
partial spatial scalability by exploiting commonly available graphics hardware.

5.1 Previous work

For decades video compression was and still is very popular research topic [139, 39]. However,
despite of everlasting demand on cartoon oriented video codec only a few methods directly
focus on cartoon animations.

Kwatra and Rosignac [95] presented approach where pre-segmented 2D shapes are swept
through the time axis to create 3D volume. Edge-breaker compression [144] is then used to
encode volume geometry. Decoding is performed by intersecting compressed volume with
the image plane using GPU-based capping technique [145]. This approach is suitable only for
regions that change their shape and/or position slightly in time. Experiments were performed
only on pre-segmented real-world image sequences which are far from classical cartoon ani-
mations since the motion is much coarse and region shapes suffer from occlusion. Authors
also did not address the key problem of region shape extraction for more complicated image
sequences.

Concolato et al. [41] assume that the input sequence is already stored in some common vector
format such as SVG. For this type of data they suggest to exploit existing Binary Format for
Scenes (BIFS) from MPEG-4 standard [46] that can be think of as VRML [180] with compression
and streaming capabilities. This standard has been published in 1998 by ISO/IEC but it still
waits for full implementation. Concolato et al. shown that in the context of cartoon animation
proper implementation of BIFS allows for significant savings in contrast to standard vector
formats. However, the practical usability of BIFS is still doubtful since it cannot be directly
applied to existing cartoon animations stored as a sequence of bitmap images.

Lee and Kassim [98] were probably the first who tried to develop practically usable video
codec for cartoon animations. Their main idea was (1) to use standard wavelet coding for the
whole image but with lower encoding bit-rate, (2) use mean-shift segmentation [40] to filter
the image so that it consists only of homogenous regions with step boundaries. Such image is
then coded using a new set of basis functions called wedgelets and beamlets. These are designed
to capture main characteristic of cartoon image: long linear discontinuities (wedgelets) and
thin outlines (beamlets). During the playback low bit-rate wavelet layer is overlapped with
wedgelet/beamlet layer to emphasize discontinuities. Authors compare this approach with
JPEG-2000 [78] and report superior visual quality for comparable bit-rates. However, the
main drawback of this technique is the use of mean-shift segmentation that tends to produce
inaccurate results (as was discussed in Section 2.2) and so the image quality can be notably
reduced before the proposed encoding scheme is applied.
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5.2 Video compression framework

In this section a novel approach to video compression of classical cartoon animations is pro-
posed. Its aim is to overcome shortcomings of previous approaches by exploiting cartoon
analysis framework proposed in this thesis. First a brief overview of the whole pipeline is
presented and later, in successive sections, implementation details are discussed.

5.2.1 Framework overview

The proposed video compression pipeline seamlessly plugs to the output of the cartoon anal-
ysis framework. The assumption is that the foreground and background layers are already
detached so that the input is: (1) frame-by-frame vectorized foreground layers, and (2) several
reconstructed background layers together with corresponding camera pan and zoom informa-
tion. Similarly to [98] the key idea is to use different coding scheme for each layer.
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Figure 5.1: Video compression pipeline: first foreground and background layers are de-
tached using the proposed cartoon analysis framework (left). Foreground layer is vectorized
and compressed using 1D DCT (top left). Background layers are reconstructed and stored as
static images using standard JPEG compression (bottom left). Camera pan and zoom pa-
rameters are stored per frame. During the decompression hardware accelerated full screen
anti-aliasing is activated and the background images are decoded and uploaded to the texture
memory (bottom right). Foreground shapes are decoded per frame using 1D IDCT and tesse-
lated to triangles (top right). Finally the background layer is rendered as textured rectangle
using proper camera pan/zoom and foreground triangles are superimposed to produce the
final composite (right).

Since the reconstructed background layer is static textural image it can be simply stored as
a standard JPEG image [175]. Optionally, when the camera moves during the animation, per
frame information about pan and zoom are included (see Figure 5.1, left bottom).

