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Abstract

This paper describes two simple and efficient parallel algorithms for the construction of the Delaunay triangulation

ðDTðSÞÞ in E2 by randomized incremental insertion. The construction of the DTðSÞ is one of the fundamental problems
in computer graphics. The proposed algorithms are designed for parallel systems several processors and with shared

memory. Such a hardware configuration (especially the case with two-processors) became widely available in the last

few years thanks to low prices at present, but there is still a lack of parallel algorithms that are simple to implement and

efficient enough to be an attractive alternative to existing serial algorithms. We have implemented both new algorithms

in C++ and tested them on workstations with up to four processors. Thanks to memory caching we noticed several

times even super-linear speed-up compared with the reference sequential algorithm.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Triangulation TðSÞ of a set of points S in E2 is a set of

triangles such that:
�
 A point pAE2 is a vertex of a triangle from TðSÞ if
and only if p belongs to S; i.e. the vertices of the

triangles are some points from the input set.
�
 The intersection of two triangles is either empty or it

is a shared edge or a shared vertex; i.e. the triangles

do not overlap, and there is no vertex lying on an

edge of another triangle.
�
 The set TðSÞ is maximal: there is no triangle that can

be added into TðSÞ without violating previous rules;

i.e. the union of triangles and the convex polygon

formed by a convex hull CHðSÞ are the same object.
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Delaunay triangulation was proposed by the Russian

scientist Boris N. Delone [1,2]. However, as his original

papers are not written in English and their translations

are usually rather complex, we would recommend

Radke’s paper [3] for a detailed description of the

Delaunay triangulation. Further information can also be

found in [4].

Delaunay triangulation DTðSÞ of a set of points S in

E2 is a triangulation such that the circum-circle of any

triangle does not contain any other point of S in its

interior; this is called the empty circum-circle criterion.

The basic properties of the DTðSÞ are as follows:
�

d.
It contains the most equiangular triangles of all

possible triangulations (i.e. it limits the number of

very narrow triangles that may cause problems in

further processing).
�
 If no four points lie on a circle, the DTðSÞ is unique.

�
 The boundary of the DTðSÞ is a convex hull of S:

�
 It can be computed in OðN logðNÞÞ time in the worst

case (whose N is the number of points to triangulate).
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However, algorithms with OðNÞ expected time also

exist.

Due to these good properties, Delaunay triangulation is

used in many areas such as terrain modeling (GIS) [5],

scientific data visualization [6–9] and interpolation [10],

robotics, pattern recognition [11,12], meshing

for finite element methods (FEM) [13–15], natural

sciences [16,17], computer graphics and multimedia

[18,19], etc.

Although the Delaunay triangulation can be com-

puted in OðN logðNÞÞ time, it still consumes a lot of time
especially for larger N: Modern computer architectures

allow us to compute Delaunay triangulation with

thousands of points by a sequential algorithm in

reasonable time. However, current applications often

need to work with millions of points. Fortunately,

parallel architectures, especially multiprocessors with

several processors and shared memory, have come into

consideration in the last few years due to their low

prices. In such cases, a parallel algorithm is useful and

desirable. Quite a large set of parallel algorithms exists,

however, they were designed in times when parallel

architectures, with hundreds of processors, dominated

the research area and thus stress has been placed on the

scalability rather than on the simplicity of such

algorithms. Therefore, we have developed several

parallel methods suitable for architectures with several

processors and shared memory. Such algorithms are

easier to understand and can be simply implemented

even by computer graphics people without a deep

knowledge of parallel computational techniques.

This paper is structured as follows: the next section

gives a survey of existing parallel solutions for the

construction of the Delaunay triangulation. In Section 3,

we describe the chosen sequential algorithm and the

proposed parallel modifications in detail. Section 4

presents the experiments and results and Section 5

concludes the paper.
2. Construction of the Delaunay triangulation

Many sequential algorithms for the construction of

the Delaunay triangulation exist. We classify them

according to Cignoni et al. [20] into several categories:
�
 Local improvement algorithms—starting with an

arbitrary triangulation, these algorithms locally

modify the edges of adjacent triangles according to

the circum-circle criterion.
�
 Incremental insertion algorithms—starting with an

auxiliary triangle that contains all points in its

interior, these algorithms insert the points in S one

at a time: the triangle containing the point to be

inserted is subdivided and then the circum-circle

criterion is tested recursively on all triangles adjacent
to the new ones and if necessary, their edges are

flipped [4,21].
�
 Incremental construction algorithms—the Delaunay

triangulation is constructed by successively building

triangles whose circum-circles contain no points in S:
We can include also Fortune’s sweeping algorithm

into this category [20,22,23].
�
 Higher dimensional embedding algorithms—these

algorithms transform the points into E3 and then

compute the convex hull of the transformed points,

the Delaunay triangulation is obtained by projecting

the resulting convex hull back into E2 [24].
�
 Divide and conquer (D&C) algorithms—these algo-

rithms are based on recursive partitioning and local

triangulation of the point set, and then on a merging

phase where the resulting triangulations are joined.

Let us note that the recursion usually stops when the

size of the point set matches some given threshold.

Local triangulation is then constructed by an algo-

rithm belonging to any of the previous categories

[20,25,26].

Given that the parallelization of D&C algorithms

appears to be straightforward, it is not surprising that

these algorithms have been more frequently parallelized.

However, naive D&C algorithms suffer from two

drawbacks. First, their merge phase is quite complex.

This phase involves the building of the edges among

triangles from both triangulations. Simple connection

usually does not satisfy the Delaunay criterion and,

therefore, some corrections have to be done. In the

worst case these corrections spread over the whole

triangulation. The second drawback occurs when we try

to parallelize such algorithms: the merging of two sets is

limited to just one processing element (PE). It thus

negatively influences the overall efficiency of the

algorithm. The algorithm by Aggarwal et al. [27]

demonstrates these drawbacks.

Cignoni et al. [20] present two algorithms. The

DeWall algorithm uses a new approach to the D&C

strategy. It first constructs the triangles at the joint and

then the triangulation of both parts. No merge phase is

required. The triangles at the joint as well as both

triangulations are made by the principle of incremental

construction. The authors present the results of their

algorithm for DTðSÞ in E3: For example, speed-up

1.70–3.35 for 2–16 PEs was noticed when uniform data

sets with 8000 points were tested.

