
 
 

DILEWA: The DIstributed Learning Environment Without Avatars 
 

Michal Máša, Jirí Žára 
Department of Computer Science and Engineering, Czech Technical University in Prague 

{xmasam, zara}@fel.cvut.cz 
 
 

Abstract 
 

Nowadays multi-user VR systems are mostly aimed to 
social interaction, whereas exploitation of shared virtual 
environment for educational purposes has been mainly 
left aside. We introduce notion of tutor-based system and 
state main differences between tutor-based multi-user 
system and social interaction aimed one. In the proposed 
approach, one of the users is the tutor while the others 
represent auditors. This paper focuses on possible means 
for expressing tutor’s role including special auditor’s 
operating modes supported by mechanism of net-routes. 
Theoretical considerations have been tested on DILEWA 
experimental system. 
 
 

1. Introduction 
 

Most existing multi-user VR systems follow 
a fundamental pattern of shared virtual world(s) occupied 
by users perceiving each other with the help of avatars 
[4,5]. Such a model sufficiently meets needs for social 
interaction but this is definitely not the only way of 
exploiting virtual environments (VE). In this paper we 
focus on cases where one of the users plays a special role 
among the others – she/he acts as a tutor. The rest of 
users then represent her/his auditors. For such an 
arrangement, we introduce a notion of a tutor-based 
multi-user system. Such a system is mainly suitable for 
educational purpose, but not limited to it – multi-user 
cooperation in VE can make the most of it as well [6]. 

In section 2, we state main differences between tutor-
based multi-user system and social interaction aimed one. 
Section 3 discusses resources for expressing tutor’s role, 
especially in VRML, introducing special auditors’ modes 
and mechanism of net-routes. Results are presented in 
Section 4, which deals with implementation issues of our 
experimental system called DILEWA. 
 

2. Virtual reality as a learning environment 
 

The tutor-based system introduces new requirements 
for how users should perceive each other. While every 

user is less or more equal in a multi-user system for 
social interaction, the tutor plays the key role and the 
auditors are less important in a tutor-based system. The 
auditors do not need to perceive each other and the only 
user to be perceived by the others is the tutor. However, 
the way she/he is perceived should be different from 
a typical avatar approach, because the auditors are 
interested in her/his activities rather than appearance. To 
provide the auditors with a comfortable method of 
observing the tutor’s activities, it is reasonable to enable 
them to see the world through the tutor’s eyes [7]. 
Naturally, the auditors should also be able to act 
independently to practice their own skills. 

The following two main observations for tutor-based 
multi-user systems has been made: 
1. Avatars redundancy – auditors do not need to 

perceive each other, but tutor. Absence of avatars 
drastically reduces network traffic, since most of 
network’s capacity is usually used for transmitting 
information about avatars’ position and orientation. 
Moreover, there could be such a virtual environment, 
where the presence of avatars is even undesirable. As 
an illustration, consider tutor exemplifying how to 
handle a device or describing a complex object, like 
a molecule, engine, or solar system. In such scenes, 
it makes no sense to express auditors’ positions (e.g. 
with avatars), since this information is irrelevant for 
educational tasks. 

2. Users operate in two modes – tracing mode, used to 
watch the world through the tutor’s eyes and self-
control mode used to act independently. 

 

3. System characteristics 
 

Implementation of a tutor based multi-user system has 
to consider the following basic issues: 
1. 3D scene rendering 
2. Capturing information about tutor’s behavior 

(interaction and navigation in VE) 
3. Broadcasting the information to auditors 
4. Utilizing the information by auditors to support 

tracing mode 

From Proceedings IEEE International Conference on Information Visualisation 2000, London, UK



It is reasonable and time saving to utilize maximally 
already existing technologies instead of reinventing the 
wheel. VRML as a proved and progressive internet 
standard for 3D scene representation in conjunction with 
Java cross platform programming language seems to 
form powerful basis for both experimental and prototype 
application development. 
 
3.1. DILEWA architecture 
 

The architecture of the DILEWA experimental system 
is predetermined to meet the following requirements: 
1. Cross platform application – VRML as the Internet 

standard and Java fulfils this issue. 
2. Minimum development effort – to exploit existing 

cross platform WWW browsers extended by VRML 
plug-in for VRML scene presentation. 

