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Abstract

We introduce a novel colorization framework for old black-and-white cartoons originally produced by a cel or paper based technology. In

this case, the dynamic part of the scene is represented by a set of outlined homogeneous regions which superimpose the static background. To

reduce a large amount of manual intervention we combine unsupervised image segmentation, background reconstruction, and structural

prediction. Our system allows the user to specify the brightness of applied colors unlike the most of previous approaches which operate only

with hue and saturation. We also present simple but effective color modulation, composition and dust spot removal techniques able to

produce color images in broadcast quality without additional user intervention.
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1. Introduction

In the history of black-and-white cartoon-making, it is

possible to find really valuable and artistically advanced

works which still stand up in front of the world-wide,

modern cartoon production [1]. They provide an invaluable

source of inspiration for each new generation of children.

However, now these works are usually stored in depositories

with non-optimal humidity conditions where they undergo a

progressive degradation of visual quality. When one decides

to stop this process, it is usually necessary to perform digital

conversion [2] that preserves the same visual quality over

the time and additionally it also reduces the amount of labor

connected with restoration [3].

In this paper we discuss colorization, a challenging form

of restoration which has been originally introduced in 1970

and later patented by Wilson Markle [4]. Colorization is

defined as a process of transferring color information into

the original monochrome material. Unfortunately in past

decades it became really unpopular due to the opinion that it

defiles the original work [5]. However, behind the main
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motivation for this modification is the well known virtue of

color to enhance some specific artistic impressions [6].

Namely the presence of color in cartoons significantly

increases the visual attraction that is important especially

for a young audience.

From the technical point of view, colorization is a

strongly ill-posed problem. A large ambiguity in color-to-

intensity assignment cannot be resolved without additional

knowledge about a scene structure. This crucial information

is usually provided by a human and plays an important role

in the whole process. Consequently an artist who wants to

colorize black-and-white cartoon usually has to focus on

featureless and repetitive work that prevents him from doing

creative artwork. Currently available cartoon authoring

systems (e.g. Toonz,1 Retas,2 FlipBook,3 etc.) do not provide

any semi-automatic toolbox able to simplify colorization of

already designed black-and-white cartoon animations.

We show that using our novel approach, one is able to

automate colorization pipeline, reduce the amount of hand-

driven intervention and make the whole process temporarily

feasible and thus cost effective. We bring forward the final

visual quality, robustness, and ease of implementation by
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which our method may be successfully incorporated into

existing cartoon authoring systems.

The rest of paper is organized as follows. First we present

an overview of previous colorization approaches. Next, we

describe our method including implementation details and

optimization issues and finally we perform several

experiments on real cartoon animations to validate the

efficiency of proposed solution.
2. Previous work

Various semi-automatic colorization approaches have

been published previously. They exploit several heuristics

to estimate color-to-intensity assignment with a partial user

intervention. In this section we describe these methods in

detail. We also address main disadvantages which led us to

develop our novel approach.

2.1. Luminance keying

A basic colorization technique commonly known as

luminance keying or pseudo-coloring [7] utilizes user-defined

look-up table to transforms each level of gray-scale intensity

into a specified hue, saturation and brightness. This straight-

forward technique provides no possibility to apply different

colors on the pixels that have the same intensity but differ in a

spatial location. Only additional segmentation allows the user

to define simultaneously a few look-up tables for different

parts of the original image. Another problem is connected with

luminance fluctuation which is common in old movies. This

type of degradation causes a large derangement when the user

assigns different colors to the similar intensities. Anyway

luminance keying is usually only one possibility how to

perform colorization in standard image manipulation and

movie post-production tools and is extensively used.

2.2. Color-by-example

To partially alleviate limitations of luminance keying

Welsh et al. [8] proposed techniques that exploits local

textural information to discriminate ambiguity in the color-

to-intensity assignment. Their approach is inspired by a

method of color transfer between images [9] and by a

framework of image analogies [10]. In their method

luminance and color components are separated using lab

color space. Then a luminance distribution from a small

neighborhood of each pixel in the target image is matched

with a set of representative distributions in the source image.

Such set is selected either by jittered sampling or manually

using pre-defined rectangular swatches. When the best

matching distribution is found, only a color information is

transferred into the target pixel. The original luminance

remains unchanged. Although Welsh’s technique is surpris-

ingly successful when applied to some specific natural

scenarios, in cartoons, where a scene structure is mainly
represented by a set of homogeneous regions, the luminance

distribution collapses to a single peak which has indeed the

same discriminative power as look-up table in luminance

keying.