The other algorithm from [20] is called InCode. It

subdivides the plane into k rectangular areas. Each area

is assigned to one processor as well as the whole set of

the input points. The processor constructs triangles that

have at least one vertex in the area, thus the triangles at

the area’s boundaries are created by more processors.

The merge phase is simple; it involves only the removal

of redundant triangles. This redundancy, indeed, affects
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the efficiency of the algorithm. For the problem of the

DTðSÞ in E3 the authors present, for example, speed-up

1.79–19.01 for 2–64 PEs using on nCUBE 2 system

model 6410. Uniform data sets with 20,000 points were

used for the test. Hardwick [28], however, notes that the

InCode algorithm is about 10 times slower with non-

uniform data sets.

Chen et al. [29] uses a similar approach. Each processor

triangulates its part of the input set by the fastest

sequential algorithm [25]. Moreover, it constructs an

‘‘interface’’ at each boundary by the principle of incre-

mental construction. An interface is a set of triangles that

run through the area’s boundaries. It is clear that we have

two interfaces at the same boundary. These two interfaces

are merged together and the resulting joint is combined

with both triangulations. Except for this merge phase, all

other phases can be processed in parallel. The time needed

for the merge phase is, however, negligible in comparison

to other phases (thanks to the interfaces). Therefore, the

algorithm achieved outstanding speed-up. For example,

the tested uniform data sets with 96K points achieved

speed-up 1.57–4.95 for 2–8 PEs with an IBM SP2 with

High Performance Fortran.

Hardwick [28] chooses another approach. Input

points are subdivided into two groups by the orthogonal

line that goes through the median in x or y coordinates.

A paraboloid in E3 related to this line is found.

Then the algorithm transforms all points onto the

paraboloid, where the lower convex hull is found and

the projection of the resulting lower convex hull into the

plane gives a set of line segments. These line segments

form a joint. Both groups of input points are triangu-

lated by Dwyer’s algorithm [25]. As no merge phase is

required and the described subdivision of input points

can be solved in parallel, the algorithm achieves a very

good speed-up about 1.8–5.8 for 2–8 PEs with a SGI

Power Challenge with shared memory for the uniform

data sets with 128K points. Let us note that this

algorithm (sometimes wrongly categorized as a higher

dimensional embedding algorithm), is extremely

complex.

Lee et al. [30] combine Hardwick’s approach [28]

with the InCode algorithm [20]. The small variation

is that their algorithm does not recursively subdivide

the input points into two groups via a median line

but subdivides them immediately (in one step)

into several slabs. The authors claim that such

partitioning leads to a simpler algorithm. According

to published graphs it is also evident that a better

speed-up is achieved. Their experiments were done using

an INMOS TRAM network with 32 T800 processors.

Their algorithm achieves a speed-up 1.36–12.5 for

2–32 PEs and uniform data. Better performance

of the algorithm is presented for cluster data with a

speed-up about 16.9 for 32 PEs. Let us note that

objective evaluation of this algorithm is impossible
because the authors have not published the numbers of

points in their data sets.

All previously described solutions use the D&C

strategy, most of them in addition to the principle of

incremental construction. The following methods avoid

the D&C approach.

The first of these appears in Lee [31] and is based on

incremental construction. The presented algorithm is

useful for massive parallelization. Each processor has a

set P of several points to be processed (ideal loading is

one point per PE) and the whole set S of input points for

tests. For each point this algorithm looks up the point

nearest to the currently processed one and constructs the

edge between them. Afterwards the first PE collects all

computed edges, removes redundant edges and distri-

butes the computed edges among processors. It finds the

two nearest points for each received edge (one point on

the left half-plane, one on the right half-plane) and

constructs two triangles. This second stage is repeated

until no new elements are created. As Lee used an Intel

Paragon for his experiments, we can expect that the

overhead for communication is significantly reduced.

Unfortunately, the author does not present the results of

his experiments.

Solutions based on incremental insertions also exist,

although they are rare. In our previous work [32], we

suggested two methods, both suitable for architectures

with several processors and shared memory. They work

with a shared DAG (Directed Acyclic Graph) structure,

i.e. shared triangulation. The DAG is modified simulta-

neously by more PEs; each PE inserts its subset of

points. The maximal speed-up achieved using a Dell

PowerEdge 8450 for the tested uniform data sets (with

up to 1 million of points) was approximately 1.73–5.84

times for 2–8 PEs.

Chrisochoides et al. [33,34] parallelize the well-known

Bowyer–Watson’s algorithm that is based on incremen-

tal insertion with cavity retriangulation [35]. First, the

sequential algorithm creates a coarse triangulation of a

subset of points. The triangles are partitioned among k

processors and the parallel insertion begins. Boundaries

between areas are formed by some edges of the triangles

and may change during triangulation. When more

processors share a cavity, complex synchronization is

necessary. In [34] it is shown that the speed-up is nearly

linear due to a heuristic used to balance the load of the

processors and to minimize the length of the boundary,

but they offer neither proof nor experimental evidence

to substantiate this statement.

In some areas of use, it is necessary to additionally

insert new points into already existing DTðSÞ to obtain

better shapes for the triangles. The candidates for such

points are usually the centers of circum-circles of the

triangles, the algorithm has to decide whether to use

such a point or not. A very popular sequential solution

was proposed by Chew [36]. Okusanya et al. [6]
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developed parallel version of this algorithm. The

primary triangulation is partitioned among processors.

If the insertion of a new point also affects remote

triangles (i.e. triangles not physically present at the

current processor), PE has to send a message to all

participants to obtain these remote triangles. Concur-

rent processors locate remote triangles in a special tree

structure, lock them for the initiator to avoid incon-

sistencies and send them in a compressed form to the

initiator. For communication, MPI or PVM is used.

