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Abstract. An intuitive image-based 3D reconstruction tool based on
inaccurate user strokes is presented in this paper. The combination of
fast image segmentation method together with user knowledge about
reconstructed scene forms a novel low-polygonal editor suitable for ar-
chitecture reconstruction. The user interaction is minimized thanks to
propagation of strokes among input photographs. The final model geom-
etry is created by innovative algorithm. The input to the tool is a set of
calibrated photographs together with a sparse pointcloud. The output is
a structured low-poly 3D model.

1 Introduction

Inspired by well known 3D editors for low-polygonal image-based modelling (like
ImageModeler, PhotoModeler) we propose a novel editor reducing amount of
user interaction. We present a combination of state-of-the-art techniques and
intuitive interaction methods for geometry construction. Our approach opens
new ways for 3D reconstruction focused on low-poly output which is well suited
for internet presentation. The user interaction brings also advantages for 3D re-
construction in low-textured or occluded areas where automatic methods often
fail. This reconstruction tool is suitable for architecture reconstruction or other

Fig. 1. Program workflow overview
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areas where planar structures dominate. Calibrated photos (known camera po-
sitions) and sparse pointcloud (reconstructed during camera calibration phase)
constitute the input of the method. We have successfully used both Bundler [1]
and APERO [2] project as suitable calibration engines.

The core of our approach is geometry primitives fitting based on source photo
segmentation, see Fig. 1. The structure of the paper corresponds to individual
algorithm steps. The graph-cut image segmentation is driven by inaccurate user
strokes (Section 3). The image segmentation is then used for labelling of sparse
pointcloud points and is also propagated to close photographs (Section 4). Vari-
ous geometry primitives are then fitted on labelled points (Section 5). Thanks to
user-defined relations between adjacent geometrical structures (Section 6), final
polygonal geometry is computed (Section 7).

2 Related Work

The image-based 3D modeling is studied over last 15 years. Several systems
were developed over this time, and all of them have common properties. The
user works with a set of photographs and selects interesting parts of objects for
the reconstruction.

One of the first work was Facade by Debevec at al. [3] which later gave rise
to a commercial product called Canoma. The system provided several 3D prim-
itives like prisms, cuboids and pyramids. The user placed the primitives into
photographs and improved positions of the primitives in other views. Since the
scene was continuously calibrated by user added objects, the system tended to be
unstable. Later, other commercial products were inspired by Canoma software,
like PhotoModeler by Eos Systems, ImageModeler by RealViz (now Autodesk)
and the PhotoMatch component of Google SketchUP. The calibration of input
photographs was shifted to user in those systems.

Other systems estimate the camera calibration using automatic methods based
on SFM. Some programs have developed their own calibration core (VideoTrace
by van den Hengel et al. [4], system for architectural modelling by Sinha et
al. [5]). Other works benefit from external SFM calibration tools (like Match-
Mover by RealViz, Boujou by 2d3 or Bundler) and suppose calibrated scene as
input (Habbecke et al. [6], Paczkowski at al. [7]).
Other works try to get as much information from one photo as possible [8–10].
The one photo calibration is based on finding vanishing points constraints and
on the fact that all architectural buildings have parallel lines and the building
blocks are build in Manhattan layout [11]. Vanishing points are used even in
modelling from more photographs like Sinha et al. [5], Cipolla et al. [12] and
Wilczkowiak et al. [13].

Sinha et al. [5] shows that the combination of unordered photo set, detected
vanishing points and vanish lines and auto-calibration using SFM leads to user
friendly free-polygonal modelling. The user draws lines to the image. The lines
are snapped to the direction of vanishing lines and then the lines are extruded
to the face in the direction of plane perpendicular to the line in user selected



106 D. Sedlacek and J. Zara
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Fig. 2. User inputs and geometry output: (a) Sketch based segmentation interface; (b)
Geometry reconstructed from pointcloud and informations defined by a user in the left
photograph

direction. They use RANSAC algorithm for the best plane fitting constrained
by vanishing points. The plane fitting algorithm found the best fitting plane in
sparse pointcloud restricted by points lying within a face selected by user. They
call their user modelling interface sketch-based but it is restricted to placing
lines near the real line, in other cases the line is snapped to the wrong vanishing
line. Sketch-based interfaces are also applied in works of El-hakim at al. [14]
and Xiao at al. [15] where they provide tools for selection, marking, and other
specific operations.

The sketch-based interface is mostly related to creation of new 3D models
or annotations, see [16] for wide overview. Interesting work is combination of
calibrated scene with creation of new architectural design in site, see Paczkowski
at al. [7].