2.3. Motion estimation

Another well known approach to colorization [11,12]

assumes that changes between two consecutive frames are

small, therefore, it is possible to use optical flow to estimate

dense pixel-to-pixel correspondences. Chromatic infor-

mation can be then transferred directly between the

corresponding pixels. However, usually lots of key-frames

have to be colorized manually to cover changes in a scene

structure and also to correct colorization when the optical

flow estimation failed. This problem is frequent especially

in cartoon animations where the extent of motion between

two consecutive frames is large as compared with real

movies. Consequently colorization based on the motion

estimation remains still labor intensive.

2.4. Color propagation

In contrast to previous approaches, Horiuchi [13] was the

first who assumes that the homogeneity in the gray-scale

domain indicates homogeneity in the color domain and vice

versa. This assumption provides a possibility to propagate

color from several user-defined seed pixels to the rest of the

image. To accomplish this he suggested to exploit

probabilistic relaxation [14] with a simple relaxation rule

that propagates color information faster between the pixels

that have similar gray levels. However, this color

propagation scheme introduces a large computational

overhead which is not tractable for real applications.

Horiuchi and Hirano [15] later proposed an approximation

that produces similar results much faster but on the other

side it also introduces a lot of visible artifacts.

Levin et al. [16] introduced similar framework to

Horiuchi. In their technique, the aim is to minimize squared

difference between a pixel color and a weighted average of

colors in a small neighborhood. According to the assumption

of homogeneity they assign more weight to pixels that have

similar intensities. To incorporate user-defined colors the

minimization is performed subject to constraints defined in

seed pixels. Such a global optimization scheme results in a

large sparse system of linear equations which is solvable

using number of standard methods. Levin’s framework is

also suitable for image sequences. In this case, motion

estimation [17] is used to compensate movement between

two consecutive frames and then the color information can be

propagated both over the time and space.

Sapiro [18] proposed yet another color propagation

scheme where the minimization is performed in the gradient

domain. This optimization scheme yields a system of

Poisson equations with Dirichlet boundary conditions [19]

which can be also extended for image sequences using 3D
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version of Laplace operator. To define color constraints

Sapiro used Cb and Cr components in YCbCr color space.

However, it is also possible to perform minimization in a

full RGB color space because the original gradient field is

preserved in each channel. The main problem is that

Sapiro’s method produces significant color bleeding near

the strong edges which is visually disturbing.

Recently, Yatziv and Sapiro [20] introduced a novel

scheme that significantly outperforms previous approaches

both in the speed and visual quality. For each uncolored

pixel in the gray-scale image they compute geodesic

distance [21] to several nearest seed pixels with different

colors assigned. The final color is then computed as a

weighted average of seed colors where the weight is

proportional to the corresponding geodesic distance. Similar

to other color propagation schemes also this approach can

be easily extended to image sequences. In this case, the

color is propagated both in the space and time using 3D

geodesic distance. Moreover, Yatziv and Sapiro also

introduce a simple extension which allows the user to

change the underlaying gray-scale intensity. Using two

different seed pixels marked as background and foreground

they first annotate the image and then they compute the

colorization. This process results in an approximate alpha-

matte which can be used for various image editing tasks

such as intensity manipulation.

Although both Yatziv’s and Levin’s color propagation

schemes produce visually compelling results in much

shorter time frames, it is still necessary to draw many

well-placed scribbles frame-by-frame to produce good-

looking colorization.
2.5. Segmentation

Our approach is similar to [22]. In this framework,

manual image segmentation is used to divide the original

gray-scale image into a set of layers. Then for each of them

the alpha channel is estimated using Bayesian image

matting [23]. This decomposition allows to apply color-

ization (they use Welsh’s approach) or any other image

manipulation technique in each layer separately and then

reconstruct the final image using alpha-blending. As one can

see, this is the classical workflow commonly used in
Fig. 1. Colorization framework in progress: (a) the original gray-scale image, (b) ou

foreground layer colorization, (f) background layer reconstruction, (g) backgroun
standard image manipulation software which is labor

intensive and thus not tractable for cartoon animations.
3. Colorization framework

In this section, we describe our novel framework which

eliminates shortcomings of previous approaches. First, we

present an overview of colorization pipeline and later, in

successive sections, we describe each step in more details

including implementation and optimization issues.