When the initiator completes its operation, all remote

triangles are unlocked. However, in case that any PE

cannot grant an exclusive access to the requested

triangles for the initiator, it denies the request and the

initiator has to give up insertion of this point and focus

on another point. Although authors also implemented

some load balancing, the achieved speed-up is only

1.6–3.0 times for 2–8 PEs using an IBM SP2 for a

uniform data set of 1,000,000 points. This is probably

caused by the time-consuming communication among

PEs. Let us note that authors use a similar strategy also

in E3 [7]—their speed-up is roughly 1.2–2.3 times for 2–8

PEs for 144,600 points. In our opinion, the achieved

speed-up is quite low.

Better results could probably be achieved by the

approach of Spielman et al. [37] as it is able to determine

quickly which points can be inserted without any

synchronization. The authors present their algorithms

for E2 and E3; and prove correctness of these

algorithms. However, there is no experimental section

in their paper.

Puppo et al. [38] present another parallel algorithm

based on incremental insertion. Their algorithm is not

devoted to Delaunay triangulation only but rather to

building a triangulated irregular network from a dense

regular grid of points. It selectively inserts points into

the DTðSÞ: Each input point, as well as each triangle, is

allotted to one virtual PE. At the beginning, only two

triangles containing the four corners of the domain exist.

Then, for every yet unused point, the vertical distance

between the point and its approximation is computed

and for every triangle, the point with the maximum

distance is chosen to be inserted. Conflicts between PEs

(e.g., when the point to be inserted lies on an edge) are

solved by a priority rule—a higher priority is

given to the triangles whose inserted points lie further

from their approximation. Analogous mutual

exclusion must be solved after each round of point

insertion when Delaunay triangulation is to be recovered

by parallel edge swapping. The algorithm was imple-

mented on a Connection Machine CM-2 with 16K

processors, compared with a serial implementation on

Sun SPARC1 and tested with up to 5122 points. The

speed-up was up to 80 times for 16K points. The

highest speed-up was achieved with the smallest

allowed approximation error because in such a case,
more triangles are necessary and the load balance

improves.

In this section, we have given a survey of some

existing parallel algorithms. All described algorithms,

perhaps excluding Lee’s approach [31], can be used with

some modifications for a hardware architecture with

several processors and shared memory. However, it is a

question whether the efficiency of such a modified

algorithm is still good enough. Moreover, there is no

doubt that the modified algorithm is often unnecessarily

complex for the low-degree of parallelism. This led us to

develop a new algorithm, more suitable for a limited

number of processors, typically two or four. We discuss

this topic in the next section.
3. Proposed parallel algorithms

3.1. Randomized incremental insertion

We have chosen a randomized incremental insertion

as the base for our parallel algorithm. Let us remind the

reader that the algorithm consists of three phases:

the location where a triangle to be subdivided has

to be quickly found, followed by the subdivision and by

the legalization where the circum-circle criterion is

applied if necessary edges of the tested triangles are

flipped.

Although the algorithm has OðN2Þ complexity in

the worst-case, better complexity OðN logðNÞÞ in the

expected-case can be reached using the structures for the

efficient location of the triangle that contains the point

currently inserted. We use a Directed Acyclic Graph

(DAG) data structure. The location of one point in this

data structure is possible in OðlogðNÞÞ expected time

(which is also the optimal time) and in OðNÞ worst time;
worst time occurs when the DAG is ‘‘totally imbal-

anced’’, having the shape of a list—due to randomiza-

tion, such a situation is highly improbable. The DAG

structure stores the history of changes. Each inner node

of the DAG stores one triangle that existed in some

previous triangulation. The current triangulation is

stored in the leaves of the structure. The DAG root

describes an auxiliary triangle that is chosen in such a

manner to include all points to be inserted. A triangle

that contains some vertex of this big triangle has to be

removed in the post-processing phase. When a triangle

has to be subdivided (in the subdivision phase), new

nodes are created and joined to the node that stores the

subdivided triangle. In the legalization phase, two new

nodes are created and are joined to both input nodes.

This explains why the DAG structure is not a tree,

although it resembles a tree. More details about this

structure can be found in [4,32].

There are other possibilities for the quick location of

triangles: the random walk techniques [26] and the use of
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Fig. 1. Typical runtimes needed for the sequential algorithm

with uniform data sets.
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quadtrees or bucketing techniques. Random walk

techniques are especially popular. They consume less

memory, however, expected time OðN1=4Þ is needed per

one point. The various alternatives for locating triangles

are compared in [39]. In an effort to reduce memory use,

Devillers in [40] suggests a hierarchical structure similar

to the DAG. This structure consists of several connected

levels, where each level contains a random sample of the

level below it. The lowest level contains the current

triangulation. Thus, time OðlogðNÞÞ for the location of

triangles is ensured.

The advantages of the incremental insertion algorithm

are its simplicity and robustness. In the case of an

incorrect or inconsistent Delaunay criterion evaluation

caused by numerical inaccuracy, a triangulation with

two or more non-Delaunay triangles is obtained, but

this is still a valid triangulation. Moreover, the

algorithm can be simply modified to incorporate

constraints given in the form of prescribed edges [41],

to use non-Euclidian metrics [42,43] and, additionally,

its E2 version is very similar to its E3 version [44,45]. All

input points do not need to be available at the beginning

of computation (although their range of coordinates is

required) which can also be an advantage for some

applications. If the algorithm uses a randomized order

of insertion, it becomes almost insensitive to the type of

point distributions.

3.2. Analysis of the sequential algorithm and its

parallelization

Let us first analyze the execution of the sequential

algorithm. All three phases of the algorithm need to

access to the DAG structure, however, each one in a

different way. In the location phase, the DAG is

accessed read-only to find the triangle containing the

point to be inserted. Then all corresponding triangles are

subdivided and new nodes are added to the DAG

structure. The DAG is also modified during the

legalization phase. Typical runtimes needed for these

phases are in Fig. 1. The majority of time is

consumed by the location phase (about 60–70%). The

phases where the structure is modified take up to 25%.

The remaining time is used for extraction of the

DTðSÞ from the DAG structure and for the deallocation

of this structure, i.e. for the sequential part of the

algorithm.