On the other side the dynamic foreground layer is almost homogenous and contains sparse
discontinuities (edges). For this type of 2D signal standard image compression techniques like
2D DCT or DWT are not feasible. The important information here is not stored in the area of
region but along its shape, therefore 1D shape coding techniques can produce better results.
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To perform the transition from 2D to 1D foreground region shapes are first adaptively sam-
pled to produce piecewise linear representation that can be easily transformed to the fre-
quency domain using complex 1D DCT. Finally, a simple binary quantization is used to retain
proper number of significant DCT coefficients. To further lower storage requirements lossless
Burrows-Wheeler block-sorting transform [19] and Huffman coder [148] are used for the final
compression (see Figure 5.1, left top). As a supplement to the shape information the layer
depth (see Figure 2.21) and mean color are stored as well.

During the decompression/playback phase (see Figure 5.1 right) the aim is to render high-
quality composition of layers frame-by-frame in real-time. For this time critical task GPU-
based approach is proposed. To ensure high-quality output hardware supported full screen
anti-aliasing is switched on. Then the background image is decoded and uploaded into the
texture memory. During the animation the background texture rectangle is properly shifted
and zoomed and region shapes are decoded via complex 1D IDCT, tesselated and superimposed
over the background layer.

5.2.2 Shape compression

After the segmentation inferred region shapes need to be converted from raster to vector
representation. The important question is which vector representation is more suitable for
compression. A straightforward approach is to use directly control points of Bézier cubics
generated by contour tracing algorithm as was described in Section 2.2.9. Although they pro-
vide an optimal approximation in the rate-distortion sense [192] and a resolution independent
GPU-based rendering is possible [108], the problem is that 2D coordinates are not feasible for
further compression since they represent shape energy uniformly. From this point of view
1D DCT-based approach is much more convenient since it redistributes the energy so that it
accumulates to a small number of coefficients. This property can be utilized for efficient com-
pression [162]. However, in the frequency domain as opposed to Bézier cubic representation,
an additional information is needed to produce optimal bit allocation for DCT coefficients in
the rate-distortion sense (quantization table) [141]. The problem is that such a table is in
general different for each shape therefore in practice some globally optimal table should be
estimated as for example in JPEG compression [175].

In the framework proposed here a novel DCT-based shape compression scheme is introduced. It
exploits two important observations based on experiments with cartoon shapes (see Figure 5.3
and 5.2):

1. When the original shape is sampled adaptively, then the resulting DCT coefficients after
quantization better approximate the shape as compared to uniform sampling with the
same quantization table.

2. When the original shape is sampled adaptively, it is possible to estimate the optimal
number of DCT coefficients using the number of control points needed to produce optimal
Bézier cubic approximation.

Resulting shape compression scheme works as follows: first a standard contour tracing algo-
rithm [181] is used to fit a set of Bézier cubics to approximate the raster representation of the
original shape. Then the overall number of resulting control points Np is remembered and
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Figure 5.2: A novel shape compression scheme: using standard approach the shape
is sampled uniformly and then transformed to the frequency domain. An issue is how to
quantize DCT coefficients to reach the optimal result in the rate-distortion sense. In the
proposed approach the shape is sampled adaptively and a simple binary quantization table
is used. The number of important DCT coefficients is estimated from the number of control
points obtained after the optimal Bézier cubic fitting.
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Figure 5.3: Compare the efficiency of the 1D DCT-based vector compression for
uniformly (top) and adaptively (bottom) sampled shape: for the same number of DCT
coefficients (blue dots) adaptive sampling produces much better approximation.
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curvature sensitive subdivision is performed [37] to obtain adaptive sampling of the original
shape. Resulting 2D coordinates of points are converted to the sequence of complex numbers
(x as real and y as imaginary part). These are transformed to the frequency domain. Here
first Np DCT coefficients are normalized and converted to 16-bit integers. Finally, Burrows-
Wheeler block-sorting transform [19] and Huffman coding [148] are used to further reduce
information redundancy.

