

Nautilus – The Environment for Training and Testing

Jiří Chludil Jiří Žára
Department of Computer Science and Engineering,

Czech Technical University in Prague
{xchludil,zara}@fel.cvut.cz

Abstract

The paper describes an experimental web-based
environment for teaching and testing. The application
named Nautilus has been developed using Virtual Reality
Modeling Language (VRML) and Java language with two
special libraries: DILEWA and Vrmlworld. Although the
resulting system is intended for low-level virtual reality
systems without any specialized hardware support it is
powerful enough to accurately simulate various situations
and scenarios. Currently implemented multi-user
environment for training and testing of yacht captains
serves as an experimental workbench for creation of
general applications where a developer combines
a simulated environment from simpler simulation
elements. Design and implementation of the system are
presented together with several practical observations
concerning efficiency of the real-time rendering and the
level of implementation difficulty.

1. Introduction

Three years ago, the Czech Offshore Yachting

Association asked the Department of Computer Science
and Engineering at the Czech Technical University in
Prague for a study about possible utilization of virtual
reality for training and testing of candidates for yacht
captains. Although some testing applications exist [8],
none of them has enabled web-based interface so far;
moreover, they do not support more then one user and
their methods of displaying are not true 3D.

Recently we have designed and developed an
application allowing multi-user simulation of ships on sea
in various scripted situations [3]. Nautilus is based on
cooperation of VRML [5] and Java applet interconnected
through EAI interface [6] with Vrmlworld library
extension. For multi-user purposes we use DILEWA
library [7]. Both Vrmlworld and DILEWA library have
been developed at our department and will be described
later in the text. The application is going to be practically
used as an environment for yacht captain tests.

Short introduction to yacht simulator can be found in
Section 2. Architecture of the application is described in
Section 3. Section 4 introduces methology of new models
development (virtual objects and effects). Section 5
discusses issues to be solved in the future and concludes
the paper.

2. Motivation

Yacht training and testing application is based on the

developed environment described in this paper. We use
this application as a typical example for the description of
the architecture and the principles of the development
environment.

Tests for ship recognition comprise an important part
of captain tests. The ability to quickly determine a
behavior of a moving ship approaching to a candidate’s
ship is essential from the perspective of the sea transport
safety. Due to the various time and weather conditions,
day, night and fog signs provide integrated information
about type and activity of a ship.

During the day ships show day signals according to
valid regulations. The day signs are simple shapes
(spheres, cones and cylinders) with normalized sizes,
proportions, colors and their combinations. They are to be
displayed on specific places like top of a pole or a mast.

At night and in the evening ships use night signaling
system. It is defined in such a way that it enables to
unambiguously specify the position of a ship, its type and
its current activity. The night signaling system consists of
three position lights (red on the left, green on the right and
white on back) with optional white pole lights and
additional special lights informing about activities of a
ship. Although the lights are to be visible from wide
spatial angle, the angles and key light positions are
mutually turned so that the observer can see just one of
them.

In a fog and bad view conditions ships send acoustic
signals repeatedly. Signals are generated either by a horn
or a bell with defined frequency, magnitude and direction.
Sounds are always combined with visible signs described
above.

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

3. Implementation

The crucial requirement was that the application

should support web environment. Therefore, we have
chosen VRML for displaying and Java language for user
interface and simulation. Another improvement was an
extension of the application to a multi-user one. Since the
displayed scene had been very complex, we designed a
special plug-in architecture (see part 4).

Dividing the developed application into several
functional parts with different purposes is apparently a
very advantageous strategy [2] (see Fig. 1) in terms of
complete and highly interactive virtual environment.

Vrmlworld

UI

Simu-
lation
Core

Plug-in
Control

D
I
L
E
W
A

 EAI

B
A
S
E

 WWW browser

VRML
browser

EAI

Java
Applet

Scene plug-ins

DILEWA
server

Figure 1. Modular structure of Nautilus client

3.1. Vrmlworld Library

This library serves for communication between a

VRML scene and a Java code. It encapsulates a
standardized programming interface called EAI (Interface
between VRML and Java). Thus, the virtual scene may be
controlled via Java application code in case of web
browser hosting the VRML viewer. A typical web
application consists of VRML browser window and
additional controls in Java applet.

Unfortunately the EAI interface is too loose in terms
of checking the type of VRML nodes and their fields. A
frequent and hard to find programmer’s mistake is sending
a value to non-existing exposedField that has been
referenced by misspelled identifier. Similar mistake is
sending a value with wrong data type.

