
Stateless Generation of Distributed Virtual Worlds

Jiri Danihelka, Lukas Kencl and Jiri Zara

Czech Technical University in Prague, Faculty of Electrical Engineering
{danihjir, kencl, zara}@fel.cvut.cz

Abstract

We present novel techniques for implementing possibly infinite on-demand generated 3D virtual worlds in distributed environments.
Our approach can be useful in two scenarios: 1. A multiuser virtual world with mobile clients with sufficient CPU and GPU power
but with limited network speed. This reflects current mobile phones, tablets and laptops in areas without a high-speed mobile
connection or Wi-Fi connectivity. 2. Virtual world on-demand generation in a cloud environment that would be useful for scalable
massive multiplayer games. If multiple independent generators create areas that are overlapping, our method ensures that the
intersection of the areas will contain the same geometry for all of them. For this reason, we call our method stateless generation.

Keywords: graph algorithms, path problems, distributed graphics, computational geometry, urban modeling

Figure 1: A stateless infinite city generated by our method

1. Introduction

Much attention is currently focused on multi-user virtual
environments hosted in the cloud for both gaming and non-
gaming purposes [1, 2, 3]. With the arrival of massive multi-
player online games, game creators have had to deal with lim-
ited server capacity in terms of world size or number of play-
ers [4], but virtual-world services must be scalable [5]. Current
cloud computing technologies are able to provide additional re-
sources on-demand, but virtual-world systems are rarely able to
generate on-demand game content (to save memory for world
parts not needed at the moment). Another problem is the lim-
ited network connectivity of mobile clients in cellular networks,
which is often too slow for downloading the content gener-
ated on the server, thus having a highly negative impact on the
emerging and ubiquitous mobile gaming.

Our method is innovative in that it eliminates the need to
synchronize the static content that was procedurally-generated
on multiple devices. This will allow virtual-world servers to
dedicate additional machines from the cloud environment to
parallel content generation, or even to generate content on client
devices. Because the content is generated on-demand, the vir-
tual world can be considered theoretically infinite.

We refer to our method as stateless generation because it
allows for locally generating only the content of the world that
is relevant to the viewing frustum of the clients, and this content
is generated independently, without knowledge of the states of
the other generators.

As one of the most difficult virtual environments to gen-
erate, our efforts focus on generating an urban landscape (see
Figure 1). City environments are generally complex because
they are structured and are both detailed and enormous. Pro-
cedural generation is a convenient tool for saving storage space
and/or Internet bandwidth. When in the view frustum, buildings
can be created on-demand from their lots (land parcels) using
generating grammars.

Moreover, our method is general enough to be applicable to
other types of structured landscapes (e.g., countryside, caves,
labyrinths). Structured landscapes are generally more difficult
to generate than unstructured landscapes (e.g., forests).

We provide a general purpose guideline for scalable algo-
rithms generating virtual worlds that is applicable to most types
of landscapes. We formalize the requirements and constraints
such algorithms must fulfill. We then provide a novel algo-
rithm for generating an infinite and scalable city-street layout,
including a novel sub-algorithm for generating streets in a con-
strained environment, which could also be useful in traditional
approaches to procedural city generation [6].

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

2. Related work

The most advanced approach for procedural building gen-
eration was published by Müller et al. [7] in 2006, improving
upon the previous method by Wonka et al. [8] in 2003. The lot
and street geometry can also be generated procedurally. The
first such algorithm for finite cities was published by Parish and
Müller [9].

In 2003, Geuter et al. [10, 11] presented an algorithm for the
on-demand generation of infinite cities in a regular rectangular
grid. In their approach, the street network has to be aligned
with the main axis, and all building lots must have the same
square shape and size (see Figure 2). The visible buildings are
determined and procedurally generated according to the view-
ing frustum. Each building lot is assigned an integer number
according to its coordinates using a hash function. This number
is used as another seed for the pseudo-random building gener-
ation of that building lot. Some of these ideas are applied and
extended in our approach.

A method for real-time generation of detailed procedural
cities from GIS data was published by Cullen and O’Sullivan [12].
Their system uses a client-server approach, allowing multiple
clients to generate any part of the city without requiring the
full data-set. It creates the building geometry on-demand from
the provided lot database and, in contrast to our work, does
not address street and lot generation. Vanegas et al. [13] pre-
sented an interactive method for procedural generation of city
parcels. They generate spatial configurations of parcels similar
to real-world cities and support consistent lot locations relative
to their containing blocks. Their approach generates parcels
highly similar to those observed in real-word cities, but it mainly
focuses on parcel layout and does not address all the phases of
the city-generation process, unlike our method.

Aliaga et al. [14] presented a system for synthesizing urban
landscapes by example. They proposed a random walk algo-
rithm for obtaining parameters from existing cities that are later
used in the generation process. Their system was somewhat ca-
pable of on-demand generation, but it was neither intended nor
suitable for distributed environments because it required knowl-
edge of all previously generated geometries for each future step.

On-demand world generation is highly related to texture
synthesis algorithms. The main difference between these two
approaches is the use of the generated results and whether the

Figure 2: Previous approach in infinite-city rendering published by Greuter et
al. [10, 11] showing street level view. Note the regular rectangular shape of the
street network.

algorithm generates vector or raster output. Algorithms for tex-
ture synthesis usually use Voronoi diagrams [15] of randomly
distributed points. One of the pioneering works in this area was
published by Worley [16], who uses a function that comple-
ments Perlin fractal noise to produce textured surfaces resem-
bling flagstone-like tiled areas, an organic crusty skin, crumpled
paper, ice, rock, mountain ranges, and craters. Our algorithms
are inspired by his function to determine the nth-closest points
that affect the structure of the texture at the currently generated
area. We aim for a similar goal, but we use Delaunay triangu-
lation instead. We also use techniques based on Voronoi dia-
grams to divide areas that are affected by different geometrical
elements.