Here we come to an accomplished scheme composed 
of Java applet communicating by EAI [2] with VRML 
plug-in, both running in a WWW browser [5]. Java 
applet is responsible for communication issues, VRML 
plug-in renders the scene and handles user’s interaction, 
EAI is employed for information exchange between Java 
applet and VRML plug-in. Plug-in updates applet about 
tutor’s behavior and conversely, applet instructs plug-in 
to support tracing mode. Finally a WWW browser is 
exploited as an application host. 
 
3.2. Tutor’s behavior capturing 
 

User’s behavior in VE can be divided into two groups: 
interaction and navigation. Interaction means user’s 
activities impacting the scene, while navigation means 
changes of position and orientation of user’s viewpoint. 
 
Interaction capturing 

In VRML, user’s interaction with virtual environment 
is internally accomplished by sensor nodes, classified 
into two categories: environmental sensors and pointing-
device sensors. Environmental sensors get activated 
when specific conditions in a scene are met, as e.g. when 
avatar collides with objects or avatar enters specified 
region. Pointing-device sensors get activated when the 
user locates the pointing-device over objects. When 
activated, the sensor node generates one or more events 
of various data types. To affect the scene in response to 
the user interaction, these initial events are passed to 
other VRML nodes. Connection between the source and 
the destination node is accomplished by mechanism 
called ROUTE in VRML. Once a sensor has generated 
an initial event, the event is propagated producing the 
events along any attached ROUTEs to other nodes. Those 

nodes may respond by generating additional events; this 
process is called an event cascade in VRML. 

Thus, capturing of tutor’s interaction involves 
capturing of generated events. However, not all events 
generated during the event cascade have to be captured. 
Instead, it is sufficient to capture only initial ones, which 
after delivering to their original destination nodes in 
auditor’s client are able to trigger identical event cascade. 
 
Navigation capturing 

Environmental sensor ProximitySensor covering 
the whole scene is appropriate to support this task, 
because it generates continuous events while a user 
navigates through the scene. These events contain 
information about current user’s position and orientation. 
Sending this information to auditor’s client and setting 
auditor’s viewpoint accordingly is a keystone for tracing 
mode support. 
 
3.3. Auditor’s modes 
 

This section describes the key difference between the 
tutor-based multi-user systems and the social interaction 
aimed ones. The difference lies in providing auditors 
with ability of switching between two operational modes: 
tracing mode and self-control mode. While the self-
control mode enables auditors to navigate and operate 
like in an ordinary single-user world, switching in 
tracing mode locks their activities and lets them just 
watch the world through the tutor’s eyes. 
 
Tracing mode 

In this case, tutor’s behavior represented by events has 
to be delivered to auditor. We have designed 
a mechanism of net-routes for this task. Semantics of 
net-routes are the same as for VRML routes – they serve 
as a connection from generating to receiving nodes. 
Unlike VRML routes, net-routes are intended to connect 
nodes located in different clients. 

To simulate tutor’s interaction in auditor’s client, net-
routes are to be established between both clients. 
Corresponding net-route mate is established for each 
such a route from VRML scene, which is fed by sensor 
node’s initial events. Once initial events have been 
delivered, they are able to trigger event cascade described 
above, to ensure the same behavior in both auditor’s and 
tutor’s clients. 

Synchronization of auditor’s viewpoint accordingly to 
tutor is guaranteed by the help of net-routes as well. Two 
net-routes transmitting current tutor’s position and 
orientation are established from tutor’s 
ProximitySensor node to auditor’s ViewPoint 
node. 

From Proceedings IEEE International Conference on Information Visualisation 2000, London, UK



However, synchronizing auditor’s viewpoint is likely 
to activate the same environmental sensor nodes in 
auditor’s client, which has been already activated in 
tutor’s client. This would cause the same initial event 
being delivered twice – once along a VRML route in 
auditor’s client and once along a net-route. To avoid this 
duplication, one of these routes has to be omitted. 
Deleting the original VRML routes in auditor’s client has 
been proved to be the right solution due to the following 
reasons. 

Firstly, events generated from environmental sensor 
nodes in tutor’s and auditor’s client can be different. 
Even more, some sensor nodes, which get activated in 
tutor’s client, might not get activated in auditor’s client. 
This inconsistency is caused by converting continuous 
tutor’s movement into discrete values. While tutor’s 
client interpolates between particular navigational steps, 
auditor’s client just sets the viewpoint accordingly to 
these steps. Some intermediate states might be omitted, 
leading to some environmental sensors being not 
activated in both clients. Collision sensor serves as 
a good example; while easily activated by a tutor, it gets 
never activated in auditor’s client, because browser 
adjusts tutor’s location immediately, preventing tutor’s 
client from sending collision location. The use of the net-
routes ensures delivering of all initial events caused by 
a tutor, no matter if they have been generated 
simultaneously in auditor’s client or not. 

