
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2008, Redwood City, California, February 15–17, 2008.
© 2008 ACM 978-1-59593-983-8/08/0002 $5.00

Polypostors: 2D Polygonal Impostors for 3D Crowds

Ladislav Kavan∗ 1 Simon Dobbyn1 Steven Collins1 Jiřı́ Žára2 Carol O’Sullivan1

1Trinity College Dublin, 2Czech Technical University in Prague

(a) (b) (c)

Figure 1: Our algorithm converts a 3D polygonal character (a) to 2D textured polygons, animated efficiently by displacing their vertices with
associated texture coordinates (b). This view-dependent representation (which we call Polypostors) achieves dramatic simplification with low
texture memory overhead. The intended application is real time rendering of large crowds (c).

Abstract

Various methods have been proposed to animate and render large
crowds of humans in real time for applications such as games and
interactive walkthroughs. Recent methods have been developed to
render large numbers of pre-computed image-based human repre-
sentations (Impostors) by exploiting commodity graphics hardware,
thus achieving very high frame-rates while maintaining visual fi-
delity. Unfortunately, these images consume a lot of texture mem-
ory, no in-betweening is possible, and the variety of animations that
can be shown is severely restricted. This paper proposes an alterna-
tive method that significantly improves upon pre-computed impos-
tors: automatically generated 2D polygonal characters (or Polypos-
tors). When compared with image-based crowd rendering systems,
Polypostors exhibit a similarly high level of rendering efficiency
and visual fidelity, with considerably lower memory requirements
(up to a factor of 30 in our test cases). Furthermore, Polypostors
enable simple in-betweening and can thus deliver a greater variety
of animations at any required level of smoothness with almost no
overhead.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: crowd animation, impostors, animation compression

∗e-mail: kavanl@cs.tcd.ie

1 Introduction

In recent years, we have seen impressive computer generated crowd
scenes in feature films. The next challenge is to achieve the same
functionality in real time.

The problem with crowd rendering is that due to the usual shape
of the viewing frustum, the vast majority of characters to be ren-
dered are far from the viewer and thus appear small. Level-of-detail
techniques offer a direct solution to this problem, by reducing the
complexity of 3D animated geometry in proportion to distance to
the viewer [DeCoro and Rusinkiewicz 2005]. However, there are
lower limits on the maximal possible simplification [McDonnell
et al. 2005]. Intuitively, the human body is a complex object and
thus cannot be convincingly represented in 3D using just a few tri-
angles.

Image-based crowd rendering has recently gained in popularity
[Tecchia and Chrysanthou 2000]. This is because it allows ex-
tremely fast drawing – just one textured quad per character, and
the preparation of impostors is fully automatic. The drawback is
in the consumption of texture memory, which is unfortunate espe-
cially when we realize that the stored images are actually highly
correlated; decorrelation or interpolation of the images is expensive
and usually prohibitive with a given time budget.

This paper proposes a novel representation of virtual characters,
somewhere between geometry and impostors. The idea is to use
2D animated polygonal characters, pre-generated for a discrete set
of viewing directions (as with classical impostors). However, unlike
those impostors that store an image per animation key-frame, Poly-
postors are animated by displacing vertices of 2D polygons (using
just one texture for the whole animation). Since vertex displace-
ments can be stored very compactly, this results in much more ef-
ficient memory usage. Also, interpolation becomes an easy task,
computable entirely by vertex shaders. The advantage of Polypos-
tors over 3D geometry rendering is that in the 2D domain, much
more drastic simplification is possible (e.g., our Polypostors, as
shown in Figure 1, use 90 triangles per character, while the orig-
inal 3D mesh uses 3198 triangles).

149

We describe an algorithm for converting 3D animated character
models to 2D textured polygons (for a given viewing direction).
The input to this algorithm is a 3D character (using either bone
based skinning or animated mesh), cut into several body parts in
order to resolve occlusion issues. For the first frame of the ani-
mation, each body part is rendered and converted into textured 2D
polygons. For all subsequent frames, an algorithm based on dy-
namic programming shifts the vertices of the 2D polygons so that
they approximate the actual rendered image as closely as possible.
At run-time, the deformed polygons are composited in depth order,
creating the illusion of an animated 3D character.