Our approach is similar to Sinha et al. [5] however we intensively utilize a
sketch-based interface in order to define a higher logic and geometrical structure
within 3D reconstructed scene.

3 Image Labelling

In our approach we benefit from user knowledge about the scene to be recon-
structed. We suppose that the user recognizes basic scene primitives (a wall, a
pillar, etc.) and the connections between them (adjacent or not). For this we
have designed an intuitive user interface for photo labelling based on graph-cut
algorithm, see Fig. 2a.

Similarly as Boykov at al. [17], we formulate labelling problem as an energy
function minimization. As an input we use a gray-scale image P where each pixel
p ∈ P is connected to 4 neighbours (N). The goal is to find labelling l, i.e. to
assign each pixel p a label in finite label set Lp ∈ L while the energy function is
minimized. We express the energy function as:
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E(l) =
∑

{p,q}∈N

Vp,q(Lp, Lq) +
∑

p∈P

Dp(Lp) (1)

Where Vp,q is smoothness term representing the energy of intensity discontinuity
between two neighbouring pixels and data term Dp is the energy of assigning
the pixel to label. The Lp,q stands for pixel labelling. We define the smoothness
term as:

Vp,q(Lp, Lq) = 1 + (K ∗ e−(Iq−Ip)2

σ2 ) (2)

Where Ip,q are pixels intensities, constant K is scaling factor from float to in-
teger values 〈0;K〉 and constant σ controls exponent function behaviour. These
constants are estimated based on image size, which is mentioned in following
paragraphs. Similarly as Sykora at al. [18] avoid segmentation discontinuities
using non-zero smoothness term we map the final values of smoothnes term to
the 〈1;K〉 interval (additive constant in eq. 2). The K and σ constants are set
with respect to image size at the end of this section.

The data term in many segmentation methods is usually set to some image-
based likelihood such as pattern or color similarity. Due to the fact that our
segmentation completely relies on user inputs, the data term is set only to pixels
selected by the user and does not take into account any specific image properties.

Dp(Lp) =

{
0, p ∈ L

∞, p /∈ L
(3)

Since the smoothness term relies only on pixel intensity and not on the labelling,
our energy function can be minimized by solving multiway cut problem on undi-
rect graph [19]. Our graphG = {V,E} has the same topology as described in [18],
i.e. each image pixel correspond to one vertex P and is connected to 4 neigh-
bours by edges Ep with capacity equal to smoothness term wp,q = Vp,q from eq.
2. The edges Ec between pixels P and terminals C has capacity wp,c = K −Dp.
Considering eq. 3 we can simplify terminal capacity to wp,c = K. Recall that
only pixels where user made hard strokes are connected to terminals.

Inspired by LazyBrush [18] we solve the multiway cut algorithm by greedy
algorithm where one label is randomly chosen as S terminal and all others are
connected to the T terminal. Thereafter max-flow/min-cut problem is solved
using [17]. All pixels labelled as S are disconnected from graph and new label is
selected as terminal S from the set of all remaining labels previously connected
to T . This procedure is repeated until T is empty.

The image segmentation is used for labelling sparse pointcloud. Each 3D point
of sparse pointcloud contains the list of cameras where it was visible and 2D
point representing the image of 3D point in the corresponding camera. Thanks
to this information, we are able to propagate the image segmentation to the 3D
pointcloud which is then used for 3D reconstruction in section 5.

To achieve best results from calibration phase, we prefer to use photos in origi-
nal size. Unfortunately the image size of several mega-pixels causes very long seg-
mentation times (Table 1). That is why we internally down-scale images to the size
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of 640px for longer edge. The computed segmentation is then up-scaled to origi-
nal images. Thanks to low distribution of underlying pointcloud we do not need
to use any of segmentation refinements in higher resolution, for example like [20].
Currently a faster single-core implementation of Boykov algorithm has been in-
troduced by Jamriska et al. [21] but we have not integrated it yet.

Table 1. Processing times of graph-cut algorithm depending on image maximal edge
size and labels count. Intel Core2 Quad, 2.5GHz, single core.

size 2 labels 5 labels 10 labels 15 labels

640px 402ms 723ms 921ms 1110ms
800px 800ms 1252ms 1650ms 2043ms
1024px 1342ms 2328ms 2970ms 3882ms

With respect to chosen image size, the edge capacity constants are set as:
K = 2 ∗ (h+w) and σ2 = 32. To get maximal interactivity during the labelling
and reconstruction process, the image segmentation is performed immediately
after each user stroke. If the user considers the delay after each stroke too long
she can switch to on demand segmentation process where all strokes are given
in advance followed by final segmentation evaluation.