Liang et al. [17] presented another algorithm for synthe-
sizing textures from an input sample in real-time, but they use
a significantly different approach than ours and their results
are not isotropic, which is important for stateless generation.
Texture synthesis can also be used to generate street patterns
[18, 19], but these works use different approaches that are dif-
ficult to adjust for the purposes of infinite cities. Lefebvre and
Hoppe [20] presented an algorithm for parallel on-demand tex-
ture synthesis based on a neighborhood matching approach.
Their scheme defines an infinite, deterministic, aperiodic tex-
ture from which rectangular views can be computed in real-time
on a GPU. Another advance in infinite texture generation was
made by Cohen et al. [21]. They utilized a small set of Wang
Tiles to tile a plane non-periodically. Using a proper tile set, the
texture can be extended on-demand. In 2007, Merrell [22] pre-
sented an algorithm for generating 3D buildings and cities from
a set of 3D tiles. Merrell’s later work [23] was focused on con-
tinuous city model synthesis. These techniques are, however,
limited to structures aligned with the main axes.

To generate a realistic world structure, we must first ana-
lyze examples to acquire characteristics that are later used in
procedural modeling. Important progress in inverse procedural
modeling was made by Stava et al. [24]. They create parametric
context-free L-systems that represent an input 2D model. Their
approach is based on vector shape recognition, clustering in
the transformation spaces and detecting structures as L-system
rules. Elements and structures can be edited by changing the
L-system parameters.

Our approach follows up on the above works, combining
their benefits and removing some of their limitations. Unlike
[10, 11, 22, 23], our building lots can have various sizes and
shapes, streets can be arbitrarily oriented, and the street network
is not periodic. Unlike [14], our approach adds capabilities for
distributed environments as well as the ability to generate only
content related to the view frustum of the client.

3. Stateless Generation Approach

We have laid down the following general requirements for
our world generator:

1. The generated world is infinite and is not periodic.

2. Clients and/or servers are able to generate the static part
of the world on-demand; they do not have to download

2

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

it from a single (common) place. They should download
only one random generator seed (or hash function) for the
whole world.

3. Generation of the world can start from any point. The
client will generate only those parts that are relevant (e.g.,
visible) to it.

4. The generation process is deterministic (usually achieved
using pseudo-random generators). The results are always
identical, regardless of the starting point or the area rele-
vant to the client.

If a generator fulfills the above requirements, we call it a
stateless generator. This is because its results do not depend
on the results (or inner states) of other generators working in
parallel or on its previously generated content. The defined re-
quirements have the following outcomes:

a. Generated parts of the world can be cached. When any part
of the world is cleared from the cache, it can be re-generated
again, and it will be exactly the same as the original.

b. When multiple clients and/or servers generate the world, the
intersected areas are exactly the same, and the generated vir-
tual worlds connect seamlessly, despite that they started gen-
erating at different starting points and have not communi-
cated with each other.

We assume that the world is infinite in two dimensions only
and consists of buildings or other objects on an infinite plane.
The 3D model is created later from the generated layout on the
plane. We provide both a general purpose guideline and a spe-
cific version for generating the infinite urban landscape. The
specific algorithm follows the standard city-generation work-
flow proposed by Parish and Müller [9], initially designed for fi-
nite cities. The workflow starts with the city street network, and
buildings are generated afterward (phases: a. street network, b.
building blocks/lots, c. building geometry). We explain our ap-
proach to city street-network generation, while the other phases
remain nearly the same as in the case of finite cities. When
working with infinite structures, we assume that we will com-
pute only those values that are needed due to the intersection
with the view frustum.

3.1. Street-network characteristics
To achieve the desired city appearance, our algorithms use

parameters that can either be provided by the user or measured
from an example of a city map. We will denote these parameters
as street-network characteristics.

When processing a map of an existing city, streets are re-
placed by straight segments between street junctions. These
segments are called street segments. Street segments are also
created during the generation process, and they are converted
to streets in the final phase of the algorithm.

To acquire the street-network characteristics from a map,
we use the random walk algorithm as described by Aliaga et
al. [14] applied to city-map street segments. A detailed descrip-
tion of the street network characteristics and the corresponding

terminology we adopt can also be found there. For our pur-
poses, the street network characteristics contain the following
parameters:

1. average length of a street segment and its variance

2. average unoriented angle between two consecutive street
segments and its variance

3. average number of street junctions on a surface unit (e.g.,
a square kilometer)

4. average number of street segments on a surface unit

5. street tortuosity – the average ratio between street length
and the corresponding street segment length

Our algorithms make an effort to ensure that the generated
street network will have similar network characteristics to those
of the original city map, but currently the resulting distribution
exactly corresponds only in mean values.

4. General algorithm for stateless infinite worlds

This section describes general guidelines for designing al-
gorithms for stateless infinite worlds. Later, we show how we
apply this algorithm template to urban landscapes.

The algorithm input consists of items shared among gener-
ators (in the case of multiple generators): the generator param-
eters (e.g., street-network characteristics); the tessellation grid
parameter d - as described below; and the hash function for
the pseudo random generator. Other input parameters are indi-
vidual per each generator: the position, orientation and field-
of-view of the camera in the infinite world, with near and far
clipping plane distance (this is usually called the view frustum).

The algorithm output is the geometry of objects within the
view frustum. Note that because the algorithm works in a 2D
plane, we work with view frustum projections to the plane rather
than the corresponding 3D representation. The shape is not im-
portant for the algorithm; it works with any bounded 2D area.

Each step of the algorithm is now described in greater detail
below:
Step 1 – Tessellation: Create a non-periodic tessellation of the
infinite plane. The tessellation is only an auxiliary structure not
visible in the final model. Subdividing the plane into a set of
bounded areas (called tessellation fragments) allows us to trans-
form the problem into sub-problems of generating content only
in the areas intersected with the view frustum. In Section 5, we
provide a novel sub-algorithm for the tessellation of an infinite
plane into a non-periodical set of arbitrarily oriented triangles.
We prove that this algorithm fulfills the requirements for state-
less generation.
Step 2 – Generation of interfaces: Use a pseudo-random gener-
ator to define interfaces (objects that cross the fragment bound-
ary) between the adjacent tessellation fragments. In Section 6,
we provide a sub-algorithm that generates a street layout for an
urban landscape, where the interfaces are the street-segments
that intersect tessellation fragment boundaries.