3.1. Framework overview

The key assumption in our method is that each animation

frame has been created as a composition of two planar

layers (foreground and background) which have usually

different visual appearance. A dynamic foreground layer

consists of several homogeneous regions bounded by well

visible outlines. On the other side, a background layer is a

static image and usually contains a more complicated

textural information. This important property leads us to

process each layer separately using a different colorization

technique (see Fig. 2).

In the first stage, we perform image segmentation (see

Section 3.2) to divide the input frame into a set of regions. In

this step an outline detector helps us to locate region

boundaries (see Fig. 1c). An area size thresholding is then

used to estimate which region belongs to a background and

which to a foreground layer (see Fig. 1d). In the next phase,

we track camera motion through the sequence and using

several background fragments we mosaic one big image

which contains a visible portion of the whole background

layer (see Section 3.3). Such image can be then colorized at

one snap using standard image manipulation tool (see Figs.

1g and 9).

In contrast to a static background, a dynamic foreground

layer has to be colorized frame-by-frame. To speed up this

process we retrieve structural correspondences (see Section

3.4) between consecutive animation frames. They help us to

estimate color labels for each uncolored region in a novel

frame using yet colorized frames as an example. During this

step, a limited manual interaction avoids propagation of
tline detection, (c) outline extraction, (d) foreground layer segmentation, (e)

d layer colorization, and (h) the final composition.



Fig. 2. Colorization pipeline—a static background (top) is reconstructed from a number of animation frames. Color is then applied on the whole layer at one

snap using standard image manipulation tool. A dynamic foreground (bottom) is colorized semi-automatically frame-by-frame.
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prediction errors into the consecutive frames and conse-

quently guarantees the final visual quality.

A color image synthesis phase follows (see Section 3.5).

In this step, user-defined hue and saturation are applied

automatically on each pixel in the foreground layer while

the brightness of the final color is modulated using the

original gray-scale intensity (see Fig. 1e). Also dust spots

and band scratches are removed automatically exploiting

region homogeneity. Finally, camera motion estimation

helps us again to extract a visible portion of already

colorized background layer which is then composed with

already colorized foreground layer (see Figs. 1h and 2).
3.2. Segmentation

In order to separate the original gray-scale image into a

set of regions we adopt and improve unsupervised

segmentation technique first presented in [24]. This method

utilizes convolution with Laplacian-of-Gaussian masks

(LBG) to detect outlines [25]. Using LBG we can perform

two operations in one pass: Gaussian suppresses noise and

Laplacian estimates second-order derivatives of a noise-free

image. Such a filter can be derived as follows

G Z
1

2ps2
exp K

x2 Cy2

2s2

� �
(1)

and
Fig. 3. Outline detector in progress: (a) the original image, (b) L$G-ne
L Z V2 Z VoV Z
v2f

vx2
C

v2f

vy2
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where G denotes Gaussian filter and L is Laplace operator

both in two dimensions. Due to convolution linearity

V2(GBI)Z(V2G)BI, it is possible to pre-calculate V2G

using symbolic derivation and thus LBG can be expressed

in a closed-form:

LoG Z V2G

Z
1

ps2

x2 Cy2

2s2
K1

� �
exp K

x2 Cy2

2s2

� �
: (3)

The important feature of LBG is that edges in the

original image cause zero-crossings in the filtered image.

Moreover, these zero-crossings form closed curves, conse-

quently filter response inside the region should be only

positive or negative. If we consider that outlines are usually

darker in contrast to other regions then the response of LBG

inside the outline will be always negative (see Fig. 3b). This

important property enables us to design a robust and

accurate outline detector.
3.2.1. Outline detector

To detect outlines using LBG we use the following

adaptive algorithm. First we create a binary image where the

black pixels denote negative response of LBG in the

original image. We call this image LBG-negative mask. It

helps us to find out LBG-negative pixels pi which has the
gative mask, (c) adaptive flood-filling, and (d) extracted outlines.



Fig. 4. Unsupervised segmentation in progress: (a) outlines, (b) regions, (c) color-to-region assignment, and (d) region growing.
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minimal gray-scale intensity Imin. At these pixels we start a

standard flood-fill algorithm to mark out other LBG-

negative pixels which lie within the same LBG-negative

region. Using pixels from this region we compute intensity

median ~I. For the next flood-filling step we select yet

unfilled LBG-negative pixels which satisfy the condition

IðpiÞ!k ~I where convergency constant k has been exper-

imentally adjusted to 0.5. We iterate this process until

the intensity median of a new filled area is lower or the same

as the value from the previous step. Finally we remove

residual LBG-negative pixels to convert our LBG-negative

mask in to the final mask of outlines.