Therefore we have developed an object-oriented
library with declarations of VRML nodes and variables.
Each type of node in a VRML scene has a mirror
(prototype of a Java class) in Vrmlworld library. Class
initialization corresponds with a new VRML node
creation or with a connection to existing named Node.
Change of class attribute is represented by relevant
response in a VRML node. It can also watch all changes
in scene and update relevant attributes in Java classes.
Vrmlworld has protection against above mentioned run-
time errors. This solution enables simple access to the tree
structure of VRML. In addition, Vrmlworld allows
obtaining of hidden information about the scene e.g. non-
named child nodes. This library dramatically reduces a
size of the source code in Java (to 25%).

The library contains several special functions intended
especially for debugging of communication between Java
application code and a VRML scene. Typical examples:
a function that allows extracting tree of the VRML scene
with current values of node variables, finding routes
between nodes, scene structure management.

3.2. DILEWA Library

The name DILEWA stands for the DIstributed

Learning Environment Without Avatars. It is a Java
library developed at our Department allowing simple and
straightforward extension from a single-user VRML
application to a multi-user distributed one. Library is
currently used in the Nautilus application for two
purposes: firstly, synchronization of the state of the scene
(positions, trajectories and configurations of properties of
ships, changes of environments, e.g. fog, sun, sky, clouds,
etc.), and secondly, communication among users (text-
based chat). This use of DILEWA increases the
interactivity of the teaching process either by immediate
interventions of the teacher/examiner or by introducing
multiple candidates in the same sea space concurrently
(see Fig 2).

3.2.1. DILEWA Architecture. The DILEWA library
serves for multiple users connected via Internet to share
one virtual world described e.g. by VRML.

Users can interact and manipulate with the VRML
world and these events are distributed to others. The
virtual worlds displayed on individual screens of the users
are thus immediately updated. To minimize network
bandwidth requirements, DILEWA is used to distribute

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

only events in the scene while simulation computation and
scene rendering are executed on individual workplaces.

Internet

StudentStudentInstructor

DILEWA
server

journal

Figure 2. DILEWA communication scheme

The communication among distributed users is based

on server-client strategy. The DILEWA server,
implemented in Java, is responsible for event broadcasting
and basic user management. The server can hold a history
of selected events performed during the distributed session
so that later joined users receive fully updated virtual
scenes. To further reduce the amount of distributed
information; dead reckoning is used to transmit status data
less frequently.

2.2.2. Users and their Roles. In the DILEWA, users
are identified by their names/nicknames and the server
maintains a list of active users. This identification serves
as a key to access additional information about users (their
roles, modes, scene area, events in scene, etc.). A user
with a special permission obtains the instructor/examiner
role and the others become students/candidates. Users can
change their scene area that contains various scenarios
with different difficulty, weather and traffic conditions,
etc.

User in student role can see the list of users connected
to visited scene area, while the user in instructor role can
see the list of all users connected to Nautilus.

Instructor works in three modes – the first mode is
a standard navigation mode allowing changing user
position without interacting with the scene (ghost). The
second mode allows to become a captain of a ship and to
interact with the scene and other users. The third mode is
curious but highly beneficial – it allows to select an
arbitrary user and to watch the virtual world through
his/her eyes. In this mode, all interactions and viewpoint

changes performed by the selected user are sent to
observer. This is extremely useful for the instructor.

3.3. User Interface

The user interface (UI) Nautilus comprises several

dialogues for application setup, simulation control and
evaluations (example is shown on Figure 3). The UI
provides two user roles – student and instructor. The
student role is limited to training and testing in predefined
scenarios, while the role for instructor allows editing of
scenarios (starting position, courses and speeds of all
ships, weather setup, accident events etc.), students
monitoring (see also part 3.2.2) and classification of a
student being tested

 Figure 3. Nautilus User Interface

3.4. Simulation Core

Computation of simulation is usually very demanding

to computer time and performance. Simulation of the
entire scene in real-time is very difficulted [1]. Therefore
we have split its computation into two phases. Firstly, full
simulation is preprocessed using special software Dynast
[4]. The resulting relations and values are stored in form
of simple samples. Final behavior of objects is simulated
in simulation core, based on the samples obtained real-
time presentation.

3.5. Plug-in Control

Several strategies exist for managing a scene in

VRML: firstly, whole scene is loaded into a memory of
browser and the whole scene is displayed; secondly,
whole scene is loaded into the memory but only a part of
scene is displayed; thirdly, parts of scene are successively

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

loaded into browser and displayed (scene set up like a
puzzle). Obviously, the third scene strategy is the most
effective from the point of memory, speed of rendering
and variability of scene. It puts, however, higher demands
on the entire scene management.