3

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

Step 3 – Constrained generation: Generate the inner part of the
fragments while preserving the constraints set by the interfaces.
In Section 7, we provide another novel sub-algorithm for gener-
ating a street network in a constrained environment that solves
this problem for street layouts.
Step 4 – Procedural generation: Use traditional procedural gen-
eration to finish the landscape. This is the only step performed
in 3D.

5. Tessellation algorithm

This algorithm divides the infinite plane into a tessellation
of triangular tessellation fragments. It provides only those frag-
ments that are fully or partially within the client’s view frustum.

The algorithm input parameters are the view frustum; a hash
function; and the grid size parameter d. As its output, the tessel-
lation fragments that intersect the frustum are provided. Note
that the geometry of the fragments remains consistent in the
case of multiple overlapping queries.

First, we present a theoretical approach that operates with
infinite structures. Then, we provide practical instructions about
how to correctly generate the content within the view frustum
using limited computational resources. We achieve this by omit-
ting data that do not impact the content of the view frustum.
Note that, due to the connected structure of the world, even
objects near but outside the view frustum can affect objects in-
side the view frustum; we have to take this into account. The
approach is similar to the lazy-evaluation method used in func-
tional programming languages (e.g., Haskell) to work with in-
finite data structures.

5.1. Theoretical approach

Theoretical step 1: Suppose we have a plane dedicated for gen-
erating the world. Create a regular infinite square grid on the
plane. (The segment length of the grid should be a configurable
generator parameter. Let us denote the length as d.) We denote
the grid as the tessellation grid. The grid will divide the infi-
nite plane space into squares. Each of these squares has an X
and Y integer coordinate (positive or negative). Apply a hash
function to each pair of coordinates to acquire a pseudo-random
generator seed for each square (see Figure 3). We use universal
hashing functions for integer vectors of size 2.
Theoretical step 2: Use the seed to generate a pseudo-random
position inside the given square (with uniform distribution) and
place a node on that position. We will refer to these nodes as
tessellation nodes.
Theoretical step 3: Create a Delaunay triangulation using the
tessellation nodes. All tessellation nodes are connected with
triangulation edges to form an infinitely large tessellation. In
Section 5.2, we prove that Delaunay triangulation always pro-
duces the same results, regardless of its starting area, and can
be performed partially only using a finite subset of tessellation
points for any bounded area. We use the triangulation technique
described below to find the proper edges.

5.2. Triangulation

We must select a robust and unequivocal triangulation method
that requires knowledge only of the local surroundings of the
processed nodes, as an infinite number of nodes cannot fit into
memory. Delaunay triangulation has these desirable properties
for stateless generation.
Definition of Delaunay triangulation:
Three nodes form a triangle that belongs to Delaunay triangu-
lation if and only if there are no other nodes inside its circum-
circle.

We will now prove that Delaunay triangulation has proper-
ties of stateless generation. We will start with several lemmas.

Lemma 1: In a tessellation grid, any circle with a radius greater
than

√
2d has at least one tessellation node inside it.

Proof: Such a circle contains at least one whole grid square in-
side. Therefore, it also contains a tessellation node correspond-
ing to that square (see Figure 4).
Lemma 2: In a tessellation grid with Delaunay triangulation
performed on its tessellation nodes, no triangulation edge may
be longer than 2

√
2d.

Proof: According to the definition of Delaunay triangulation
and lemma 1, every triangulation edge has to be part of a trian-
gle with a circumcircle radius smaller than

√
2d. Edges greater

than 2
√

2d will not fit into the circumcircles.
Lemma 3: If we remove some nodes from a Delaunay triangula-
tion and perform a new Delaunay triangulation on the reduced
set of nodes, all triangles from the original triangulation that
were not using any of the removed nodes will be present in the
new triangulation. (Some new triangles may emerge, but that is
fine.)
Proof: It is an outcome of the definition of Delaunay triangula-
tion. (No new nodes will appear inside the original circumcir-
cles.)
Lemma 4: When we have Delaunay triangulation performed on
tessellation nodes of a tessellation grid and a bounded area, re-
moving the nodes that are farther from the area than 2

√
2d will

have no effect on the triangles that intersect with the area.

d

Figure 4: The circle has a radius slightly less than
√

2d and does not contain
any of the squares of the infinite grid. It is obvious that a circle with a radius
greater than

√
2d contains a whole square and its tessellation node.

4

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

Figure 3: Tessellation algorithm Left: An infinite tesselation grid (step 1) with pseudo-randomly generated tessellation points (step 2); Right: Infinite Delaunay
triangulation that forms tessellation fragments (step 3); These structures are only auxiliary for further phases and do not represent the final city geometry.

Proof: It is a direct outcome of lemma 2 and 3.
Theorem: The Delaunay triangulation performed on tessella-
tion nodes of a tessellation grid fulfills the definition of stateless
generation described in Section 3.
Proof:
We will follow the definition from Section 3:
1. The structure is infinite and is not periodic.
2. The triangulation can be generated by multiple generators
independently.
3. Parts not relevant to a bounded area can be removed using
lemma 4.
4. The process is deterministic.

Delaunay triangulation is unique except for situations where
there are 4 nodes on a circle. This, however, happens with
negligible probability for randomly generated points. We use
computation with particular high-precision real numbers, which
substantially decreases the probability of such cases and pro-
vides the same results on different operating systems and CPUs.

5.3. Practical approach
This approach describes how to generate the part of the in-

finite tessellation that is within the view frustum.
Step 1: Take the view frustum and enlarge it by 2

√
2d in all

directions. (Due to lemma 4 from the previous section, it is
guaranteed that triangulation inside the view frustum will not
be affected by content outside the enlarged view frustum.)
Step 2: Take all squares that intersect with the enlarged view
frustum and generate their corresponding tessellation nodes.
Filter out the tessellation nodes that are outside the extended
frustum. We now have all the tessellation nodes that are within
the extended view frustum.
Step 3: Create Delaunay triangulation on those nodes. Lemma 4
guarantees that we generate all triangles that intersect the view
frustum correctly. Filter out triangles that are completely out-
side the original frustum (these may not be generated correctly).
We have now acquired the part of the tessellation that is visible
in the view frustum and conforms to the stateless-generation
properties.
Complexity:
The most complex step of the algorithm is the triangulation.