5.2.3 Temporal coherency

As was discussed in Section 2.3.1 in classical cartoon animations the motion is usually coarse
and repetitive. To save tedious manual work artists reuse animation phases as much as
possible. This typical redundancy allows much better compression ratios as compared to real-
world videos. To exploit it a pool of already stored frames (frame vocabulary) is maintained.
Whenever a new frame is going to be encoded, frame vocabulary is searched for possible
duplicities and when the search is successful only a frame reference is stored.

Another possibility is to reuse similar region shapes. However, in classical cartoon animations
each animation phase contains unique region shapes even if only a small part of body moves.
This is because artists draws all poses manually without the possibility to copy-and-paste
unchanged parts. In the final animation this limitation produces unique spatiotemporal noise
that brings the feeling that the cartoon was created manually. It is clear that this artistic
noise cannot be exactly modelled using rigid transformations and so it is not possible to
simply correct visual inconsistency arising when a single region shape is reused in different
frames. Although free-form deformations can solve this problem well, the amount of additional
information usually does not produce meaningful savings.

5.2.4 Color assignment

The another issue connected with compression is the estimation of a visually dominant mean
color for each foreground region. A naive approach is to simply compute mean over all
pixels and then store it to accompany shape information. The problem is that mean color
tends to flicker due to global brightness fluctuation in aged movies. Also small regions are
problematic. Here the mean color is usually strongly biased due to outline anti-aliasing and
results in disturbing spot flashing.

To avoid these artifacts a static palette is generated using mean-shift color clustering [40]
where clusters are constrained to maximize the brightness difference. For each region the
mean color is computed and the index of the nearest color from the clustered palette is
assigned. Since the palette is usually much smaller then the number of all possible colors
(typically only 16 colors out of 16M) temporal flickering disappear.

5.2.5 Playback

As was mentioned in Section 5.2.1 real-time performance and compelling visual quality can
be reached by utilizing GPU-based approach to render background and foreground layers in
each animation frame. The problem is that playback phase is time critical since typically tens
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Figure 5.4: An overview of the playback phase: zero-padding together with complex
1D IDCT is used to recover an adaptive piecewise liner representation of region shapes (top
left), 2D IDCT is used to decode the background image (bottom left) that is afterwards stored
in the texture memory (bottom middle). Foreground regions are tesselated to triangles (top
right) and rendered over the background texture to produce the final composition (bottom
right).

of polygons with hundreds of vertices should be decoded, tesselated, and rendered 25 times
per second. In this section relevant implementation issues are discussed in more detail.

Before the playback starts it is necessary to activate hardware accelerated full screen anti-
aliasing to alleviate polygon boundary aliasing (see Figure 5.5). Optionally also all background
layers can be uploaded to the texture memory in the beginning. However, since this step is
nonrecurring and relatively fast, it is usually possible to upload textures on demand when the
animation sequences change.

During the playback textured rectangle with proper background image is first rendered to the
frame-buffer according to stored camera pan and zoom. Then the DCT-based representation
of shapes is decoded and transformed back to the spatial domain. To preserve smoothness,
zero-padding is used in the frequency domain before the FFT-based IDCT [58] recalculates
2D coordinates of points (see Figure 5.4). Thanks to prior adaptive sampling, this process
yields good piecewise linear approximation of the region shape that can be directly used for
polygon rendering. Extra processing time is required only for non-convex polygons that have
to be tesselated into the triangle strips. For this task standard gluTess* framework [187]
is sufficient. However, for polygons with larger number of vertices Held’s FIST library [66]
performs slightly better. Additionally the topology-based depth ordering (Section 2.2.9) and
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original 4x FSAA w/o FSAA

Figure 5.5: Hardware accelerated full screen anti-aliasing for compelling visual
quality: the original image (left) in contrast to rendering with (middle) and without (right)
full screen anti-aliasing.

original PAL HDTV

Figure 5.6: Resolution independent video playback: the proposed video codec allows
to broadcast the original image sequence (left) in PAL (middle) or HDTV (right) resolution
without resampling artifacts.

per pixel depth tests are used to draw regions in a correct order and to discard regions that
actually represent holes to background layer.