4 Propagation of Segmentation

As stated in previous section, the image segmentation is used only for finding
labelling of sparse pointcloud. After processing the first photograph, the labelling
of the whole model is not complete. Thus other photos are to be used to finish
the labelling process. The automatic propagation of labelling is implemented to
achieve faster reconstruction and also for the reason of user load reduction. The
labelling suggestion is based on the following procedure.

For each feature point in image we get corresponding 3D point of pointcloud. If
this 3D point is already labelled we transfer this labelling into next image. In re-
lated works the suggested labelling is transferred into segmentation graph as ”Soft
scribble”. It can be interpreted as a connection of node to the corresponding ter-
minal with much less capacity than used for the user input (hard scribble). The
tests with real data shown successful propagation of labelling to new photo but
brought problems in case of subsequent user corrections. When new user strokes
were added the segmentation became less stable and disintegrated into small un-
connected regions, requiring additional corrections, see Figure 3b. For this reason
we decided to transfer labelling as new user strokes (hard scribbles) which can be
easily deleted or over-painted by the user. New hard scribbles are generated as
small circles with center at the position of image feature point, see Figure 3c.

5 Fitting of Geometry Primitives

The geometry primitives are fitted to the segmented pointcloud. Each label cor-
responds to one geometry primitive type (e.g. plane, sphere, box) and primitive
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(a) (b)

(c) (d)

Fig. 3. The segmentation propagated from photo in Fig. 2a using different scribble
types. (a) propagated segmentation using soft scribbles; (b) correction of soft scribbles
segmentation, notice isolated parts in the closer view; (c) propagated segmentation
using hard scribbles; (d) correction of hard scribbles segmentation.

occurrence. It means, that each primitive should be segmented with new label
stroke of corresponding type. The RANSAC [22] algorithm is used for geometry
model parameter estimation. Thanks to user points pre-selection there is a high
probability that all points belongs to the given primitive. For this reason, we do
not use any special candidates sampling strategy, for example as in [23], but all
label points are sampled randomly.

The output of this algorithm step is not the final geometric representation
of found primitives but only the algebraic parameters of geometry model (e.g.
a,b,c,d parameters for plane or center and radius for sphere). The description of
final geometry creation is described in section 7. Currently we support fitting of
planes and spheres only, however our labelling framework is prepared for other
geometry types as well.

6 Relations

In standard image-based modelling software (like ImageModeler, PhotoModeler,
Sketchup), the reconstructed model shape is built bottom-up starting from the
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smallest primitives (points) through edges up to faces and meshes. We introduce
another approach (top-down), where the mesh geometry is defined by geomet-
rical primitives and relations among them. In case of planes, a relation of two
non-parallel planes defines an edge, similarly three planes form a point.

We recognize two relation types between planes, see Fig. 4. The first one is
cross relation where two planes form an edge and both planes are split on two
half-planes while only two of half-planes forms a mesh. This relation represents a
mesh edge. We assume that this relation is enough if and only if all mesh planes
are visible and they can be reconstructed. Unfortunately in real scenes a lot of
mesh sides are hidden behind some bigger objects, for example a book lying on a
table. The bottom side of the book is not visible but we need some reference for
restriction of other four book sides. For this reason we introduce second relation -
the restriction. The restriction relation naturally corresponds to the definition
of two different objects and is interpreted like the first plane (book side) is split
by the second one (table plane) while the second plane remains unchanged.

The relations are defined in the same interface as labelling by a stroke con-
necting areas with two different labels, see Fig. 4d.

p1

p2 e1
e2

(a)

p1

p2
e2

(b)

(c)

x
x

(d) (e)

Fig. 4. Two types of relations shown on a schematic view and a real example. In
schematic view two planes p1,2 are split with respect to the relation type: the cross
relation (a) and the restriction relation (b) (T-junction). The plane parts filled by solid
color remain. In the real example (d), the cross relation is depicted by line with × letter
in the middle, the restriction relation is depicted by an arrow. Stroke colors correspond
to plane colors. Original planes (c) are unrestricted and they intersect mutually. In (e),
three upper planes create edges defined by the cross relation. They are all restricted
by the bottom yellow plane which is not cropped by other planes.
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7 Finding Output Geometry

The final geometry is constructed from outputs of fitting phase in combination
with relations. The overall process is similar to modelling boundary represen-
tations of solids with boolean operations. The difference is that our primitives
are not closed solids and that crossing planes do not determine inner or outer
subspace unambiguously. To properly solve the problem we incorporate a knowl-
edge of feature points belonging to fitted geometry. For the sake of simplicity we
describe a situation in which planes are considered only.