The well-known DeWall algorithm [25] creates a Delaunay tri-
angulation for n nodes in O(n log log n) time. However, we
use the previous incremental algorithm for Delaunay triangu-
lation [26], with time complexity O(n log n), which allows us
to include additional nodes in the triangulation once the initial
set is finished. This is a nice feature in cases when the user and
his or her view frustum move and thus the visible area changes
over time. Each additional node can be added in O(log n) time.

6. Generating the tessellation fragment interfaces

In the case of an urban landscape, the interfaces consist of
street segments that cross the tessellation fragment boundary.
These street segments form constraints that guarantee a contin-
uous street network between the tessellation fragments.

The generation takes as its Input the processed tessellation
fragment together with the tessellation fragments adjacent to it,
plus the street-network characteristics. Its Output is the street
segments that cross the boundary. The street segments do not
cross each other and each of them intersects the target tessella-
tion fragment and exactly one other tessellation fragment.

First, we must create a seed for the pseudo-random gener-
ator to generate random numbers consistently. We create one
pseudo-random generator for each boundary edge. To do this,
we take the coordinates of the grid squares in which the tessel-
lation nodes were created (4 integers from two squares related
to the edge endpoints) and apply a hash function to them to find
the seed. We use the hashing function

h =
[
c1(x1 + x2) + c2(y1 + y2)

]
mod c3

where c1, c2, c3 are random large prime number constants.
This ensures that the results are the same when we start gener-
ating from the other tessellation fragment and that the transition
of the street network is seamless.

For each of the boundary edges we use the Poisson distribu-
tion to determine the number of street segments that cross the
edge. The distribution mean is set proportionally to the prod-
uct of the boundary-edge length, of the average street-segment
length and of the average number of street segments on a unit

5

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

Figure 5: Variance in street segment interface generation – (a) reference case,
(b) different numbers of street segments, (c) different crossing points, (d) dif-
ferent lengths, (e) different portion of street segments in the target fragment, (f)
different angles

surface to reflect the original network characteristics. For each
street segment, we generate a point on the boundary edge where
the street segment crosses the edge (uniform distribution), the
length of the street segment (normal distribution according to
the average street segment-length and variance), the portion of
the street segment that will be in the target fragment (uniform
distribution) and the angle between the street segment and the
edge (the distribution is proportional to the sine of the angle).
See Figure 5 for examples.

Each of the generated street segments is then tested for the
following conditions:

1. The street segment does not cross any previously gener-
ated street segment for this boundary edge.

2. The endpoints of the street segment are closer to its bound-
ary edge than to any other boundary edge. (see Figure 6)

If the street segment does not fulfill the conditions above, we
discard it and generate a new one instead.

7. Constrained street-generation algorithm

This algorithm generates the interior of the tessellation frag-
ment with respect to the constraints set by interfaces that consist
of street segments. Currently, the algorithm can be used only

Figure 6: A tessellation fragment (blue) and its generated interface street seg-
ments (black); The endpoints of the street segments must be closer to its bound-
ary edge, i.e., they must be within the dotted green boundary.

for a street network with no superimposed pattern. The algo-
rithm will not produce rectangular street networks (New York,
Chicago) or radial to center street networks (Paris). Those and
other types of street network patterns are described in [9]. It
is possible to create another stateless generation algorithm for
each of these patterns, but it seems to be difficult to find a uni-
versal algorithm for all of them due to the already fixed po-
sitions of the tessellation fragment interfaces generated in the
previous phase.

The algorithm Input parameters are the following: a con-
vex shape (i.e., the tessellation fragment) with street segments
crossing its boundaries (from the previous phase); and a pseudo-
random generator (from the coordinates of the tessellation nodes
of the triangle). The algorithm works generally for any convex
shape, although in practice we use triangular shapes generated
by the previous tessellation algorithm. Its Output is the gen-
erated street network inside the shape that takes the interfaces
into account.

Each step of the algorithm is shown in Figure 7. First, we
use the pseudo-random generator to place nodes that will be
junction candidates. We use Poisson disk distribution for this
task, and for simplification, the radius is equal to one-fourth
the average street-segment length from the street-network char-
acteristics. The end points of the interface street segments are
also junction candidates. Next, we connect each pair of junc-
tion candidates with an edge (which we call a street-segment
candidate) except for the following: (i) those that are too im-
probable according to the average street-segment length and its
variance in the street-network characteristics (exceeding a pre-
defined threshold) and (ii) those that would cross the interface
street segments. We then add the interface street segments to
the set of street-segment candidates. To generate the street net-
work, we incrementally add the paths of street-segment candi-
dates into the street network. We try to add paths that are in
accordance with the street network characteristics. To do this
step, we create an evaluation function to determine the appro-
priate paths to be added. Using this function, we transform our
problem to finding the shortest path in a weighted graph.

7.1. Street-segment path evaluation

We now must define a set of evaluation functions f for street
segments, angles and paths. For realistic street generation, we
have to create functions that assign a low value to paths accord-
ing to the street-network characteristics. For street segments
(e ∈ E) and angles between two adjacent street segments (α),
we have defined the evaluation functions as follows:

f (e) =
1

fx(length(e))
(1)

f (α) =
1

fx(α)
(2)

where fx is the probability density from the street network char-
acteristics (normal distribution based on the average length/angle
and its variance)

For paths, we have defined the path evaluation function f (P)
as follows: Let P = (e1, e2, ..., en) be a path, then its evaluation

6

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

is defined as:

f (P) = B(e1)B(en)[f (e1) + f (α1,2) +

f (e2) + f (α2,3) + · · · + f (αn−1,n) + f (en)] (3)

where B(e) is a penalty for path-ending street segments based
on the degree of the end nodes (i.e., junctions) of the path (the
number of incident street segments already added to the street
network). Note the difference between added street segments
and street-segment candidates.

B(e) = 10 for degree = 0 (i.e. dead end)
B(e) = 1 if e is an interface street segment
B(e) = degree for degree > 0, not an interface

The purpose of the penalty function is to prefer paths that con-
nect street-segment interfaces and to reduce the number of paths
with dead ends. The values of the penalty function are empiri-
cal.