Architecture of plug-ins has been chosen because of
easier management. Management of plug-ins is
implemented in “Plug-in control” layer. Via Plug-in
control it is possible to add plug-ins to scene,
communicate with them and remove them. Example of
communication sequence shows Figure 4. Universal
interface was designed for individual types of plug-ins
since the communication is relatively simple.

We have two basic types of plug-ins. The first one
represents a model of a ship with its properties (see part
3.6.1), the second one represents nature phenomenon (see
part 3.6.2). The second type is difficult for the
management because of mutual dependence of natural
phenomena (e.g. clouds decrease intensity of scene
illumination). Therefore, plug-ins are capable of mutual
communication (the communication is provided by the
routes among plug-ins).

remove plug-in

Remove all routes

Static variables and
simulation parameters

Open communication
channel

Creation of routes to
dependent plug-ins

add plug-in

Type identification

P
L
U
G
I
N

C
O
N
T
R
O
L

P
L
U
G
I
N

Data exchange

Figure 4. Communication between Plug-in control
and Plug-in

3.6. Scene Plug-ins

Architecture based on plug-ins is advantageous from

the point of simple scene management, easy extendability
and large adaptability. Plug-ins communicate with the
base through an interface that is represented by a table of
variables. These variables are divided into four categories:
static variables (convex envelope, numbers of day signs
etc.), variables for simulation (dependence of
maneuverability on the speed of a ship), variables with
low frequency of changes (index of active day sign), and
finally variables with high frequency of changes (position
and orientation of a ship).

3.6.1 Type “Object”. This plug-in is determined for
representation of a ship. It contains two types of data. The
first one is the model of ship itself and its signs, lights,
effects etc. All these models are described in VRML
language. The second one is information describing the
ship from the viewpoint of simulation (parameters
concerning performance of engine, maneuverability,
formulas for simulation of wind effect to ship, the number
of day, night and sound signs, etc.) The data are in a form
of constants, vectors and tensors. All of these parameters
are obtained from the preprocessed and full he simulation
of ship model in standalone application Dynast (see part
4.3). All of these parameters are used for the real-time, but
also very precise simulation.

SunClouds

Fog

Wind

Figure 5. Diagram of effect and object dependence

in real world

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

3.6.2 Type “Effect”. This plug-in is determined for
representation of nature phenomena. It contains three
types of data. The first are models of the effects (model of
cloud etc.). Such models are again written in VRML
language. The second one is information that describes
phenomena from the viewpoint of simulation
(specialization of effect behavior). These data are in the
form of constants, vectors, tensors.

The third type of data is expression of dependencies
among the phenomena (see Figure 5) (e.g. how the wind
influences waves).

4. Plug-in Development

Although the VRML file format has been published

five years ago, no universal and widely available 3D
editor can be found and used for our purposes. The
following text introduces several implementation issues,
methods and practical advices.

4.1. VRML Model

There are two different ways how we created models

of ships in VRML format. In the first way we use a
VRML text editor (e.g. VrmlPad). This text editor
supports VRML language and makes it possible to
automate function excerption. Final model can be saved in
compressed wrl format. This solution demands high level
of imagination, but model’s code is small and effective.

Second way of creating ship models consists in using
any 3D graphics program (Cinema4D, Rhino3D,
trueSpace, 3DStudioMAX, etc.). This solution results in
well-developed model of ship. Unfortunately, code of
model is not effective and 3D editors do not support
VRML scripts. Taking into account the advantages of both
approaches we have decided to use 3D graphics program
for design of ships and then we optimize it in VrmlPad.
For writing scripts and new interface we used solely the
VrmlPad.

4.2. Simulation Parameters

Interpolation of relation (see Figure 6) was used for

simplicity; this method is based on interpolation of
dependence of the third-order polynomial equation.
Parameters of relation (polynomial attributes and
interpolation intervals) are stored in a plug-in containing
the model of a ship. This solution allows unification of
simulation, e.g. behavior of a ship on sea.

The simulation system Dynast was used for finding the
most precise interpolation. Some of these simplicities are
executed by model modification (it is possible to eliminate
the parts of models that influence the progress of the
simulation only a little). Output of model simulation is
formed by samples of value of observing variables that are

later interpolated. They are used during simulation of the
entire scene for calculation of model reactions to
environments effects.