Let us assume that we use an architecture with

shared memory. Usually, one thread runs on one

processing element (PE). The input set is subdivided

by the master thread (main thread of the application)

among the worker threads. They simultaneously

insert points into the shared triangulation, i.e. they

access the shared DAG structure. Algorithm 1 shows a

brief outline of the computation of the Delaunay

triangulation.
Algorithm 1. Parallel Delaunay triangulation—master

thread.

Master thread:

Input: A set S ¼ p0; p1;y; pn�1 of N points in E2

Output: A Delaunay triangulation DTðSÞ
1.
 begin
2.
 Initialize the auxiliary big triangle;
3.
 Compute a random permutation of

p0; p1;y; pn�1 of S;

4.
 Subdivide S into k subsets where k is the

number of threads;
5.
 Start k ‘worker’ threads;
6.
 Wait inactively until they are finished;
7.
 //Now, leaves of the DAG contain the
//Delaunay triangulation of S and of
//vertices of the auxiliary triangle;
remove all triangles containing vertices of

the auxiliary triangle to get DTðSÞ;

8.
 end

While threads may run unsynchronized (if the leaves

of the DAG are not considered) in the location phase,

some synchronization in the subdivision and the

legalization phases has to be implemented. We have

identified three approaches of synchronization:
�
 The batch approach—several searching threads per-

form the location phase and only one specialized thread

handles the subdivision and the legalization phase.
�
 The pessimistic approach—all threads perform the

same work, however, the subdivision and the

legalization phases can be done only in a critical

section to ensure an exclusive access to the shared

DAG structure.
�
 The optimistic approach—all threads perform simulta-

neously all parts of the algorithm, if they want to modify

a triangle, they need to get an exclusive access to it.
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We addressed the pessimistic approach to synchroniza-

tion in [46]. Thanks to the use of the critical section in

the algorithm, the achieved speed-up is significantly

limited. Therefore, we designed several methods based

on the optimistic approach. They achieved better and,

moreover, scalable speed-up [32]. The stress was put on

efficiency rather than on simplicity of these methods,

thus they usually require little synchronization even in

the location phase, otherwise, artifacts in resulting

Delaunay triangulation could appear.

In this paper, we concentrate on two new methods

(called the batch method and the circum-circle method)

that are easier to implement, i.e. they do not need any

synchronization in the location phase and their perfor-

mance is comparable (or even better) than that of the

methods presented in [32,5]. However, these methods are

less scalable.

3.3. The batch method

This method is based on the batch approach

introduced above. Not all threads perform the same

work. When a searching thread (producer) finishes its

unsynchronized location phase, it sends an index of the

currently inserted point and the pointer of the last tested

node to the specialized thread (consumer). The specia-

lized thread completes the location of the node to be

subdivided, subdivides it and proceeds with the legaliza-

tion phase.

Communication between the searching thread(s) and

the specialized thread is ensured by a queue in the shared

memory. If this queue is empty, the specialized thread

must wait. If it is full, the searching thread(s) must wait.

The key issue here is how long the queue should be to

prevent the waiting of the threads. A long queue implies

a greater probability that the unsynchronized part of

the location stops for many points in the same node and

the specialized thread spends more time to complete the

location phase. Even worse is to have a short queue

because it would be full in a short time and the

performance would decrease. The queue length is

discussed in Section 4.2.

Let us note that the insertion of element into the

queue needs to be done as an atomic operation, thus a

short critical section is required. There is no such need

for getting an element because we have only one

specialized thread.

Algorithms for searching thread(s) and a specialized

thread are described in Algorithm 2.

Algorithm 2. Parallel construction—the batch method.

The searching thread (a kind of worker thread):

Input: A set Sk ¼ p0; p1;y; pm�1 of m points in

E2;SkCS
Output: Modifies the shared queue
1.
 begin
2.
 for r:¼ 0 to m � 1 do
3.
 begin
4.
 Locate the triangle T0 contain-

ing pr on the level of the parents

of the leaves;
5.
 if the shared queue is full then

wait;
6.
 put T0; pr into the queue;
7.
 end;
8.
 end
The special thread (a kind of worker thread):

Input: Requests Ti; pj in the shared queue

Output: Modifies the shared DAG structure, i.e.

participates on the construction of the DTðSÞ
1.
 begin
2.
 while not all points inserted do
3.
 begin
4.
 if the shared queue is empty then

wait;
5.
 get T0; p0 from the queue;
6.
 Locate the triangle T1ADTðSÞ
containing p0;//start at T0
7.
 Subdivide T1;//in the case where pr
//lies on the shared edge, say between,
//T1 and T2; subdivide also T2:

8.
 Legalize all new triangles;

//flipping
9.
 end;
10.
 end
Let us suggest an interesting possibility1 how to

improve the performance of algorithm. If a searching

thread cannot put new element into the queue because

this queue is full, it takes an element from the queue,

completes the location of the node to be subdivided and

places the result back into the queue. This means that

the searching thread takes over a part of job of the

specialized thread. Unfortunately, a short critical section

is required even for getting an element from the queue,

thus an additional overhead is introduced. To counter-

balance this overhead, the specialized thread has to take

longer time to locate the node than to get an element

(according to our experiments, we need at least 5 times

larger time to get an element in this approach than in the

original one). Another problem with this approach is

that we have to somehow ensure that when the searching

thread finishes the location of the node, it will place the
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Fig. 2. Example of the legalization with the circum-circle

method: (a) the edge between T1 and T2 has to be swapped, (b)

P2 lies outside the circum-circle C0 of T0—no synchronization

needed and (c) P2 lies inside the circum-circle C0 of T0—

synchronization is necessary.
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result into the queue immediately (i.e. there must be a

free position in the queue). Therefore, this approach is

suitable only for such data sets that the specialized

thread requires checking of three or more nodes (on

average) of the DAG structure to complete the location.

3.4. The circum-circle method

Preliminary version of this method appeared in [47].

The method is based on the optimistic approach, thus

we need to get exclusive access to all nodes that are

needed in the subdivision or the legalization phase of

algorithm. This means that when a thread needs to

operate with a node, it has to test whether the node is

not already accessed by another thread and depending

on the outcome it has to wait or it can proceed. Such a

test can be done either by system resources, or using the

geometric properties of the Delaunay triangulation. A

‘‘system’’ implementation of this test was used in [32].