Our goal is to find a path in G with the minimum sum of
evaluation values on its edges and angles. Because the common
path-finding algorithms do not work for values on angles, we
transform the original graph G to its dual form, called the line
graph L(G). This transforms angles to edges. After we find
the evaluation for paths in L(G) using a standard pathfinding
algorithm, we perform a reverse transformation to obtain the
path evaluations in graph G.

The line graph (also called the edge-to-vertex dual graph)
L(G) represents the adjacencies between the edges of G, and it
has the following properties:

1. Each node of L(G) represents an edge of G.

2. Two nodes of L(G) have a common edge if and only if
their corresponding edges in G share a common node.

Let us define the evaluation function f for the edges in the
line graph:
Let eL

a,b be an edge in L(G) corresponding to a pair of adjacent
edges ea and eb in G.
Let αa,b be an angle between the edges ea and eb

Let us define the evaluation function for the edge in the line
graph f (eL

a,b) as:

f (eL
a,b) =

1
2

f (ea) + f (αa,b) +
1
2

f (eb) (4)

Let PL = (eL
1,2, e

L
2,3, . . . , e

L
n−1,n) be a path in the line graph;

we define f (PL) as:

f (PL) = f (eL
1,2) + f (eL

2,3) + · · · + f (eL
n−1,n) (5)

Let us substitute eL
a,b using formula 4:

f (PL) =

(
1
2

f (e1) + f (α1,2) +
1
2

f (e2)
)

+(
1
2

f (e2) + f (α2,3) +
1
2

f (e3)
)

+ · · · +(
1
2

f (en−1) + f (αn−1,n) +
1
2

f (en)
)

(6)

We simplify the expression to:

f (PL) = 1
2 f (e1) + f (α1,2) + f (e2) + f (α2,3) +

f (e3) + · · · + f (en−1) + f (αn−1,n) + 1
2 f (en)

Figure 7: Constrained street-generation algorithm Top-left: A tessellation fragment (blue) with street network interfaces (black) during the phase of generating
junction candidates using Poisson disks Top-right: Street network segment candidates graph (green) Bottom-left: The found dual path PL (red, dashed) with
minimum evaluation in the line graph. Bottom-right: Path P (black) added to the street network; crossing street-network candidates have been removed.

7

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

We use the substitution from formula 3:

f (PL) =
f (P)

B(e1)B(en)
−

1
2

(f (e1) + f (en)) (7)

We express f (P) from the previous formula:

f (P) =

(
f (PL) +

f (e1) + f (en)
2

)
B(e1)B(en) (8)

7.2. Minimum evaluation path-adding algorithm
1. From a given graph G, create its line graph L(G).

2. Using the Floyd-Warshall algorithm, find the path with
the smallest evaluation f (PL) between each pair of nodes
in L(G).

3. Using formula 8, compute f (P) for paths dual to the paths
from the previous step. (Note that dual paths have a min-
imal evaluation in G between the appropriate nodes as an
outcome of formula 8. Also, note that f (e1), f (en), B(e1)
and B(en) are constant for all paths between edges e1 and
en.)

4. Find the path in G with the minimum evaluation.

5. Add the path to the street network.

6. Remove all street segment candidates that cross the added
path.

7. Repeat steps 1 – 6 until either the average number of
street segments on a surface unit in the processed frag-
ment is higher than the number from the street network
characteristics, or no street candidates are left.

8. Add all remaining street network interfaces to the street
network if they were not added by previous steps (this is
quite rare because street network interfaces are preferred
by the penalty function.)

The described path-adding algorithm presents an issue we
must address. It is not guaranteed that the path in G with the
minimum evaluation value will not cross itself, which is a sit-
uation we want to avoid. This happens quite rarely because
self-crossing paths usually have a high evaluation value, but it
is still possible. For this reason, we check the selected path for
self-crossing. If self-crossing is found, we do not add the street
segment that crosses a previously added street segment in step
5 and any subsequent segment of the processed path.
Complexity:
Because of the Poisson disk distribution of the junction candi-
dates, the number of street-segment candidates is linear to the
number of junction candidates O(n). The number of edges and
vertices of the line graph L(G) is also O(n). The Floyd-Warshall
algorithm requires O(n3) time to compute the evaluation for all
possible paths. The path evaluation has to be re-computed in
each cycle, so the total time complexity is O(n4) in the worst
case. The average case is faster because we add more than one
street-segment candidate with an average path.

Optional post-processing:
When the process of generating street segments is finished, we
generate the rest of the city using a combination of existing
algorithms. As the first step, we can optionally convert the
straight street segments into curved streets. This step is not
needed when we work with short average street segments. We
do this using the well-known midpoint displacements algorithm
based on the measured tortuosity. To guarantee that the curved
streets will not intersect, we create a Voronoi diagram for the
original street segments and re-generate all displacement oper-
ations that are outside the bounds of the corresponding Voronoi
cell until the displacement is within the cell.

8. Generating building lots and geometry

When the street network is complete, we create building
blocks out of the areas bounded by streets. In the next step, we
subdivide them into building lots, using an algorithm described
by Parish and Müller [9]. Figure 8 shows different phases of
the modeling process. The subdivision algorithm described by
Aliaga et al. [14] would also be suitable.

To generate the building geometry from the corresponding
lots, we use an approach based on L-systems[27] that was ex-
tended by Wonka et al. [8] and later significantly improved by
Müller et al. [7]. This approach generates a building geometry
using CGA (Computer Generated Architecture) grammar that
could be created by a model designer or obtained from existing
buildings using a semi-automatic process proposed in [28]. We
use an existing grammar that is provided with the CityEngine [29]
modeling software. One CGA grammar can generate many
building variations.

9. Limitations and potential extension

This section discusses the limitations of our approach and
offers suggestions on how they could be overcome. We also
discuss how to combine our algorithms with previous related
work. Our current implementation does not contain these tech-
niques.

The street generation algorithm presented here does not cur-
rently support multiple street types (e.g., highways, main roads
and narrow streets), but it can be extended to support them.
First, we need to acquire separate street-network characteristics
for each type of road. Then, we create street-interfaces for all
types of streets. The constraint generation phase is performed
multiple times for each street type, from the widest to the nar-
rowest.