Secondly, it is desirable to prevent auditor from 
activating pointing-device sensor nodes in her/his client 
while a tutor is managing the scene. However, deletion of 
connected routes has the same effect – although sensors 
might be activated, they are not able to trigger any event 
cascade. 

Therefore when auditor switches to tracing mode, the 
following actions take place: 
1. Net-routes are established between her/his client and 

tutor’s client. There are three types of net-routes: 

• Net-routes fed by environmental sensor nodes 
• Net-routes fed by pointing-device sensor nodes 
• Net-routes fed by navigational information 

2. Corresponding VRML routes are temporarily deleted 
from the local scene. 

 
Self-control mode 

This mode provides auditor with single-user world 
experience. When switching from tracing mode, some 
types of net-routes are deleted and corresponding 
temporarily deleted VRML routes are restored. Decision 
about what types are to be deleted affects the consistency 
of the auditor’s and tutor’s scenes. 

Net-routes fed by navigational information should be 
deleted, unless there is at least one another independent 
viewpoint an auditor can be switched to. Deletion of net-
routes fed by pointing-device sensor nodes is more 
critical and we have to think about the purpose of the 
system. If the system is aimed for educational purposes, 
deleting net-routes is a proper solution, since we want 
provide auditor with ability to practice interaction with 
the scene independently. However, if the system has to 
serve for cooperation purposes, consistency of the worlds 
and preserving tutor’s scene impacts are the essential 
requirements, that net-routes deletion would break. 
Similar considerations apply to net-routes fed by 
environmental sensor nodes, but these sensors typically 
play less important role in cooperation-designed scenes. 

Thus, when auditor switches to self-control mode, the 
following actions take place: 
1. Selected net-routes (accordingly to the purpose of the 

system) are temporarily deleted. 
2. Corresponding VRML routes are restored 

Figure 1 depicts two auditors’ clients using tracing, 
and self-control modes, respectively. The crosses mark 
routes that are temporarily deleted. 

sensors sensors sensorsscene scene scene

Auditor’s client
Self-control mode

Tutor’s client Auditor’s client
Tracing mode

VRML
routes

Net-routes Net-routes

Figure 1. Auditor’s modes and net-routes, the crosses mark deleted routes

VRML
routes

VRML
routes

From Proceedings IEEE International Conference on Information Visualisation 2000, London, UK



4. DILEWA implementation 
 

This section deals with main implementation issues of 
our DILEWA experimental system: net-routes, DILEWA 
world authoring and user management. 
 
4.1. Net-routes 
 

Net-routes are nothing else, but unidirectional 
communication channels between two clients. Since 
VRML itself does not include any communication tools, 
Java applet supplies them. Because of security 
restrictions for Java applets running in a browser, applets 
cannot establish network connection to arbitrary network 
node, but the server they were downloaded from. This 
constrains communication scheme to follow client-server 
model. 

Net-route mechanism is therefore implemented within 
two steps. Firstly, initial event is captured using EAI 
interface in tutor’s client and sent via network to the 
server. Secondly, the server broadcasts this event to 
auditors’ clients and events are delivered to receiving 
nodes using EAI. 
 
4.2. DILEWA world authoring 
 

Implementation of proposed features of the tutor-based 
system involves the following issues: capturing user’s 
navigation, setting user’s viewpoint, locating VRML 
routes fed by sensor nodes and obtaining the actual world 
time. Since current EAI implementation lacks direct 
support for this functionality, our approach is to extend 
a VRML world by extra nodes. These extra, but standard 
nodes are: 

• ProximitySensor, covering the whole scene, 
for capturing tutor’s navigation, 

• additional ViewPoint for setting auditor’s 
viewpoint, 

• Anchor holding in its parameter field a list of 
VRML routes fed by sensor nodes, 

• TimeSensor for providing the applet with VRML 
scene clock. 