2 Related Work

This section presents a brief overview of related work on real time
crowd rendering. For a more detailed survey please refer to [Ryder
and Day 2005] or [Thalmann et al. 2006].

Geometric Level Of Detail (LOD) is a technique that has been used
to improve the performance of real time crowd rendering [Ulicny
et al. 2004]. This technique reduces the number of rendered poly-
gons per frame by using several representations of an object with
decreasing complexity. However, care has to be taken when gener-
ating these low resolution meshes, as removing too much detail can
produce blocky results. Animation artifacts due to the loss of joint
vertices can also occur, thus reducing the overall visual realism of
the virtual human. Additionally, it has been found that a low res-
olution model is not perceptually equivalent to its high resolution
counterpart at conveying subtle variations in motion [McDonnell
et al. 2005], illustrating the importance of accounting for animation
when selecting LOD schemes. Billboard clouds present an appeal-
ing alternative to extreme geometric LOD simplification [Décoret
et al. 2003].

Another problem with rendering thousands of animated meshes is
the cost associated with each API call. To address this issue, Gos-
selin et al. [2005] reduce the number of API calls needed to draw
multiple characters’ meshes by packing a number of instances of
character vertex data into a single vertex buffer. A recent NVIDIA
whitepaper [Dudash 2007] applies a new DirectX 10 feature called
instancing in order to overcome the same problem.

Planar impostors have been widely used in crowd rendering since
they provide a good visual approximation to complex objects at a
fraction of the rendering cost. In [Tecchia and Chrysanthou 2000;
Tecchia et al. 2002], pre-generated impostors are used for render-
ing several thousand virtual humans walking around a virtual city
at interactive frame-rates. This involves pre-rendering an image
of a character for a collection of viewpoints around the object for
multiple key-frames of animation. At run-time, the most appropri-
ate viewpoint image is selected for the current key-frame and dis-
played on a quadrilateral, which is dynamically oriented towards
the viewer. However, the main drawback of this approach is the
amount of texture memory consumed (which depends on the num-
ber of viewpoints and key-frames at which the impostor images
are pre-generated). While dynamically generated impostors [Aubel
et al. 2000] use less memory (since no storage space is devoted to
any impostor image that is not actively in use), this method only
works for crowds of individuals with similar orientation and ani-
mation, since it relies on reusing the current dynamically generated
image over several frames in order to be efficient.

The primary visual problem when using an impostor to represent
a virtual human is that, once the human is close to the viewpoint,
the impostor’s flat and pixellated appearance becomes quite obvi-
ous. To solve this problem, Dobbyn et al. [2005] developed the
Geopostor system, which provides for a hybrid combination of pre-
generated impostor and detailed geometric rendering techniques for

virtual humans. By switching between the two representations,
based on a pixel to texel ratio, their system allows visual quality
and performance to be balanced.

Textured depth meshes [Jeschke and Wimmer 2002] are similar to
the Polypostor representation as they simplify an object by triangu-
lating a rendered image of the object based on the image’s depth
values. However, they are expensive to generate and can also suffer
from occlusion artifacts resulting in image gaps. While this repre-
sentation can accelerate the rendering of static polygonal models,
it is not suitable for animated crowds. Other related research is the
interactive system developed by Igarashi et al. [2005] which allows
a user to deform a 2D shape without using a skeleton or freeform
deformation. By triangulating an image of the shape, the system
allows the user to create simple 2D animations by setting the posi-
tion of the vertices for each key-frame while minimizing distortion.
Polypostors can also be considered as a method of animation com-
pression [Alexa and Müller 2000; Briceno et al. 2003].

At the core of our technique is an algorithm for matching two tex-
tured polygons (such as those in Figure 2) in an optimal way with
respect to a chosen error metric. This is reminiscent of the problem
of morphing and especially of the solution [Sederberg and Green-
wood 1992], which also uses dynamic programming. However,
Sederberg and Greenwood’s approach, as well as more modern
methods [Liu et al. 2004], find correspondences according to the
deformation of a polygon’s outline, i.e., a planar curve. In con-
trast, our algorithm matches a source polygon with the target one
based on the deformation of its interior, i.e., the texture. In the
computer vision community, a similar algorithm is used to detect
shapes in images [Felzenszwalb 2003] (which is, however, a much
more computationally complex process). Also, an idea similar to
Polypostors has been proposed for person tracking [Ju et al. 1996].