This adaptive outline marking algorithm converges very

fast. At average it stops after the second pass when a new

median ~IkC1 is not bigger than a previous ~Ik. This behavior is

depicted in Fig. 3c where almost all outlines are marked

during the initial step while only the eye has been marked in

the second iteration.
3.2.2. Outline authentication

In most cases all important outlines are extracted without

additional user intervention. Rarely outlines in the fore-

ground layer coincide with LBG-negative areas in the

background layer (see small beard protuberance in Fig. 3c).

Usually LBG-negative region in the background layer is

much brighter so it is possible to apply the following outline

authentication test: we use the minimal intensity value Imin

over a small neighborhood of the current pixel to compare

the median value ~In from the last iteration of our algorithm.
Fig. 5. LBG-negative mask with increasing s (
If ~In! Imin we conclude that such a pixel does not represent

the foreground outline.

3.2.3. Classification

Using extracted outlines it is now easy to assign unique

index for each closed region. We achieve this by starting

flood-fill at each white pixel using unique region index.

However, this can be also done by a standard scan-line

based two-pass region marking algorithm [26].

To classify whether the region belongs to a background

or foreground layer we perform region area size threshold-

ing. In our experiments the critical size has been set to 15%

of the total image size. Regions with the area size below this

threshold are classified as a foreground and others as a

background. It is obvious that using such approach it is not

possible to detect background regions which are in fact only

small holes in the foreground (see region between legs in

Fig. 4). Another possibility is to estimate region homogen-

eity by examining luminance histogram [27]. If we found

two or more significant peaks, we classify region to be in the

background otherwise we keep it in the foreground layer.

However, when the occluded part of the background is also

homogeneous or when the region contains, e.g. dust spots

(see Fig. 15a) we are still not able to distinguish it. Such

regions have to be first classified manually and later

automatically using structural prediction.

3.2.4. Adaptive s-fitting

The standard deviation s is an important parameter

which controls the response of LBG filter. If we vary s we
from left to right): 1.0, 1.5, 2.0, and 3.0.



Fig. 6. Adaptive s-fitting in progress—iterative elimination of spurious

regions inside the outline. In this simple example we select two intervals

s2(1.0, 2.0) and s2(2.0, 3.0). While sZ2.0 does and sZ3.0 does not

produce spurious regions, we decide to refine the interval s2(2.0, 3.0)

using s2(2.0, 2.5) and s2(2.5, 3.0). The same approach is then applied

recursively until the difference between interval endpoints is less than 0.25.
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focus on edges at different scales [28]. See Fig. 5 for several

examples of LBG-negative response in different scales.

When the thickness of outlines is only several pixels (!6)

usually a constant s (e.g. we use s!1.25) is sufficient for

most images. However, when the thickness is greater (O6)

then so called phantom edges [29] will arise. They

correspond to a local minima of first-order derivatives and

bound small spurious regions inside the outline (see Fig. 6).

In this case, the optimal s have to be small enough to

preserve important details but also large enough to eliminate

phantom edges.

To avoid tedious manual tuning we propose a coarse-to-

fine strategy to retrieve the optimal s automatically. Initially

we divide the scale-space into a set of smaller intervals. At

each interval endpoint we compute the number of spurious

regions after the segmentation. Then we select an interval I

where the lower bound s still produces several spurious

regions but the upper bound s guarantees that the number of

spurious regions falls under a specified limit. We

recursively apply the same strategy on I till the difference

between the lower and upper bound s is considerably small

(see Fig. 6). This full search algorithm is invoked only when

the first animation frame is processed. During the animation
Fig. 7. LBG-negative mask with increasing allowable aliasi
we only refine the optimal s using a small initial interval

around the optimal s from the previous frame.
3.2.5. Allowable aliasing energy

The another important parameter which improves the

quality of outline extraction is allowable aliasing energy

pa. If we truncate convolution kernel of LBG filter in the

spatial domain we obtain a periodical repetition in the

frequency domain and vice versa. This repetition

introduces the aliasing energy which can be expressed

as follows

100 Kpa

100
Z

s6

2p

ða

Ka

ða

Ka

ðu2 Cv2Þ2

expðs2ðu2 Cv2ÞÞ
du dv; (4)

where a is the aliasing frequency. Sotak and Boyer [30]

compute a for a given pa and a standard deviation s

using numerical integration. If we increase pa we

propagate smoothing due to low-pass property of a

truncated kernel (see Fig. 7). According to several

experiments performed on real cartoon images we

found that it is possible to use constant value paZ10%

which is optimal in most cases.
3.2.6. Optimization issues

While brute force LBG-filtering is time consuming, we

recommend to use several optimization techniques that

provide in practice more than tenfold speed-up. The original

gray-scale image can be first pre-smoothed using separable

version of Gaussian filter and afterwards LBG convolution

with smaller support can be applied [31]. We also exploit

the fact that LBG can be exactly decomposed into a sum of

two separable filters [32]