The Anchor node holds an extra list in its MFString 
parameter field. Particular route is described as 
a regular VRML route by four strings identifying source 
and destination node/event pairs. Since only nodes 
named by DEF statement are accessible through EAI, 
possible sensor nodes encapsulated in user PROTOs are 
inaccessible and their events cannot be captured. This 
can be overcome by exposing sensor’s node events in 
PROTO’s interface declaration. 

Very common approach is to use a sensor node to 
activate TimeSensor node (note that TimeSensor 
node is not considered as generating initial events in 
such a case) by routing some eventOut to eventIn 
startTime of TimeSensor. Since the sensor 
generated event represents ‘now’ time, TimeSensor is 
activated immediately. This works fine in local client, but 
fails when attempting to transfer ‘now’ time along net-
route to activate TimeSensor in different clients with 
different scene clock. While other systems overcome this 
issue by introducing delta time fields [3] or by generating 
SFTime event from SFBool event with the help of 
Script node [5], our solution is to substitute every 
SFTime event delivered along net-route by actual scene 
‘now’ time using the extra TimeSensor node. 
 

Auditor’s client
Self-control mode

Tutor’s client Auditor’s client
Tracing mode

Server

Figure 2. Sample scene with a stopwatch viewed in different modes. The leftmost window shows
an independently working user while the other two are synchronized.

From Proceedings IEEE International Conference on Information Visualisation 2000, London, UK



4.3. DILEWA user management and GUI 
 

In DILEWA architecture, the server, implemented in 
Java, is responsible for event broadcasting and basic user 
management. Users are identified by their 
names/nicknames and the server maintains a list of active 
users and their roles and modes. The first logged user 
obtains the tutor role and the others become auditors. 
Each user can see the list of connected users; auditors can 
switch between tracing and self-control mode; the tutor 
can entrust an arbitrary user with tutor’s role. This is 
accomplished by applet GUI as depicted on Figure 2. 
 

5. Conclusion and future work 
 

In this paper, we have presented possible exploitation 
of multi-user virtual environments for educational 
purposes. We have introduced notion of tutor-based 
system and pointed out basic requirements such a system 
should met. It has been proved that system can be 
implemented using VRML extended by newly designed 
mechanism of net-routes, which supply communication 
issues where VRML lacks. 

Further improvements are still under the development 
e.g. event filtering, state encoding, and object locks in 
a scene. The first issue concerns the situation when 
distributed participants use machines with big differences 
in their real-time capabilities. High number of events 
coming from hi-end tutor’s client can cause overloading 
and delays in other, possibly low-end clients. The second 
point helps late coming auditors to immediately update 
their local scene. The third problem is the key point for 
distance cooperation extension of the system. Although 
the primary task has been to use the tutor-based VE 
system for educational and presentational purposes, the 
possibility to use it for real cooperation is slightly 
different, but accomplishable challenge. 
 

6. References 
 
[1] The Virtual Reality Modeling Language. 
International Standard ISO/IEC 14772-1:1997, 
http://www.web3d.org/technicalinfo/specifications/ 
vrml97/ 
 
[2] The Virtual Reality Modeling Language External 
Authoring Interface. Committee Draft ISO/IEC 14772-2, 
http://www.vrml.org/WorkingGroups/vrml-
eai/Specification/ 
 
[3] Living Worlds, 
http://www.vrml.org/WorkingGroups/living-worlds/ 
 
[4] Blaxxun Interactive, 
http://www.blaxxun.com/ 
 
[5] G. Reitmayr: “Behind the scenes of a VRML multi-
user architecture”. VRML99 – Fourth International 
Conference on the Virtual Reality Modeling Language 
and Web 3D Technologies, 23-26 February 1999, 
Paderborn, Germany. 
http://www.c-lab.de/vrml99/ 
http://www.geometrek.com/ 
 
[6] D. Margery, B. Arnaldi, and N. Plouzeau: “A General 
Framework for Cooperative Manipulation in Virtual 
Environments”. Virtual Environments ’99, Proceedings 
of the Eurographics Workshop in Vienna, Austria, May 
31-June 1, 1999, pp. 169-178. 
 
[7] K. Engel, and T. Ertl: “Texture-based Volume 
Visualisation for Multiple Users on the World Wide 
Web”. Virtual Environments ’99, Proceedings of the 
Eurographics Workshop in Vienna, Austria, May 31-
June 1, 1999, pp. 115-124. 
 

From Proceedings IEEE International Conference on Information Visualisation 2000, London, UK