The possibility of using geometry based test is described

below.

It can be proved that the subdivision and the

legalization influence only such triangles where the

input point lies in their circum-spheres. Therefore, any

thread that is currently inserting such a point that lies

inside the circum-sphere of some triangle will access the

node of this triangle during the insertion. It means that

when a thread needs to access the node, it has to check

whether no other currently inserted point lies inside the

circum-sphere of the triangle of this node. If the result of

this test is negative, the thread has to wait, otherwise it

continues.

Now, we explain the synchronization in the circum-

circle method on an example in detail. Let us assume

that the thread T0 wishes to flip the edge between the

triangles T1 and T2 (see Fig. 2a) and that it has already

got an exclusive access to these triangles (i.e. to the

nodes storing these triangles). As the DAG structure

also stores the neighborhood of the triangles, it is also

necessary to modify the corresponding items in the

nodes of the adjacent triangles. We have to prevent these

nodes against being subdivided, and therefore, the

thread has to get an exclusive access to them as well.

Thus let us further assume that to complete this

operation T0 requires also an access to T0: If no point

currently inserted by other threads lies in the circum-

circle C0 of the triangle T0; T0 can operate with T0

without any synchronization because it is clear that T0

will not be reached by any other thread—see Fig. 2b.

Now, let us consider the opposite case, i.e. the point

P2 of the thread T1 lies inside C0: In such a case, the

thread T0 has to wait because the thread T1 is going to

work with T0: The problem is that we know that the

thread T1 will reach the triangle T0 in the near future but

we are unable to determine exactly when. Thus some-

times a thread waits for a long time—see Fig. 2c.
When the concurrent thread T1 reaches the triangle

T0; it detects that the point of the thread T0 lies in the

circum-circle C0: As mutual waiting of threads leads to a
deadlock, each thread, before it starts waiting, has to

test whether its waiting will be deadlock free. This

detection requires a short critical section. In our

example, T0 is already waiting. When the thread T1

detects a deadlock problem, the problem is handled as

follows: the thread ignores the result of the circum-circle

test, uses the triangle T0 for its own purpose and sets a

flag for the thread T0 that informs the waiting thread

ðT0Þ about an exceptional activity of another thread.

When it finishes its activity, the thread T0 is released. As

T1 could have subdivided T0; T1 or T2; the thread T0 has

to check whether it can complete its operation.

If T0 cannot continue, a non-zero probability of non-

Delaunay triangles in the resulting triangulation arises.

This is only caused by some unprocessed swap operation

(i.e. the subdivision is always successfully completed);
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the result of this is still a valid triangulation. Moreover,

we know where the collision problem occurred and thus

we can correct the results in an additional sequential

phase. Our experiments show that the probability of

incorrect triangulation is almost zero. When it happens,

the number of wrong triangles is very low (no more than

five in 2,000,000 triangles), therefore, we ceased to check

the triangulation and correct it any way.

Now, we would like to discuss two problems whose

occurrence affects negatively the performance of the

algorithm and, moreover, the possibility of their

occurrence increases with the growth of the number of

threads.

When dealing with very narrow triangles in the DTðSÞ
(such triangles often occur at the boundaries), their

circum-circles are quite large (in the worst case all points

lie in such a circum-circle). A larger circum-circle implies

a larger probability that all the points inserted simulta-

neously by concurrent threads lie inside its interior and

that the thread will have to wait. However, such a large

circum-circle can block a thread too quickly, i.e. a

thread has to wait although a concurrent thread

currently works with distant triangles. Moreover, when

a narrow triangle goes through the significant part of the

triangulation process, the probability that several

threads will have to wait to access this triangle is quite

high.

The second problem is related to the circum-circle test

evaluation. This test has to be done for each accessed

triangle. However, the complexity of this test depends

linearly on the number of tested points, i.e. on the

number of used threads.

Algorithm 3 shows an example of a worker thread.

Algorithm 3. Parallel construction—the circum-circle

method (simplified version).

The worker thread:

Input: A set Sk ¼ p0; p1;y; pm�1 of m points in

E2;SkCS

Output: Modifies the shared DAG structure, i.e. it

participates on the construction of DTðSÞ
1.
 begin
2.
 for r :¼ 0 to m � 1 do
3.
 begin
4.
 Locate the triangle T0ADTðSÞ con-
taining pr;
5.
 Put pr into the pool of tested

points;
6.
 Use the geometric test for all

points in the pool,
T0 and all its neighbours; //in the
//case that pr lies on the shared edge,

//say, between T0 //and T1; include into

//the test also //neighbours of T1;
7.
 if the test fails then wait and then

go to 4;
8.
 Subdivide T0;// or also T1
9.
 Legalize all new triangles;

//flipping
10.
 end;
11.
 end
Procedure of the legalization:

Input: A triangle T0 to be legalized

Output: Modifies the shared DAG structure, i.e.
participates in the construction of the DSðSÞ
1.
 begin
2.
 if T0 is not a leaf in the DAG then exit;
3.
 if edge between T0 and its 2nd neighbor
T1 has to be swapped
4.
 then begin
5.
 Use the geometric test for all

points
in the pool,
T0;T1 and all their neighbours;
6.
 if the test fails then wait and then

go to 2;
7.
 Swap the edge between T0 and T1;

8.
 Legalize all new triangles;// flip-

ping
9.
 end;
10.
 end
4. Experiments and results

4.1. The experiments

The parallel solution of the Delaunay triangulation

was implemented in Microsoft Visual Studio.NET 7.0

Cþþ using serial incremental algorithm implemented

in Delphi 6. The main tests were done on a Dell

Precision 410 (2� Intel Pentium III 500 MHz; cache
512 KB; 1 GB RAM) with the Microsoft Windows XP

Professional operating system and on a Dell Power Edge

6400 (4� Intel Pentium III Xeon 550 MHz; cache 1 MB;
4 GB RAM) with the Microsoft Windows XP Advanced

Server. For additional tests, we used a Shalla (2� Intel

Pentium Celeron 533 MHz; cache 128 KB; 512 MB

RAM) with the Microsoft Windows 2000 Professional

operating system.