Our current implementation also does not take into account
space-correlations of individual building types (e.g., industrial
buildings are often placed together in existing cities, as are
skyscrapers). This can be solved by creating an additional over-
lapping infinite quarter-type structure (e.g., a grid or a different
pseudo-randomly generated Delaunay triangulation) that will
provide building-type-probability parameters for the used CGA
grammar. The quarter type would be determined by a hash
function for each cell of the structure.

8

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

Currently, we are working with cities on a flat terrain only.
However, our approach can be combined with existing tech-
niques for procedural terrain generation, e.g. [30], to create
more realistic infinite cities. The corresponding street-generation
algorithm also has to be altered, e.g., to prefer streets on a flat
terrain rather than on a bumpy one.

Procedurally generated architectures using our approach can
be combined with a finite number of manually designed build-
ings. We suppose that the designed content is surrounded by a
street loop. In such a case, we add all the endpoints of the street
segments of the street loop to the pool of junction candidates
when we perform the constrained street-generation algorithm
of the corresponding Delaunay triangle. In the later phase, we
choose the segments of the street loop first, and we do not per-
form an evaluation for them. We can proceed similarly when
the designed content crosses the border of two or more Delau-
nay triangles.

By substituting the constrained generation algorithm, one
can generate different types of worlds than cities, such as mazes,
building interiors or electric circuits. Every new type of content
will require certain minor modifications.

Moreover, we have identified certain weaknesses of the al-
gorithm that we are unable to overcome at the moment. Our
method does not provide good results when the input street-
network characteristics have been obtained from an existing
map with diverse types of street layouts, e.g., city center and
surrounding suburbs. In such cases, the resulting street lay-
out does not reflect either of the original structures. Another
problem arises when distances between street crossings are rel-
atively long compared to the tessellation fragments - this can
occur particularly in the case of highways. In such cases, the
constrained street-generation algorithm does not produce ade-
quate results. We have also noticed performance problems in
the case of high-density street layouts with large tessellation
fragments due to the O(n4) complexity of the algorithm. We
therefore recommend the use of smaller tessellation fragments
for dense street layouts with short streets and greater ones for
a sparse layout with long streets. Our method is also limited to
simple CGA grammars that can be generated in real time and
that provide a reasonably low number of polygons per build-
ing (up to 50). The sizes of the generated lots must also re-
flect the possibilities of the CGA grammar — some grammars
can have a limit on the maximum or minimum lot sizes. For-

tunately, most grammars can overcome this limitation by gen-
erating a simple standby geometry, usually an empty lot or a
parking space.

10. Applications

We have found two main scenarios that perfectly take ad-
vantage of our approach:

The first scenario uses a distributed 3D world on multiple
client devices with sufficient computation power but with lim-
ited network throughput. This reflects current mobile phones,
tablets and laptops in areas without a high-speed mobile con-
nection or Wi-Fi connectivity. The devices would use a simple
server infrastructure to share the hash function and would then
be able to generate the static content of the world on their own.
They only need to synchronize dynamic changes and positions
of users in the world.

The second scenario uses servers in the cloud environment
for generating the world and providing the generated content to
the connected clients. The stateless generation property allows
us to dynamically add more instances of the server on-demand
based on the number of clients connected and on the area that
needs to be covered. The servers can generate content indepen-
dently, and they do not have to synchronize their work. Never-
theless, having a common cache for already generated content
would be beneficial to them. This scenario is useful for a de-
manding world-generation process and for clients with limited
computational power (e.g., low-end mobile phones, streaming
to TV). This can also be used in computer games to prevent
players from cheating by preventing the client from accessing
data it does not need to display. Content is generated in the
cloud and is then sent to the client devices as vector geome-
try or is streamed as video. In the case of vector geometry, the
client device caches content already received to save bandwidth
for future queries.

11. Implementation

To verify that our approach is suitable on multiple plat-
forms, we have developed mobile, laptop/tablet, and web browser
applications that interactively generate infinite street networks

Figure 8: Left: Generated street network from top view; Middle: Added building lots; Right: Added building geometry

9

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

according to the generator parameters. Our implementation fol-
lows the first scenario from the previous section. We did not
implement the second scenario.

The mobile application runs on the Windows Phone 8 op-
erating system using WinPRT technology. The laptop/tablet
application uses WinRT technology and can be used on Win-
dows 8 laptops and tablets (e.g., Microsoft Surface), including
the limited Windows RT operating system. The web application
uses Silverlight 5 technology [31] (.Net equivalent of a Java ap-
plet). All our implementations are written in C# and share com-
mon parts of the code using C# Portable Libraries. The graphics
are rendered using the cross-platform XNA library [32, 33].

We have considered using existing software for geometry
generation from CGA grammars to avoid re-implementing them.
However, none of the common procedural building modeling
tools currently support on-demand generation controlled by 3rd
party programs. We therefore created an automatic export mod-
ule for the CityEngine for on-demand generation using its Jython
scripting (Python based on Java Runtime), although plugins are
not officially supported by this software. According to CityEngine
customer support, future versions should contain official sup-
port for plugins. The plugin allows us to generate buildings
on demand from their lot shapes. This approach enabled us
to generate the city without re-implementing the CGA gram-
mar interpreter. In real scenarios, it is not suitable to include
CityEngine in the client application because of its licensing
policy. CityEngine cannot be executed on mobile phones, so
we run it remotely on a separate server in that case. For the
requirements of real future computer games and simulations,
we assume that the CGA grammar interpreter will be imple-
mented as a sub-program of the client application. Details about
CityEngine plugin development are described in [34].

Because different platforms provide different implementa-
tions of their standard pseudo-random generators, we provide
our own unified implementation of the pseudo-random genera-
tors and the hash function that is based on Donald E. Knuth’s
subtractive random number generator algorithm [35].

12. Performance and measurements

We measured the performance of the application on a Sony
Vaio S15 laptop (Windows 8; processor: Intel Core i7-3612QM
Quad-core 2.1 GHz; 8 GB RAM; graphics card: Intel HD 4000;
resolution: 1920 × 1080). First, we measured the time un-
til the first frame is rendered. This requires that all buildings
in the view frustum be generated beforehand. We compare
our method with the previous method published by Greuter et
al.[10]. Their approach creates many more streets and fewer
buildings per surface unit. To compensate for this , we used
different view frustum sizes for each of the methods to achieve
roughly the same number of buildings in the view frustum. We
performed the measurements for multiple frustum sizes that are
in accordance with multiple numbers of generated buildings –
see Figure 9.