3 Polypostor construction

As input, we have a 3D animated character. Before constructing
the Polypostor representation, the character mesh is cut into several
pieces, to allow us to account for visibility issues (Section 3.2).

In our experiments, we manually decompose the character into two
legs, two arms and torso, and cap the holes that result from discon-
necting the mesh. The caps are manually textured so that if visible
they will not produce unpleasant artifacts. The original skeletal ani-
mation is then applied to the body parts – when composed together,
they give exactly the same animation as was originally provided
(the hole capping is performed because subsequent steps may in-
troduce errors that can cause the holes to become visible).

The first step in generating Polypostors is the same as when creating
impostors: discretize the set of viewing directions. This is accom-
plished by placing the segmented 3D character at the origin and
enclosing it within a hemisphere. This hemisphere is sampled by a
fixed number of points that are uniformly distributed [Rusin 1998].
They correspond to camera positions with the camera oriented to-
wards the origin (twist around the viewing axis is not considered).
For every such direction, a Polypostor is generated. Our actual im-
plementation uses 137 camera directions (Polypostors) per charac-
ter (in order to obtain comparable results with Geopostors [Dobbyn
et al. 2005], where 136 viewing directions are used).

We restrict the following discussion to one fixed viewing direction
and one specific body part. The final algorithm simply iterates the
process over all viewing directions and all body parts. We pose the
character according to the first frame of its animation. The body
part in question is rendered from the given camera direction at a
fixed resolution (given by the maximal projected size of our char-
acters; we use 128 × 128). Using two special purpose fragment

150

shaders, we separately render a color and a normal image, which
will enable us to achieve more realistic lighting at run-time [Dob-
byn et al. 2005].

The next step encloses each rendered body part within a polygon
(not necessarily convex, but without self-intersections). To this end,
we apply a standard contour tracing algorithm [Pavlidis 1981]. This
yields a highly-detailed boundary representation. In order to reduce
the number of vertices, we use standard simplification techniques
(adapted to 2D) [Luebke et al. 2002]. In particular, we remove ver-
tices in a greedy way, i.e., we always discard the vertex v that has
the smallest distance from the edge formed by omitting v. However,
we also take into account the ratio of the longest to shortest edge,
in order to encourage uniform distribution of resulting vertices. In
our experiments, this simplification is terminated when we have re-
duced the polygons to 40 vertices. We denote this polygon as S
(source) and tessellate it using constrained Delaunay triangulation
(see Figure 2 left). We do not allow any internal vertices, which is
important for polygon fitting (Section 3.1). Note that the final sim-
plification (producing the primitives that will actually be rendered)
will be computed subsequently.

The same process is repeated for every other frame of the anima-
tion (sampled at 10Hz in our experiments), simply producing more
vertices for higher accuracy (in our case 50). This results in a tex-
tured polygon such as in Figure 2 right, which we will denote as T
(target). The task now is to map vertices from S (representing the
first frame of the animation) to vertices T (representing some ar-
bitrary frame in the animation) so that the stretched source texture
matches the target one as closely as possible. Our first approach
was to exploit the existing 3D model in order to guide the fitting
process (basically, binding the 2D vertices to the 3D mesh). Unfor-
tunately, we did not find this approach to be sufficiently robust. The
main problem was that 3D vertices associated with vertices visible
in the source polygon can become occluded in the target polygon
and vice-versa. Therefore, we resort to a slower yet robust algo-
rithm that finds the mapping from S to T with minimal image-based
error (see Section 3.1). Specifically, this error is defined as the im-
age correlation [Gonzalez and Woods 2002] between the stretched
source texture with the (unstretched) target one, e.g., the sum of
squared differences of pixel intensities.

After the vertices have been mapped (and therefore vertex corre-
spondences established for all frames), we perform deformation
sensitive simplification of S to its final form (in our case, to 20
vertices). We use the same simplification algorithm as before, only
averaging the error metric over all frames and leaving out the uni-
formity requirement (i.e., the longest to shortest edge ratio). Ac-
cording to our experiments, this produces a well adapted polygon
– with higher concentration of vertices in more deformable areas.
This polygon is then re-tessellated using constrained Delaunay tri-
angulation and stripified using NVIDIA’s NvTriStrip library for ef-
ficient rendering. Note that the initial pre-simplification was done
in order to cut down the costs of the polygon mapping algorithm
(Section 3.1). Varying the number of vertices produced during pre-
simplification enables us to trade speed for accuracy.