We tested several different point distributions such as

grid, uniform, gauss, cluster etc. The points were

generated in a unit square. Examples of these distribu-

tions are shown in Fig. 3. As we found our methods

behaved uniformly (or equally well) with all tested data

types (as will be shown later), we choose the uniform

data set being representative. Besides the artificial data
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sets, we tested with real data sets from [48,49]. The tested

number of input points, i.e. data size N; was between
1000 and 1,000,000. In our experiments, there were no

observable performance differences between real and

uniform data sets of comparable sizes.

For each data size we tested several different data sets

with the same distribution except for the real data. The

artificial data sets were generated and stored on the disk

before the experiment. Experiments were repeated

several times (at least five times) to increase reliability

of the results. Let us note that the differences in time

consumed by the different data sets with the same

number of points did not exceed 10%. The resulting

speed-up was calculated as the median of the total

sequential time divided by the median of the total

parallel time. Time for I/O operations (i.e. reading the

point file into the memory and storing the resulting

triangulation onto disk) is excluded. We prefer to use the

median rather than the average because this way

we eliminate singular cases. The difference between

the results of both functions, however, is insignificant.

The efficiency is computed as speed-up divided by the

number of used processing elements. Since there is no

architecture with three PEs (if the machine is fully

equipped), we did not test this number of PEs in our

experiments.

4.2. The results of the batch method

Fig. 4 shows the achieved speed-up for the batch

method running on the Dell Precision 410 for both

uniform and real data sets. We tested three different

numbers of used searching threads, i.e. three different

configurations. As shown in this figure, the behavior of

the achieved speed-up is the same for all tested

configurations. At first, the speed-up quickly increases

with the growing size of the input data set, then for some
Fig. 3. Examples of tested distributions of the input points: (a)

grid data, (b) uniform data, (c) gauss data and (d) cluster data.
sizes it is almost constant and when larger data sets are

processed, it tends to slowly decrease.

Let us discuss this behavior. The algorithm has to

process one subdivision and zero or more, say L; swaps
after the location. The time needed for one subdivision,

indeed, does not depend on the data size. Although in

the worst case swaps go through the whole triangula-

tion, usually swaps are done locally and thus L is limited

to a small number. This means that the time needed for

the legalization is also independent of the size of the data

set. While expected complexity of both parts of the

algorithm is Oð1Þ; expected complexity of the location is

OðlogðNÞÞ and, therefore, the time needed to locate a

triangle is significantly dependent on the data size. How

does this fact influence the speed-up? When the data set

is very small, the searching threads produce many points

in a short time, the shared queue becomes full and the

searching threads have to wait. The possibility of

waiting drops quickly as the data size grows and,

therefore, we can notice a fast increase in the speed-up.

When the searching threads are unable to insert a point

into the queue in time, the queue becomes empty

and the specialized thread has to wait. As this situation

occurs rarely and, moreover, in such a case only one

thread has to wait the performance decreases very

slowly. We tested with queue lengths of 16, 32, 64, 128,

256, 512, 1024, 2048 and 4096. Table 1 shows an
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Fig. 4. The speed-up of the batch method running on a Dell P

410 (two PEs) when two, three or four searching threads were

used: (a) uniform data and (b) real data.
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Table 1

The ideal queue length

N Threads Length

1 000 2:1 64

5 000 3:1 256

10 000 2:1 512

50 000 3:1 512

100 000 3:1 1024

500 000 3:1 1024

1 000 000 3:1 1024

The queue lengths of 16, 32, 64, 128, 256, 512, 1024, 2048 and

4096 on a Dell P 410 (two PEs) were tested.
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Fig. 5. The speed-u prate of the batch method using a Dell PE

6400 (4 PEs) when 2–6 searching threads were used: (a) uniform

data and (b) real data.
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ideal length of the queue for different uniform data sizes.

The queue length of 1024 seems to be optimal for larger

data.

We recommend setting the number of the searching

threads according to the size of the data sets to be

processed. For typical data sets (of 100,000–1,000,000

points), the best configuration seems to be 3:1 (i.e. 3

searching threads to 1 specialized thread). For this

configuration the efficiency is near one. Surprisingly, on

a system with two processors, the use of five threads in

total (i.e. 4:1 configuration) can lead to even better

results. This will be discussed further together with the

achieved super-linear speed-up.

Fig. 5 demonstrates the situation on an architecture

with four processors. The behavior of the speed-up is

similar to the one described above. Again, it seems that

the best configuration is 3:1 for data sets up to 100,000

points. For larger data sets, the use of a 4:1 configura-

tion becomes worth considering comes into considera-

tion and even the use of five searching threads makes

sense for data sets with more than approximately 1.5

millions of points. We also tested the configurations with

more threads. They are probably useful only if the data

sets with several million points are considered. However,

computation of such data sets would require more

memory than is available on 32-bits computers.

As there is no configuration ideal for all sizes, we

recommend an improvement of the proposed batch that

automatically estimates the number of threads that

should be used for the location depending on the

number of input points.

We have also tested other distributions of input

points, however, as the results do not differ significantly

from the results valid for the uniform and real data sets

that we have just presented, we will omit the detailed

presentation of these results. Fig. 6 presents a brief

comparison. Fig. 6a shows the speed-up of the batch

method with a configuration 3:1 using Dell P410 and

Fig. 6b shows the speed-up of the improved batch

method, i.e. using the configurations 3:1 for data sets up

to 100,000 points and 4:1 for larger data sets, using a

Dell PE 6400. The largest noted differences in speed-up
are about 5% on the Dell P410 and 13% on the Dell PE

6400. On average the difference is lower than 7% for

both multiprocessors.