Each plane defined by a user is initially treated as unbound and the mesh
geometry is found as an intersection of related planes. The task is to find bounds
for each plane what forms a polygon. Inspired by Bernstein at al. [24] we define
convex polygon p as a couple of supporting plane s and counter clockwise ordered
list of bounding planes {bi}i∈Zn , see Fig. 5a. The polygon vertices are then given
by intersection of three planes: vi = (s, bi−1, bi). We construct the final, possibly
non-convex polygon from a set of small convex components, see Fig. 5b. All
the details connected to polygons like numeric and geometric basis, and BSP
operations are described in [24].

To make the process more robust, we artificially add several bounding planes
in a far distance. This solves a problem of incompletely specified set of crossing
planes.

(a) (b)

Fig. 5. Polygons: (a) convex polygon representation. Supporting plane s is bounded
by three boundary planes bi. Corresponding vertices are shown as dots; (b) Supporting
plane is split by related planes into convex polygons. Artificial planes in far distance are
illustrated as dashed lines and border polygons (i.e. adjacent to dashed lines) are not
labelled for simplicity. The corresponding BSP (sub)tree on the right shows only the
leaves containing inner convex polygons. The final polygon consists of three elementary
polygons p0, p1, and p2.

We find a final polygon defined by supporting plane s in two steps. Firstly
we get a set of all convex polygons defined by plane s and all planes related to
it as a result of BSP tree creation. Note that the elementary convex polygons
are not treated as geometrical objects only but we keep a list of corresponding
pointcloud points attached to them. This allows us to collect all contributing
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elementary polygons by solving min-cut problem in the second step. The follow-
ing algorithm describes the first step, its output (BSP tree and a set of convex
polygons) is depicted in the Figure 5b.

Routine for finding all possible convex polygons

getPolygons (Plane s) {

R = getRelatedPlanes(s); //get all s-related planes

p = new Polygon(s); //create polygon bounded by distant planes

BSP = new BSP(p); //BSP structure for polygon intersections

for(Plane r : R) {

BSP.addSplitPlane(r);

}

return BSP.getLeaves();

}

The second step is a selection of the subset of convex polygon participating in
the final polygon. We are looking for binary labelling (IN,OUT ) of elementary
polygons based on information previously defined by a user. We state out the
differences in relation to already described graph-cut algorithm in Section 3.
The nodes of graph G = (V,E) are now the leaves of the BSP tree Pi connected
with neighbour leaves by edges Ep with capacity equal to wp,q, see eq. 4. Some
nodes are connected by edges with capacity wp,s and wp,t to S-source and T -sink
terminals respectively, see Fig. 6b.

(a) (b) (c)

Fig. 6. Graph-cut: (a) An input plane bounded by distant planes (gray rectangle with
dashed boundary), two related planes and few plane points. (b) Input plane extended
by graph for solving min-cut problem. (c) Labelled graph with depicted final polygon.
Point out that minimal-cut correspond to polygon boundary edges. The gray filled
polygon is labelled IN, the other three white filled polygons are labelled OUT.

wp,q = 1 + (K ∗ e
−(Qpoints−Ppoints)2

σ2 )
wp,s = K, if(Ppolygons = 0)
wp,t = K ∗ Ppoints, if(Ppoints/points > 0.6)

(4)

The terminals are connected to nodes only if the given condition is satisfied. The
symbols Ppoints, Ppolygons stand for a number of pointcloud points or polygons
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in current node respectively. The symbol points is an overall number of points
contained in the supporting plane. Notice that only the tree leaves representing
the space out of artificial bounding planes have zero polygons. The constants K
and σ2 were experimentally set to K = 100 and σ2 = 1000. The output of this
algorithm is a set of elementary polygons contained in nodes labelled as T (i.e.
IN) and forming the final mesh geometry, see Fig. 6c.

8 Conclusion

We have presented a novel interactive 3D reconstruction tool for calibrated pho-
tographs. It is composed of several well established techniques extended by new
ideas and algorithms. Especially the algorithm presented in Section 7 that is
able to construct non-convex polygons from imperfectly specified input planes
using graph-cut algorithm represents a promising way.

The reconstruction is driven by inaccurate strokes and is well prepared for use
on touch screens. The output is a structured low-poly model suited for online
presentations.
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