3.1 Polygon Fitting

In this section, we present our algorithm to find a mapping P from
vertices 1, . . . ,n of polygon S to vertices 1, . . . ,m of polygon T so
that the given error metric is minimized. Polygon S has an as-
sociated triangulation; it is not difficult to show that the number
of triangles in S will always be n − 2. For the example in Fig-
ure 2, n = 10, m = 26 and the resulting optimal mapping deter-
mined by our algorithm would be P(1) = 2, P(2) = 7, P(3) = 11,
P(4) = 12, P(5) = 14, P(6) = 16, P(7) = 18, P(8) = 20, P(9) = 21

261
2
3

4

5

6
7

8
9

10
11

12 13
14

15
16

17
18

19
20

21
22
23

24
25

1

2

3

4

5 6

7

8

9

10

S T

Figure 2: Polygon fitting: the task is to map vertices from source
polygon (S) to the target one (T) so that the textures match as
closely as possible.

and P(10) = 24. Note that it is possible to use a more general error
metric than the one mentioned above, as long as it is computable by
summing errors on individual triangles.

In theory, there are mn possible mappings P (we generally allow
triangles to degenerate). Therefore, a brute force solution is not an
option, even though polygon fitting is done as a pre-process. In the
following, we present an algorithm based on dynamic programming
with time complexity O(nm3).

The algorithm starts by ordering triangles from S by sequentially
removing triangles with only one neighbor (at least one such trian-
gle always exists, because we did not allow internal vertices). For
example, one possible ordering of triangles in Figure 2 is: 1-9-10,
2-9-1, 2-8-9, 3-8-2, 3-7-8, 5-3-4, 5-7-3 and the last triangle is 5-6-
7. The triangles are then fitted to T, one by one, and the ordering
ensures that all neighbors of the actual triangle have already been
processed – up to one. For example, when fitting triangle 5-7-3, it
is important that both neighbors 3-7-8 and 5-3-4 have already been
optimized.

We will call the triangle’s edge shared with the unprocessed neigh-
bor the base edge. Let us assume that we are now processing tri-
angle a-b-c, where a-b is the base edge and c is its opposite vertex.
For simplicity, let us consider the first step of the algorithm, where
a = 1, b = 9, c = 10 and there are no processed neighbors. Ev-
ery base edge is a chord of S and thus cuts the polygon S into two
subpolygons, one on either side of the chord. In the first step, one
subpolygon is triangle 1-9-10 and the other subpolygon consists of
the remaining triangles in S. We examine all m2 possible choices of
P(a) and P(b) and for each of them, we try all possibilities of P(c),
evaluating the error metric of the subpolygon created by chord a-b.
We store the optimal P(c) together with its fitting error for every
P(a), P(b) (thus we need a table of size O(m2) for each base edge).

Treatment of the remaining triangles is similar, requiring only that
we account for the already processed neighbors. We proceed as be-
fore, finding optimal choices of P(c) for each P(a), P(b) pair. For
example, for triangle a = 2, b = 9, c = 1 (see Figure 3), the subpoly-
gon of a-b is quad 2-9-10-1. The error of mapping triangle a-b-c to
P(a)-P(b)-P(c) is computed as before, using our error metric. To
account for the remaining part of the quad, i.e., triangle 1-9-10, we
make use of the fact that the edge 1-9 has already been optimized
in the previous step. That is, for every choice of P(1) and P(9), the
optimal P(10) is readily available in the table computed previously.
Because of this, the resulting time complexity is the same as in the
first step, i.e., O(m3).

After processing the last base edge (in our example a = 5, b = 6),
we can find the optimal mapping of the whole polygon by searching

151

P(c)

P(a)

P(b)

c

a b

processed before

not yet processed

uncovered

Figure 3: Fitting triangle a-b-c from the source polygon to triangle
P(a)-P(b)-P(c) in the target polygon. Obviously, in this case the
choice of P(a)-P(b)-P(c) is not the optimal one.

for the P(a) and P(b) with the smallest error. A table lookup gives
us the optimal position of P(c), i.e., in our case P(7). Then we
move to triangle 5-7-3, retrieve the optimal value of P(3) and so on,
processing triangles in reverse order. This “backtracking”, typical
with dynamic programming algorithms, finally reveals the optimal
mapping P of all source vertices for our given error metric.