Our method is slightly slower, as it generates more advanced
streets, but both methods run at approximately the same speed.

Figure 9: Comparison of the performance of methods for city-layout generation
(average from 10 measurements with different seeds). Our method is more
demanding.

Figure 10: Rendering speed for a moving user; the content is generated on-
demand (average from 10 measurements with different seeds). The experiment
was performed with a view frustum that contains approximately 1000 simulta-
neously displayed buildings. The average building in the measurement has 35.4
textured polygons.

Next, we measured the number of frames per second (FPS)
for a static camera and a moving camera. The moving view
frustum case has to address on-demand generation of the street
network and additional buildings. Figure 10 shows how a walk-
ing or running user fits into the real-time frame-rate rendering
speed. The interactive frame-rate (above 5 FPS) is still main-
tained for a higher speed.

To prove that our approach can be used on mobile phones,
we performed measurements on a Nokia Lumia 920 smartphone
(Windows Phone 8, Qualcomm MSM8960 Snapdragon Dual-
core 1.5 GHz processor, 1 GB RAM, Adreno 225 graphics card,
resolution 1280 × 768). In this case, the mobile phone is used
to render a geometry that is generated on a remote computer.
The results are shown in Figure 12. The phone is capable of
rendering up to 800 buildings in real time. In this test, we do
not consider any delay caused by data transfer from a remote
computer. These issues are discussed in [37].

10

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

Figure 11: Examples of street network varieties - Left: A dense street network based on triangular street shapes; Middle: A medium-dense network based on
rectangular street shapes; Right: A low-density street network based on hexagonal shapes; Note that the results do not perfectly reflect the geometrical shapes of the
original network.

Figure 12: Rendering speed for different numbers of buildings on a Nokia Lu-
mia 920. The phone refresh limit is 30 FPS.

13. Conclusion

We have developed an algorithm for generating a possibly
infinite street network on-demand. The main advantage of the
algorithm is that it can generate only the content that is visi-
ble to the client and that the generated content is consistent in
the case of multiple clients. Our appearance of an infinite city
looks more natural than that of the previous approach devel-
oped by Geuter et al. (compare the results in figures 1 and 2),
although it does not perfectly simulate the patterns of the exam-
ple of existing street network, as the path-selection heuristics do
not necessarily result in a perfectly corresponding distribution
of segment lengths - see examples in Figure 11. Additional ex-
amples of our method are shown in Figure 13. The algorithm
can be used in real-time both on personal computers and on
mobile phones. We have also defined requirements and general
guidelines for stateless generation that can be used for other
algorithms.

14. Future work

The use of the algorithm presented here is limited to static
virtual-world content. It the system could be enhanced to han-

dle both static and dynamic content, in which case synchroniza-
tion among clients will be necessary.

Currently, our method does not guarantee an appropriate
distribution of street length patterns and angles. The distribu-
tions only correspond in mean values. Although the result is
already visually attractive, it may be possible to improve the al-
gorithm to simulate the original street patterns more faithfully
by reflecting this need more strongly, for example, in the char-
acteristics of the Poisson-disk distribution or in the path selec-
tion heuristics.

Thus far, we have not implemented and evaluated the sec-
ond scenario from section 10. We expect that this will be inter-
esting from the viewpoints of scalability and synchronization.

Other generating algorithms could be adapted to fulfill state-
less generation requirements and could be combined with our
approach. This would be interesting especially with popular
terrain-generating algorithms and engines. Müller et al. [38]
have presented an algorithm for synthesizing building façades
by example. It would be interesting to combine their approach
with ours to automatically generate infinite cities with a struc-
ture that matches the maps of existing cities in terms of both
building types and street structure.

On-demand real-time generated cities can benefit from tech-
niques such as occlusion detection or level-of-detail of proce-
durally generated models to increase rendering performance.
Previous post-processing tools and techniques must be altered
to support models created on-demand. Important progress has
been made in a concurrent work by Steinberger et al. [39, 40].
They use GPU for real-time shape-grammar-based generation
and rendering of urban landscapes and utilize methods of visi-
bility pruning and adaptive levels of detail to dynamically gen-
erate only the geometry needed to render the current view.

Acknowledgements

This research has been partially supported by the Technol-
ogy Agency of the Czech Republic under research program
TE01020415 (V3C - Visual Computing Competence Center)
and by Microsoft Czech Republic.

11

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

Figure 13: Examples of our method Top row: Street network generated from street-network characteristics of Berlin. Detailed view of the generated city; Following
rows: Generated cities with alternative CGA grammars - ancient Pompeii [36], Venice and city suburbs

12

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

References

[1] Chun B, Maniatis P. Augmented smartphone applications through clone
cloud execution. In: Proceedings of the 12th conference on Hot topics in
operating systems. USENIX Association; 2009, p. 8–11.

[2] Iosup A, Lăscăteu A, Ţăpuş N. Cameo: Enabling social networks for mas-
sively multiplayer online games through continuous analytics and cloud
computing. In: Proceedings of the 9th Annual Workshop on Network and
Systems Support for Games. IEEE Press; 2010,.

[3] Najaran M, Krasic C. Scaling online games with adaptive interest man-
agement in the cloud. In: Proceedings of the 9th Annual Workshop on
Network and Systems Support for Games. IEEE Press; 2010,.

[4] Chen K, Huang P, Huang C, Lei C. Game traffic analysis: An MMORPG
perspective. In: Proceedings of the international workshop on Network
and operating systems support for digital audio and video. ACM; 2005, p.
19–24.

[5] Waldo J. Scaling in games and virtual worlds. Communications of the
ACM 2008;51(8):38–44.

[6] Vanegas C, Aliaga D, Wonka P, Müller P, Waddell P, Watson B. Mod-
elling the appearance and behaviour of urban spaces. In: Computer
Graphics Forum; vol. 29. Wiley Online Library; 2010, p. 25–42.

[7] Müller P, Wonka P, Haegler S, Ulmer A, Van Gool L. Procedural model-
ing of buildings; vol. 25. ACM; 2006.