Let us now discuss the possibility of super-linear

speed-up apparent in almost all the graphs presented

above. A super-linear speed-up occurs when the speed-

up is larger than the number of processors. This

situation generally occurs for two main reasons as

explained in [50]. Typically it is caused by the more

efficient use of the caches of the processors. There is no

doubt that the code stored in the cache runs faster than

the code stored in the RAM. Multiprocessors often have

big caches able to hold large pieces of code or blocks of

data. The code of the location phase is simple and short,

thus it fits in the cache. With the sequential algorithm,

location code remains in the cache for some time and

then it is partially replaced by the code needed for the

subdivision or legalization phase. That means that the

RAM has to be accessed often. However, in the batch

method our searching threads do only the location and,

therefore, their code can stay in the caches longer and so

the location takes a noticeably shorter time to be

performed. Memory cache also influences the time

needed for processing data with the algorithm. For

example, if data already loaded into the cache for the

thread T0 is also needed for the threads T1 and T2; the
data has not to be reloaded for T1 and T2: Such a case is
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distributions of input points: (a) Dell P 410 (two PEs),

configuration 3:1 and (b) Dell PE 6400 (four PEs), configura-

tion 3:1 up to 100 000, 4:1 for larger data sets.

Table 2

The influence of the cache-effect on the speed-up on three

different computers for the batch method with the configura-

tion 3:1 (run limited to two PEs)

N Speed-up

Shalla P 410 PE 6400

1 000 1.132 1.072 1.642

5 000 1.698 1.787 2.218

10 000 1.606 1.910 2.391

50 000 1.695 2.039 2.342

100 000 1.749 2.025 2.422

500 000 1.745 2.079 2.399
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rare for the sequential algorithm. The importance of

cache effects grows with the size of the DAG structure,

i.e. the number of points to be inserted.

Table 2 confirms the cache-effect. In this table, we

compare the speed-up achieved using a Shalla (cache 128

KB), a Dell Precision 410 (cache 512 KB) and a Dell

Power Edge 6400 (cache 1 MB) for the batch method.

To ensure a comparable environment we limit the run of

the algorithm on PE 6400 to two processors.

Caches are not the only reason for the noted super-

linear behavior. Speed-up are also influenced by the

internal parallelization of the kernel of the operating

system. In further experiments we show that when a

sequential algorithm runs only on the first processor as

in our test, it takes about 4% longer than when it runs

on any of other processors.

4.3. The results of the circum-circle method

Fig. 7 presents the results of tests using the Dell Power

Edge 6400 for uniform and real data sets. While for two

processors we can see super-linear speed-up, for more

processors no unexpected speed-up occurs. Our experi-

ments reveal that the efficiency of the algorithm

decreases when the number of processors increases.

When we analyzed the proposed method in the

theoretical section, we had already explained the reason
of such behavior. Let us recall that the complexity OðkÞ
of the ‘geometric’ test, where k is number of used

threads and the possibility that a point inserted by a

concurrent thread already lies inside the larger circum-

circle (corresponding to narrow triangles) increases with

the number of used threads.

When searching for the reasons for the super-linear

speed-up, we have found that there is no significant

partition of load via processors’ caches as was the case

with the batch method because all threads run the same

program. However, the influence of the memory cache

and the influence of the internal parallelization of the

operating system are important. Table 3 shows the

cache-effects for this method.

Fig. 8 compares the speed-up reached for different

point distributions. Fig. 8a shows the speed-up using a

Dell P410. The largest noted difference in speed-up is

about 3.5%, on average the difference does not exceed

2.5%. A slightly different situation occurs using a Dell

PE 6400—see Fig. 8b. Experiments with cluster data sets

reached better speed-up than experiments with any other

point distribution. If we ignore cluster data, then the

largest difference in speed-up is about 9% and on

average about 5%, otherwise the largest difference

achieved 11% and on average about 8%. It seems that

the circum-circle method is more efficient for cluster

data sets. The reason for such behavior is directly related

to the previously described problem of circum-circles of

narrow triangles. When dealing with cluster data sets,

the possibility that any point lies inside the circum-circle

of the tested triangle grows slower comparing with other

distributions. This is caused by the fact that insertion of

a point into one cluster barely influences another cluster,

thus if the thread T0 works with cluster A and the thread

T1 works with cluster B then the probability that T0 or

T1 will have to wait is almost zero. Therefore, we can see

better speed-up for large cluster data sets.

4.4. The results of both methods for singular data sets

To reveal how the proposed methods perform with

unusual data sets, we chose a data set with points lying
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Fig. 7. The speed-up of the circum-circle method using a Dell

PE 6400: (a) uniform data and (b) real data.

Table 3

The influence of the cache-effect on the speed-up on three

different computers (using two threads) for the circum-circle

method

N Speed-up

Shalla P 410 PE 6400

1 000 1.297 1.491 1.857

5 000 1.516 1.800 2.169

10 000 1.531 1.891 2.297

50 000 1.637 2.004 2.333

100 000 1.610 1.979 2.399

500 000 1.717 2.032 2.463

1 000 000 N/A 2.030 2.424
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Fig. 8. The speed-up of the circum-circle method for different

distributions of input points: (a) Dell P 410 (two PEs) and (b)

Dell PE 6400 (four PEs).

Fig. 9. An example of the Delaunay triangulation of 100 points

lying on unit arc: (a) the entire Delaunay triangulation and (b)

the detail of the selected area.

2The thread repeatedly yields its short time interval unless it

cannot continue. Thus spared time can be used by another

thread. If a thread waits only for a short time (as is usual in our
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on an arc. An example of the Delaunay triangulation of

this arc data set is given in Fig. 9. It contains many

narrow triangles—most of them are near the convex hull

of the given points.

Fig. 10 presents the speed-up that the batch method

reached for the ‘‘arc’’ data sets. Except for the lower (but

still sufficiently good) efficiency of the algorithm, there is

no difference in behavior of the speed-up. Our further

experiments show that, the construction of the Delaunay

triangulation of the arc data set requires a smaller

number of processed swaps, i.e. it require a significantly

shorter time for the legalization phase. Therefore, the
specialized thread has to wait quite often and as it waits

pseudo-actively,2 performance of the algorithm is
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reduced (by about 8% on average in comparison with

the uniform data).

Fig. 11 presents the achieved speed-up for the circum-

circle method. There is no significant difference between

the arc data sets and the uniform data sets when we

consider two PEs only. Different results are obtained

when we use four PEs—for smaller data sets the

algorithm consumes even more time than the sequential

one. The explanation for this is simple: as many triangles

are narrow, many circum-circles are very large and thus

the probability that a thread has to wait is quite high.