The basis for our error metric is image correlation. The correla-
tion is computed by taking a fixed number of samples on triangles
from S (for example, using scan conversion) and matching them
with their counterparts from T. We compute both color and normal
map correlation and sum the results together. This is motivated by
the desire for color as well as geometric feature correlation – the
normal map allows us to encode geometry in the correlation metric.
This also improves robustness of our method in situations with little
color map variation.

Each body part generates two images (color and normal map),
which leads in this case to a total of 10 images per Polypostor. Cre-
ating a separate texture for each of them would result in wasting tex-
ture memory and the necessity of frequent texture binding. There-
fore, we pack all images associated with one Polypostor into one
texture (see Figure 4). This leads to the well known nesting prob-
lem (also called polygon packing) [Nielsen and Odgaard 2003]. In
our current implementation, we apply only a simple brute-force ap-
proach, i.e., we translate incoming polygons from the lower-left to
the upper-right texture corner (by fixed-length steps), terminating
at the first intersection-free position.

Figure 4: Two example textures (for two different viewpoints), gen-
erated by our system; each one stores both color and normal maps.

3.2 Visibility

Theoretically, pixel-precise occlusions can be achieved using depth
maps [Aubel et al. 2000]. Even though this method can be imple-
mented in fragment shaders, it would require additional memory
and introduce another constraint for the Polypostors fitting algo-

rithm. Therefore, we settle for an approximate but more efficient
visibility solution, based on our decomposition of the 3D character
into several body parts and depth sorting using painter’s algorithm
[Foley et al. 1990]. The body parts are converted into textured 2D
polygons as described earlier. Now, it remains to find the ordering
of these polygons which results in the most accurate visibility re-
construction. Note that we are implicitly making the assumption
that the same ordering will be valid in the whole animation.

In order to achieve this ordering, we construct a visibility graph,
using the original 3D model. Nodes of this graph correspond to in-
dividual body parts. Two nodes A, B are connected by a directed
edge if A occludes B, and the weight of this edge is the number of B
pixels occluded by A (averaged over all frames of the animation). If
the resulting graph is acyclic, we have a well-defined order, because
its topological sorting yields a (perfectly correct) visibility order-
ing. If the graph contains cycles, we determine the best ordering by
deleting such subset of edges that yields an acyclic graph and has
the smallest total weight. Since in our case visibility graphs have
only five nodes, we do this by examining all subsets of edges (in
case of more body parts, a polynomial-time algorithm [Bertsekas
1991] can be used instead).

4 Run-time System

Once Polypostors have been pre-computed (see Figure 5) their run-
time display is fairly simple. For each character to be drawn, we
first compute its distance from the camera and determine whether to
render geometry or Polypostor. The switching distance is selected
so that we obtain a one to one pixel to texel ratio, as in [Dobbyn
et al. 2005]. Geometry is drawn using standard skinned meshes,
with skinning computed on the GPU [Lindholm et al. 2001].

When rendering Polypostors, the first step is to determine the ac-
tual Polypostor plane, i.e., the one most perpendicular to the actual
viewing direction. This is the same method as would be used for
classic impostors. Subsequently, we bind the appropriate texture
(such as in Figure 4) and draw triangle strips for each body part.
Rendering of the body parts in the order described in Section 3.2 is
not sufficient, because Z-fighting artifacts would creep in. To dis-
play the resulting character correctly, we perturb the depth values in
a fragment shader based on the pre-computed ordering. Note that
this is generally not recommended, as it usually results in disabling
early-Z, typically associated with a performance hit. However, this
was not a problem in our case, as our fragment shader is very sim-
ple. With more complex fragment shaders, it would be advisable to
perturb vertex positions rather than fragment depths.

Interpolation of Polypostors is handled in a vertex shader, simply by
linearly interpolating polygon vertices. The fragment shader com-
bines information from the color and normal maps with the light
direction in order to compute shading. If required, it can also vary
the characters’ appearance using Dobbyn et al.’s method [2006].