5.3 Results

In this section several video compression results are presented. Similarly to previous applica-
tions experimental data are classical cartoon animations scanned in PAL resolution (720x576)
from the original celluloid negative of Czech cartoon O loupežńıku Rumcajsovi additionally
colorized using framework proposed in this thesis.

Five different animation sequences have been encoded using the proposed video codec. Encod-
ing parameters has been set to achieve an average bit-rate of 256 kbps (suitable for broadcast-
ing through ADSL internet connections). On AMD Athlon A64 2800+ with ATI Radeon 9700
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and 6x FSAA it takes on average 10 seconds to compress and 30 milliseconds to decompress
and render one frame.

To see results in motion, a simple OpenGL-based player is available on a web page1 together
with short testing sequence and AVI encoded using DivX for comparison.

In Figure 5.7 and 5.8 details of several decompressed frames from different animation se-
quences are depicted. To render them the original PAL resolution has been used. However,
the resolution itself can be arbitrary. This can be useful especially when the original car-
toon animation stored in PAL have to be broadcasted in HDTV (see Figure 5.6). The only
limiting factor here is a bilinear interpolation of the background texture which fortunately
does not produce disturbing artifacts since the background layer usually does not contain
high-frequency details.

In Figure 5.7 and 5.8 no blocking or ringing artifacts are visible in the output of the proposed
video codec, only several high-frequency shape details are omitted. The another artifact
that is not visible in static images is negligible temporal shape noise due to different loss of
precision after binary quantization of DCT coefficients. In the animation sequence there are
also several examples of small misclassified regions that are fortunately not so disturbing since
the background layer is usually almost homogeneous at the same position.

5.4 Summary

A novel video compression pipeline for traditional outline-based cartoon animations has been
presented. Practical experiments performed on real cartoon animations confirm that for com-
parable encoding bit-rates the proposed approach achieves superior visual quality as compared
to standard video compression techniques. Moreover, the proposed video codec allows to play-
back compressed sequences in an arbitrary resolution thanks to partial spatial scalability.

The important result verified in this application is the fact that large savings can be reached
due to significant redundancy of animation phases not available in real-world videos. Also
two new shape coding heuristics have been established: (1) the use of adaptive sampling prior
the application of DCT and (2) the use of the number of optimal control points of fitted Bézier
cubic for the estimation of the number of dominant DCT coefficients.

The proposed approach has two major limitations: (1) slow compression phase and (2) inabil-
ity to process cartoon animations that does not fit to the basic assumptions of the proposed
cartoon analysis framework, i.e. static background layer and outlined homogenous regions in
the foreground. Another issue that has not been explicitly solved is an automatic sequence
annotation that is desirable for consistent background reconstruction.

1http://www.cgg.cvut.cz/~sykorad/codec
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Figure 5.7: Results – video compression (1): compare detail views in three rows – results
of the proposed approach (top), the original images (middle) and results of DivX at comparable
bit-rate (bottom). No blocking or ringing artifacts are visible in the output of the proposed
approach only several high-frequency shape details are omitted.
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Figure 5.8: Results – video compression (2): compare detail views in three rows – results
of the proposed approach (top), the original images (middle) and results of DivX at comparable
bit-rate (bottom). No blocking or ringing artifacts are visible in the output of the proposed
approach only several high-frequency shape details are omitted.
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6 Conclusions and future work

This thesis introduced a novel cartoon analysis framework suitable for cel- or paper-based
animation techniques where each frame is created as a planar composition of static textural
background and dynamic homogenous foreground.

The framework allows to pop-up 2.5D structure of the scene by extracting outlines, locating
foreground regions, vectorizing foreground layers, and reconstructing the visible portion of
the background layer. On the basis of this decomposition structural similarity analysis is
performed to estimate frame-to-frame and region-to-region correspondences in the foreground
layer.

Additionally three practical applications have been implemented to verify the general usability
the proposed framework:

1. Colorization and restoration.

Bringing new color information into gray-scale images proven to be tedious and time
consuming. Despite of recent advances in colorization research the process is still labour
intensive and for long animations practically intractable. The framework proposed in
this thesis allows to significantly reduce the amount manual intervention and make the
colorization and restoration of classical cartoon animations practical and cost effective.