Preprocessing

Mathematical
model

DYNAST

Interpolation
by third-order

polynomial

Plug-in with model of
object or effect

Simulation

Behavior of
Object

(computation)

position,
orientation,
etc. Relations

Model

Samples

Figure 6. Phases of simulation

4.3. Dynast

To make physical modeling easier, Herman Mann and

his team have developed, many years ago, a simulation
package Dynast. Now it can be easily used as a physical
modeling toolbox for MATLAB, even thought the
Internet. Dynast allows to set up models of engineering
systems from system parts in a kit-like fashion based on a
mere inspection of the real systems in the same way in
which the systems are assembled from real components
without forming any equations or graphs. Dynast
formulates all the equations respecting the physical laws
governing mutual energetic interactions between the
components automatically.

5. Related work

There are many web-based applications that visualize

3D environment. [9][10][11][12]. To our knowledge, this
is the first computer graphics paper that describes the
main innovative characteristic of our application which is
fusion of four features into one product: Web-based 3D
visualization, multi-user environment, simulation process

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

preprocessing, and possibility to extend or change the
scene using plug-in system (our product is not just a yacht
simulator; if we change models and effects we can get, for
example, a train simulator. It is quite difficult to find a
comparable web-based 3D system as various authors often
focus on description of the visualized effect and the
visualization itself (to make it as good as possible), but do
not pay attention to other problems (management of a
scene, computation etc.).

Similar system is e-Agora [9] that is specialized to
multi-lingual communication and interactive
entertainment – it uses the same library DILEWA, VRML
browser for 3D visualization, and our department takes
part in its implementation as well. E-agora, however, is
determine for one use

Another project present by Humusoft [10]company
uses Simulink for computation of simulation and VRML
for visualization. Both parts are interconnected through
their Virtual Reality Toolbox (sold worldwide by The
Mathworks, Inc.). This solution, however, does not take
the advantage of VRML scripts, does not support multi
user scenes and requires special software.

6. Conclusion and Future Work

An advanced web-based training environment for

yacht captains has been described in this paper.
The novelty of our approach is the architecture of

scene plug-ins and their universal interface that allows to
create models of objects or effects independently from the
development of the Nautilus environment itself (teamwork
design). Next asset is splitting the computation of
simulation into two phases (preprocessing of samples and
their use).

The developed application uses standards (VRML,
Java), publicly available software tools (editors,
compilers) and libraries developed at our department
(some parts are used for pedagogical purposes, too). Thus,
the resulting program is very cheap, portable to various
platforms and easily extendable for new models and
functionality.

Currently, our goal is to rapidly increase the number of
plug-in modules (new ships, swinging on the waves, sun
traveling in the sky, wind effects – especially to yachts)
and make preprocessing phase more user-friendly.

7. Acknowledgment

This work has been supported by the Czech Technical

University, Prague, Czech Republic under Research
program No. 3066/2D/A in 2002 (Internal grant of CTU).

8. References

[1] H. Mayr, Virtual Automation Environment Marcel Dekker
2002, ISBN 0-8247-0736-2

[2] Rory Start, The Design of Virtual Environments Barricade
Books Inc. 2002, ISBN 1-56980-207-6

[3] J. Chludil and J.Žara. Yacht captain training system in
VRML. NATO PfP/PWP Workshop - CATE 2001 Brno : Military
Academy, 2001, p. 1-8.

[4] H. Mann DYNAST - multidisciplinary Web-based simulator.
Dresden 2001

[5] The Virtual Reality Modeling Language. International
Standard ISO/IEC 14772-1:1997.
http://www.web3d.org/technicalinfo/specifications/vrml97/

[6] The Virtual Reality Modeling Language External Authoring
Interface. Committee Draft ISO/IEC 14772-2,
(EAI is now under final vote for approval by ISO as VRML 97
Amendment 1, Part 2.)
http://www.vrml.org/WorkingGroups/vrml-eai/Specification/

[7] J. Žára and M. Máša. DILEWA: The DIstributed Learning
Environment Without Avatars. In Proceedings of IV 2000 -
Information Visualization 2000, London, Great Britain. IEEE
Computer Society, ISBN 0-7695-0743-3, pages 563-567.

[8] Posey Yacht Simulator on www.poseysail.com

[9] J. Adamec, J. Cizek, M. Masa, P. Sidoni, P. Smetana,
and J. Zara. Virtual House of European Culture: e-
AGORA. In Proceedings of the 1st International
Conference on Virtual Storytelling, 2001. e-agora

[10] Humusoft on http://www.humusoft.cz/vr/index.htm

[11] Omitron on http://www.onitron.com/onitron/ehome.htm

[12] Web3D Training Program on
http://www.parallelgraphics.com/products/isa/success/dreamscap
e/

Proceedings of the 6th IEEE International Workshop on Distributed Simulation and Real-Time Applications (DS-RT�02)
0-7695-1853-2/02 $17.00 © 2002 IEEE