For rendering of both Polypostors and skinned meshes we employ
OpenGL display lists. The performance of the Polypostor renderer
can be slightly improved by batching, i.e., drawing multiple enti-
ties in a single draw call. In order to make use of batching, we
first sort the array of characters based on their type and viewpoint,
thereby grouping characters that can be drawn together. In our cur-
rent implementation, we use batches consisting of only four char-
acters, as we observed only negligible improvement with larger
batches. This is probably because the current bottleneck is in trans-
ferring the character animation data from CPU to GPU. Accord-
ing to our experiments, batching did not improve performance of
skinned meshes considerably, probably because their bottleneck is
in the vertex processing (rather than in the CPU overhead associated
with draw calls).

152

Figure 5: An example of a polypostor animation (overlaid with wireframe). Note that the character animation is created simply by displacing
polygon vertices (stretching the texture accordingly).

Figure 6: The testing scenario used to compare run-time efficiency of different character representations (10.000 humans in this picture).

4.1 Experiments and Results

We measured the run-time performance of different virtual human
representations using a Pentium D 3.7GHz processor with 2GB
RAM and a GeForce 7950 graphics card with 512MB of video
memory. In our first test (see Figure 6), the whole crowd is on-
screen and all characters are using the same representation (i.e.,
either Impostors, Polypostors or skinned meshes). For Impostors,
we use the same format as described in [Dobbyn et al. 2005]. With
Polypostors, every character uses 90 triangles (18 per body part),
while the skinned mesh has 3198 triangles for the female model
(2476 in the case of the male model).

The results for crowd sizes from two to twenty thousand individuals
are reported in Figure 7. From the graph, we see that rendering with
Polypostors is almost as fast as with impostors. This is because the
geometric complexity of Polypostors does not present a bottleneck
in the rendering pipeline (in contrast to the case of unsimplified
skinned meshes), and the per-pixel complexity is equivalent.

0

26

52

78

104

130

156

182

208

234

260

F
ra

m
es

P
er

S
ec

o
n
d

2 4 6 8 10 12 14 16 18 20

Number of Virtual Characters [thousands]

Imposters Polyposters Skinned Mesh

Figure 7: Run-time performance for different representations of vir-
tual characters.

The total memory requirements for impostors and Polypostors are
compared in Figure 8. The reported values account for all view-
points of one character and one animation. Impostors animated at
10Hz do not always assure smooth animation (see the accompany-
ing video). This can be improved by generating impostors at higher
frequency, but at a cost of increased memory consumption. This is
unfortunate because when the impostors do not fit into video mem-
ory, texture thrashing occurs, slowing the application down (thereby
virtually defeating the advantage of using impostors). In contrast to
impostors, Polypostors can be easily interpolated, thus allowing an
arbitrary output frequency. The Polypostors’ vertex animation is
sampled at 10Hz, which is probably more than sufficient for our
animations (although different sampling rates would not affect the
memory consumption considerably, as the Polypostor vertex data is
quite compact).

Impostors (10Hz)

Impostors (30Hz)

Polypostors

0 50 100 150 200 250 MB

70 MB

210 MB

7.5 MB

0 10 20 30 40 50 MB

Impostors (10Hz)

Impostors (30Hz)

Polypostors

15 MB

45 MB

2.1 MB

Figure 8: Total memory (in megabytes) consumed by one character
and one animation. Top: uncompressed textures, bottom: com-
pressed textures (using DXT3 compression).

In our next experiment, we used a mixed geometry/Polypostor ren-
dering within a virtual city (see Figure 1c). The city model itself
contains over 100,000 polygons and uses over 200MB of textures.
In this experiment, we took advantage of both frustum and occlu-
sion culling (based on hardware occlusion queries). The resulting

153

frame-rates for varying crowd sizes are reported in Figure 9. We
see that real time frame-rates are maintained for crowds of up to
120,000 virtual characters (however, note that only fraction of all
these characters is visible at each frame).

0

30

60

90

120

150

180

210

240

270

F
ra

m
es

P
er

S
ec

o
n
d

Simulation Time

20,000 40,000 60,000

80,000 100,000 120,000

Virtual
Humans

Figure 9: Run-time performance during a walkthrough in a vir-
tual city for different numbers of characters (combined geome-
try/Polypostor rendering).