Thanks to layer decomposition and region-to-region correspondence retrieval two sig-
nificant speed-ups have been reached:

a) The reconstructed background layer can be colorized at one snap and then reused
in each animation frame.

b) Once the first frame is colorized region correspondences and patch pasting allows
to propagate color information to the following frames.

Exploiting them colorization workflow reduces from tedious scribbling to few one-click
corrections per frame. The same workflow is also applicable to semi-automatic cel
painting where the number of corrections is higher but in the presence of extensive
motion still lower as compared to position-based techniques such as simple onion fill.

Thanks to automatic color modulation and layer composition color images can be re-
produced in broadcast quality without additional user intervention. The key advantage
is the ability to manipulate not only hue and saturation but also the color brightness.
This is useful especially for an artist who has a complete control over the process of
color transfer. Moreover, this feature together with the proposed automatic dust spot
and image vignetting removal technique allows to extend the usability of colorization
framework to the restoration and enhancement of classical color cartoons. By seamlessly
manipulating hue, saturation, and brightness of outlines/regions local color contrast can
be reasonably adjusted yielding much pleasant look of the whole animation.

2. Cartoon-by-example.

A serious issue in computer assisted cartooning is to mimic well-known artistic styles
in order to create new poses and characters undistinguishable from the original. One
possible approach to this problem is to combine fragments of the original artwork.
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Using standard image manipulation tools this task is laborious and non-intuitive. The
proposed cartoon analysis framework allows to pre-process the input image so that
the fragment extraction requires only few sloppy selection scribbles. Moreover, thanks
to adaptive outline reconstruction and high-quality vectorization scheme compelling
visual quality of the final composition is preserved. For the fragment positioning an
intuitive scribble-based composition tool has been proposed allowing to define relative
scale and free-form deformation at one snap. Altogether, new cartoon drawings can be
produced within a few seconds. Moreover, the framework can be easily extended for
animation where the key-frame composition scribbles are interpolated to reach smooth
inbetweening.

3. Video compression.

In last decades only little effort has been spent on the development of native cartoon
oriented video compression techniques despite of constant public interest on this topic.
The key issue that hampers the progress in this area was persisting inability to automat-
ically produce precise 2.5D decomposition of the input video sequence. The framework
proposed in this thesis is the first one that allows to break this fundamental barrier and
proceeds toward first native cartoon oriented video codec that outperforms standard
video compression approaches.

It has been shown that large savings can be reached by storing whole background layer as
a single image and by exploiting significant redundancy in the animation together with
adaptive shape coding heuristics. Moreover, thanks to the static background and vector-
based representation of the foreground layer high-quality anti-aliased playback can be
performed in real-time on a commodity graphics hardware in the resolution independent
manner. The only limiting factor is a bilinear interpolation in the background layer.

6.1 Future work

Drawing styles similar to Radek Pilař’s represent an ideal case for the proposed framework.
Other styles that do not satisfy the basic assumption on region homogeneity and outline con-
tinuity require additional processing that has not been discussed in this thesis. One possible
extensions is to exploit local mean-shift segmentation for piecewise homogenous regions or
to incorporate techniques similar to [136] that handle regions with patterns and larger gaps
between outlines.

The proposed framework completely fails when outlines are drawn close together or when
the image contains lots of small unstructured and/or non-homogenous regions. In Figure 6.1
several examples of such challenging drawing styles are depicted. Resulting vectorization for
such images appears visually corrupted as compared to the original drawing. For this type
of images completely different approaches need to be developed. Systems like ARDECO [97]
represent a good starting point for further research.
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Figure 6.1: Several examples of drawing styles that are not suitable for the frame-
work proposed in this thesis: problems arise when the input image contains lots of
unstructured outlines, small and inhomogeneous regions, soft shadows and color gradients,
dark coalescent outlines in the background, etc.
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