4.5. The subdivision of input points among threads

Let us now discuss the possibilities of subdivision of

the input points among several threads and their

influences on the performance of the proposed methods.

In the previously described results, we assumed that

points are subdivided randomly into k groups (where k

is the number of used threads) in such a manner to

ensure that there is equal number of points in each
(footnote continued)

case), this solution leads to better performance than the use of

standard resources for synchronization supported by the

operating systems, such as semaphores, etc.
group. This static subdivision is sufficient, any load

balancing is a kind of luxury because as the difference

between two insertions are negligible, the threads finish

their work almost at the same time. It does not seem

necessary to use a different strategy with the batch

method.

Whether the strategy of random subdivision is also

ideal for the method of the circum-circle is an open

question. It is quite clear that the convex hulls of the

points processed by each thread are overlapping. It

implies that there is a greater probability for a collision

in the subdivision or the legalization. As we have shown,

our algorithm seems to work best for cluster data sets.

Therefore, a better strategy seems to be a subdivision of

input points into k groups in such a manner to ensure

that we have an equal number of points in each group

and also that the convex hulls of these groups have a

minimal intersection. This means that we artificially

‘‘convert’’ input points into clusters.

The simplest way is to subdivide the input points into

k slabs in the x-coordinate direction. To do this, we use

a modified algorithm for the median computation.3

Another possibility is to apply a median subdivision

on the distances of the input points from the origin,

i.e. x2 þ y2: Both possibilities, indeed, require additional

processing time.

Fig. 12 compares the speed-up of all three types of

subdivision for uniform data. As we can see, additional

time is required for a more sophisticated subdivision

scheme is not counterbalanced in the computation and,

therefore, the use of such a scheme reduces the

performance of the algorithm. We have noticed that

this is also true for any other distribution of input

points. We expect better behavior with six processors.

However, as we have limited access to systems with a

higher number of processors, we were not able to

confirm this hypothesis.

4.6. Comparison with other methods

In this subsection, we compare the results of the

presented methods with other existing methods. This is

not an easy task as many existing algorithms work with

distributed memory only or they are designed according

to different principles for the construction of the DTðSÞ
or they were tested for tasks in E3 only. Moreover, their

authors often do not present the speed-up but raw

execution times only. The best candidate for such

comparison would be Chrisochoides and Sukup [34],

however, authors do not present any results. Therefore,

Table 4 compares the speed-up of the newly proposed

methods, our previous optimistic method [32] and

Hardwick–Bleloch algorithm from [28] only. The
3The algorithm for median computation was implemented by

our students Mr. Kroc and Mr. Šimána.



ARTICLE IN PRESS

1

1.2

1.4

1.6

1.8

2

2.2

1000 10000 100000 1000000

N

sp
ee

d
-u

p

Standard

Slabs

Distance

Fig. 12. The influence of subdivision of the input points among

threads on the achieved speed-up for the circum-circle method.

Uniform data sets were tested on a Dell P 410 (with two PEs).

Table 4

The comparison of the speed-up reached by different methods

for a uniform data set with about 100,000 points

PEs Hardwick

[22]

Optimistic

method

[26]

Batch

method

3:1

Circum-

circle

method

2 1.82 2.28 2.42 2.39

4 3.33 3.98 3.81 3.73

Fig. 13. Crater Lake, USA. An example of a tested real data

set.
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algorithm of Hardwick [28] is based on the Dwyer’s

sequential algorithm [25] and Hardwick uses the times of

that sequential algorithm to compute his speed-up. All

our methods are based on the incremental insertion

algorithm and, therefore, the speed-up of our methods

was related to that sequential algorithm. All our

methods ran on a Dell Power Edge 6400, Hardwick’s

algorithm on a SGI Power Challenge. All methods

worked with shared memory and processed a uniform

data set with approximately 100,000 points.

It would not be fair to claim that our proposed

methods are better than the algorithm of [28] because

the experiment were performed on different architec-

tures and the speed-up evaluation is also different.

However, we can claim that our methods achieve at least

the same speed-up and, moreover, these methods are

easier to implement than Hardwick’s algorithm. If we

compare our new methods with the algorithm presented

in [32], both the batch and the circum-circle methods

achieve better speed-up for two PEs. A slightly worse

speed-up was noticed with the circum-circle method

using four PEs.
5. Conclusion

In this paper, we have described two new parallel

methods for the construction of the Delaunay triangula-
tion based on randomized incremental insertion. The

methods are designed for multiprocessors with shared

memory and limited number of processors, optimally

two or four. Although the stress was originally put on

the simplicity of the implementation, both methods also

reached a significant speed-up compared with the

sequential algorithm.

The batch method is not scalable and is intended to be

used only with up to four processors. When two PEs are

used, it shows a super-linear speed-up for data sizes

larger than 10,000 points, i.e. a rate of 2.34–2.42 for

uniform data sets and 2.38–2.65 for real data sets. A

speed-up 3.36–3.84 for uniform data and 3.71–4.40 for

real data was achieved when four processors were used.

The method of the circum-circle is easier to implement

than our previously published methods (the batch

method excluded) and it shows super-linear speed-up

when two processors are used, i.e. a rate of 2.34–2.46 for

uniform data and of 2.27–2.62 for real data. Also a good

speed-up is achieved when four processors are used,

i.e. rate of 3.21–3.93 for uniform data and of 3.34–4.09

for real data. This method can be used also in

architectures with more processors, however, its effi-

ciency decreases by increasing the number of PEs.

Fig. 13 shows an example of a real data set. This is a

digital elevation model of Crater Lake, USA containing

100,001 points. The batch method (with a 3:1 config-

uration) reached speed-up 2.01 on a Dell Precision 410

with two PEs (i.e. a 100% efficiency gain) and of 4.40 on

a Dell Power Edge 6400 with four PEs (i.e. an efficiency

gain larger than 100%). The method of circum-circle

achieved slightly worse speed-up. Here, the speed-up

was 2.00 on a Dells P 410 (i.e. a 100% efficiency gain)

and of 4.09 on a Dell PE 6400 (i.e. an efficiency gain

larger than 100%). Let us note that the model was

rendered using the MVE visualization package [51].
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