[8] Wonka P, Wimmer M, Sillion F, Ribarsky W. Instant architecture; vol. 22.
ACM; 2003.

[9] Parish Y, Müller P. Procedural modeling of cities. In: Proceedings of the
28th annual conference on Computer graphics and interactive techniques.
ACM; 2001, p. 301–8.

[10] Greuter S, Parker J, Stewart N, Leach G. Real-time procedural generation
of pseudo infinite cities. In: Proceedings of the 1st international confer-
ence on Computer graphics and interactive techniques in Australasia and
South East Asia. ACM; 2003, p. 87–95.

[11] Greuter S, Parker J, Stewart N, Leach G. Undiscovered worlds – Towards
a framework for real-time procedural world generation. In: Fifth Interna-
tional Digital Arts and Culture Conference, Melbourne, Australia. 2003,.

[12] Cullen B, O’Sullivan C. A caching approach to real-time procedural gen-
eration of cities from gis data. Journal of WSCG 2011;19(3):119–26.

[13] Vanegas CA, Kelly T, Weber B, Halatsch J, Aliaga DG, Müller P. Pro-
cedural generation of parcels in urban modeling. In: Computer Graphics
Forum; vol. 31. Wiley Online Library; 2012, p. 681–90.

[14] Aliaga D, Vanegas C, Beneš B. Interactive example-based urban layout
synthesis. In: ACM Transactions on Graphics (TOG); vol. 27. 2008,.

[15] De Berg M, Van Kreveld M, Overmars M, Schwarzkopf OC. Computa-
tional geometry. Springer; 2000.

[16] Worley S. A cellular texture basis function. In: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques.
ACM; 1996, p. 291–4.

[17] Liang L, Liu C, Xu YQ, Guo B, Shum HY. Real-time texture syn-
thesis by patch-based sampling. ACM Transactions on Graphics (ToG)
2001;20(3):127–50.

[18] Glass KR, Morkel C, Bangay SD. Duplicating road patterns in south
african informal settlements using procedural techniques. In: Proceedings
of the 4th international conference on Computer graphics, virtual reality,
visualisation and interaction in Africa. ACM; 2006, p. 161–9.

[19] Sun J, Yu X, Baciu G, Green M. Template-based generation of road net-
works for virtual city modeling. In: Proceedings of the ACM symposium
on Virtual reality software and technology. ACM; 2002, p. 33–40.

[20] Lefebvre S, Hoppe H. Parallel controllable texture synthesis. ACM Trans-
actions on Graphics (TOG) 2005;24(3):777–86.

[21] Cohen M, Shade J, Hiller S, Deussen O. Wang tiles for image and texture
generation. ACM Transactions on Graphics 2003;22(3):287–94.

[22] Merrell P. Example-based model synthesis. In: Proceedings of the 2007
symposium on Interactive 3D graphics and games. ACM; 2007, p. 105–
12.

[23] Merrell P, Manocha D. Continuous model synthesis. In: ACM Transac-
tions on Graphics (TOG). 2008,.

[24] Št’ava O, Beneš B, Měch R, Aliaga D, Krištof P. Inverse procedural
modeling by automatic generation of L-systems. In: Computer Graphics
Forum; vol. 29. Wiley Online Library; 2010, p. 665–74.

[25] Cignoni P, Montani C, Scopigno R. Dewall: A fast divide and con-
quer delaunay triangulation algorithm in Ed . Computer-Aided Design
1998;30(5):333–41.

[26] Leach G. Improving worst-case optimal delaunay triangulation algo-
rithms. In: 4th Canadian Conference on Computational Geometry. Cite-
seer; 1992, p. 340–6.

[27] Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants.
Springer; 1991.

[28] Aliaga D, Rosen P, Bekins D. Style grammars for interactive visualization
of architecture. Visualization and Computer Graphics, IEEE Transactions
on 2007;13(4):786–97.

[29] Esri . CityEngine – 3D modeling software for urban environments. 2008.
http://www.esri.com/software/cityengine.

[30] Bevilacqua F, Pozzer CT, d’Ornellas MC. Charack: Tool for real-time
generation of pseudo-infinite virtual worlds for 3D games. In: Proceed-
ings of the 2009 VIII Brazilian Symposium on Games and Digital Enter-
tainment. IEEE Computer Society. ISBN 978-0-7695-3963-8; 2009, p.
111–20.

[31] Microsoft . Silverlight. 2007. http://www.silverlight.net/.
[32] Petzold C. Microsoft XNA Framework Edition: Programming Windows

Phone 7. Microsoft press; 2010.
[33] McClure WB, Blevins N, Croft IV JJ, et al. Cross Platform Android and

iOS Mobile Development. Wrox; 2012.
[34] Sedlacek D, Danihelka J, Lukac M, Berka R, Zara J. Virtual cities in time

and space (ViCiTiS). Tech. Rep.; Czech Technical University in Prague,
FEE; 2012.

[35] Knuth DE. The art of computer programming 4th edition, volume 2,
section 3.2. Addison-Wesley; 2006.

[36] Müller P, Vereenooghe T, Ulmer A, Van Gool L. Automatic reconstruc-
tion of Roman housing architecture. Recording, modeling and visualiza-
tion of cultural heritage 2005;:287–98.

[37] Danihelka J, Kencl L. Collaborative 3D environments over Windows
Azure. In: Proceedings of IEEE Seventh International Symposium on
Service-Oriented System Engineering and Mobile Cloud. 2013, p. 472–7.

[38] Müller P, Zeng G, Wonka P, Van Gool L. Image-based procedural mod-
eling of facades. ACM Transactions on Graphics 2007;26(3).

[39] Steinberger M, Kenzel M, Kainz B, Mueller J, Wonka P, Schmalstieg D.
Parallel generation of architecture on the gpu. In: Computer Graphics
Forum; vol. 33. 2014,.

[40] Steinberger M, Kenzel M, Kainz B, Wonka P, Schmalstieg D. On-the-
fly generation and rendering of infinite cities on the gpu. In: Computer
Graphics Forum; vol. 33. 2014,.

13

Authors' copy - Original version published in: Computers & Graphics, Volume 44, November 2014, p. 33 - 44.