5 Limitations and Future Work

Polypostors are not as accurate as impostors, as they use only one
texture per viewpoint and approximate the rest of the animation by
deforming the texture. This implies that Polypostors are applicable
only for animations that can be described as deformations of the
initial key-frame. According to our experiments, this works well for
simple walk cycles. However, we have not tested more challenging
animations.

Polypostors may produce artifacts, especially with overhead views
where there is a lack of texture information in the first key-frame,
as shown in Figure 10. A simple remedy would be to identify the
key-frame which contains the best texture information, then use it
instead of the first frame. The extreme case would be to add as
many textures as used by impostors. This would not result in mem-
ory saving, but would retain the benefits of efficient interpolation.
An interesting avenue of future work would be to find the best com-
promise between these two extremes, i.e., to store only the relevant
texture data while avoiding replication.

Figure 10: Left: first key-frame used to generate Polypostor tex-
ture, right: subsequent key-frame generated by deforming the tex-
ture data from the first frame. Note the artifacts due to lack of
texture data in areas that have become visible.

Another slight disadvantage of Polypostor construction is the ne-
cessity of manually disconnecting the mesh into close-to-convex
parts. This could be automatized, e.g, using the approach of Lien
and Amato [2006], in order to obtain a fully automatic Polypostor
generation pipeline. Polypostors used in our current implementa-
tion have a fixed size of 90 triangles per character. However, this

number can be reduced (particularly for distant Polypostors) by ap-
plying geometric level-of-detail techniques.

Further speed-up could be achieved by executing the crowd simu-
lation on multi-core processors or even on GPUs, as discussed re-
cently [Reynolds 2006; Millan and Rudomin 2006]. This should
help to eliminate our current CPU to GPU transfer bottleneck.
Finally, a three level system could be considered, using skinned
meshes in the near field, Polypostors in the middle and impostors in
the distance. Since this would only need impostor images with low
resolutions, their memory requirements would not be excessive.

6 Conclusions

This paper proposes Polypostors, a low-cost character animation
representation based on 2D polygons. We present an algorithm that
automatically constructs Polypostors from a segmented 3D char-
acter, thus reducing its geometric complexity more than would be
possible with 3D simplification techniques. While this comes with
a memory overhead cost, these requirements are significantly less
than those associated with classical impostors. Moreover, Poly-
postors offer efficient GPU implementation and support animation
interpolation at almost no extra cost. Our proposed system achieves
real time frame-rates for crowds of up to 120,000 individuals, as we
have verified in our virtual city simulation.

7 Acknowledgements

We would like to thank the anonymous reviewers for their helpful
comments and suggestions. This work was supported by Science
Foundation Ireland (project Metropolis).

References

ALEXA, M., AND MÜLLER, W. 2000. Representing animations by
principal components. Comput. Graph. Forum 19, 3, 411–418.

AUBEL, A., BOULIC, R., AND THALMANN, D. 2000. Real-time
display of virtual humans: Levels of details and impostors. IEEE
Transactions on Circuits and Systems for Video Technology 10,
2, 207–217.

BERTSEKAS, D. P. 1991. Linear network optimization: algorithms
and codes. MIT Press, Cambridge, MA, USA.

BRICENO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER,
S., AND HOPPE, H. 2003. Geometry videos: a new representa-
tion for 3D animations. SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
136–146.

DÉCORET, X., DURAND, F., SILLION, F. X., AND DORSEY, J.
2003. Billboard clouds for extreme model simplification. SIG-
GRAPH ’03: ACM SIGGRAPH 2003 Papers, 689–696.

DECORO, C., AND RUSINKIEWICZ, S. 2005. Pose-independent
simplification of articulated meshes. In SI3D ’05, ACM Press,
17–24.

DOBBYN, S., HAMILL, J., O’CONOR, K., AND O’SULLIVAN,
C. 2005. Geopostors: a real-time geometry / impostor crowd
rendering system. In SI3D ’05, ACM Press, 95–102.

DOBBYN, S., MCDONNELL, R., KAVAN, L., COLLINS, S., AND
O’SULLIVAN, C. 2006. Clothing the masses: Real-time clothed
crowds with variation. In Eurographics Short Papers, 103–106.

DUDASH, B., 2007. Skinned instancing. NVIDIA Direct3D SDK
10 Code Samples.

154

FELZENSZWALB, P. F. 2003. Representation and Detection of
Shapes in Images. PhD thesis, Massachusetts Institute of Tech-
nology.

FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F.
1990. Computer graphics: principles and practice (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

GONZALEZ, R. C., AND WOODS, R. E. 2002. Digital Image
Processing. Prentice Hall.

GOSSELIN, D., SANDER, P., AND MITCHELL, J. 2005. ShaderX3
- Drawing a Crowd. Charles River Media, 505–517.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005.
As-rigid-as-possible shape manipulation. ACM Transactions on
Computer Graphics 24, 3, 1134–1141.

JESCHKE, S., AND WIMMER, M. 2002. Textured depth meshes for
real time rendering of arbitrary scenes. EGRW ’02: Proceedings
of the 13th Eurographics Workshop on Rendering, 181–190.

JU, S. X., BLACK, M. J., AND YACOOB, Y. 1996. Cardboard
people: A parameterized model of articulated motion. Interna-
tional Conference on Automatic Face and Gesture Recognition,
38–44.

LIEN, J.-M., AND AMATO, N. M., 2006. Approximate convex de-
composition of polyhedra. Technical report TR06-002, Parasol
Lab, Texas A&M University.

LINDHOLM, E., KLIGARD, M. J., AND MORETON, H. 2001. A
user-programmable vertex engine. In SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer graphics and
interactive techniques, ACM Press, New York, NY, USA, 149–
158.

LIU, L., WANG, G., ZHANG, B., GUO, B., AND SHUM, H.-Y.
2004. Perceptually based approach for planar shape morphing.
In PG ’04: Proceedings of the Computer Graphics and Appli-
cations, 12th Pacific Conference on (PG’04), IEEE Computer
Society, Washington, DC, USA, 111–120.

LUEBKE, D., WATSON, B., COHEN, J. D., REDDY, M., AND
VARSHNEY, A. 2002. Level of Detail for 3D Graphics. Elsevier
Science Inc., New York, NY, USA.

MCDONNELL, R., DOBBYN, S., AND O’SULLIVAN, C. 2005.
LOD human representations: A comparative study. Proceedings
of the First International Workshop on Crowd Simulation, 101–
115.

MILLAN, E., AND RUDOMIN, I. 2006. Impostors and pseudo-
instancing for GPU crowd rendering. In GRAPHITE ’06: Pro-
ceedings of the 4th international conference on Computer graph-
ics and interactive techniques in Australasia and Southeast Asia,
ACM Press, New York, NY, USA, 49–55.

NIELSEN, B. K., AND ODGAARD, A., 2003. Fast neighborhood
search for the nesting problem. Technical Report no. 03/02,
DIKU, University of Copenhagen.

PAVLIDIS, T. 1981. Algorithms for Graphics and Image Process-
ing. Computer Science Press.

REYNOLDS, C. 2006. Big fast crowds on PS3. In Sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH Symposium on
Videogames, ACM Press, New York, NY, USA, 113–121.

RUSIN, D., 1998. Topics on sphere distributions. http://www.
math.niu.edu/~rusin/known-math/95/sphere.faq.

RYDER, G., AND DAY, A. M. 2005. Survey of real-time rendering
techniques for crowds. Computer Graphics Forum 24, 2, 203–
215.

SEDERBERG, T. W., AND GREENWOOD, E. 1992. A physically
based approach to 2-D shape blending. In SIGGRAPH ’92: Pro-
ceedings of the 19th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA,
25–34.

TECCHIA, F., AND CHRYSANTHOU, Y. 2000. Real-time rendering
of densely populated urban environments. Proceedings of the
Eurographics Workshop on Rendering Techniques, 83–88.

TECCHIA, F., LOSCOS, C., AND CHRYSANTHOU, Y. 2002. Vi-
sualizing crowds in real-time. Computer Graphics Forum 21, 4,
753–765.

THALMANN, D., O’SULLIVAN, C., DE HERAS CIECHOMSKI, P.,
AND DOBBYN, S. 2006. Populating virtual environments with
crowds. In Eurographics 2006: Tutorials, 869–963.

ULICNY, B., DE HERAS CIECHOMSKI, P., AND THALMANN,
D. 2004. Crowdbrush: Interactive authoring of real-time
crowd scenes. SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Computer Anima-
tion, 243–252.

155

156