V2Gðx; yÞ Z h1ðxÞ$h2ðxÞCh2ðxÞ$h1ðyÞ; (5)

where

h1ðrÞ Z
1ffiffiffiffiffiffi

2p
p

s2
1 K

r2

s2
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exp K

r2

2s2
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and

h2ðrÞ Z
1ffiffiffiffiffiffi

2p
p

s2
exp K

r2

2s2

� �
: (7)
ng energy (from left to right): paZ1, 5, 10, and 25%.



Fig. 8. Region growing: (a) a detail of the original image, (b) computing the minimal geodesic distance, (c) segmentation after region growing, and (d)

segmentation driven colorization.
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Additionally when the scale of outlines requires a large

s, we can apply image decimation [33] which allows to use

smaller supports for LBG-filtering. Equivalent standard

deviations for decimated supports are estimated using step-

by-step filter design procedure suggested in [30].

3.2.7. Region growing

We additionally need to retrieve intrinsic boundaries of

regions (see Fig. 4d) in order to estimate how to flood color

into the outline. For a binary image the union of these axes is

also known as image skeleton [34]. However, in our case we

have additional information about the underlaying gray-

scale intensity which provides us to reach better accuracy as
Fig. 9. Background layer reconstruction and colorization—incremental motion

restricted to the background layer, intermediate seamy reconstruction (middle): br

and the final seamless reconstruction followed by manual colorization (bottom).
compared with skeletonisation of a binary image. Due to

these circumstances we do not extract skeleton, instead for

each outline pixel we retrieve the nearest region using best-

first approximation of the minimal geodesic distance as in

[20] (see Fig. 8).

3.3. Background layer reconstruction

In order to extract the background layer from a given

sequence of frames it is necessary to estimate camera

motion through the sequence. To accomplish this we exploit

robust hierarchical motion estimation [35] which is able to

determine motion vectors between two consecutive frames
estimation over a set of consecutive frames (top): estimation support is

ighter vertical bands arise due to luminance fluctuation or image vignetting,
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under a specified model. We use only translation and scale

by the reason that camera motion in cartoon animations is

usually restricted to a planar panning and zooming. To be

more robust we also set up the motion estimation support to

these parts of the original frame which have been classified

as the background layer in the previous image segmentation

phase.

The second issue is a seamless reconstruction of the

whole background layer. The problem arises when several

acquired fragments of background suffer from image

vignetting, contour anti-aliasing, dust spots, band scratches,

or other local and global distortions (see Fig. 9) which

would degrade the final visual quality of the resulting image.

Fortunately this problem has been extensively studied in the

literature. It is possible to use, e.g. Poisson image editing

[36] or other similar approaches [37,38] to alleviate such

degradations.
3.4. Color prediction

In this section the aim is to estimate a color-to-region

assignment for each frame in the original gray-scale

sequence. We first assume that several frames have been

already colorized. It means that each region has associated

one label from the user-defined palette or is labeled as a

background layer. Following this assumption it is possible

to automatically retrieve the best color source from a pool of

already colorized frames and propagate the color infor-

mation between the corresponding regions. To do that we

exploit scale, rotation and translation invariant pose

alignment scheme based on the log-polar phase correlation

[39]. This approach allows us to perform unsupervised

colorization when the animation sequence consists of a

small number of looped or randomly used phases.
3.4.1. Computer assisted auto-coloring

However, our challenge is also to speed up colorization

of frames which have not yet been stored in the database.

This type of problem has been also studied in the literature

and is known as computer assisted auto-coloring [40–43].

Authors of these works attempt to automate cel painting, a

more challenging variant of colorization where the
Fig. 10. Patch-pasting—yet colorized source image with detected features (left), ta

have been used (right).
gray-scale intensity cue is not available. They suggest to

use region shape, size, position and topology to estimate the

region-to-region correspondences. However, prediction

performance is usually poor by the reason that such features

are not robust to occlusions and topology variations

imposed by a virtual depth commonly used in cartoon

animations.
3.4.2. Intensity-based prediction

In contrast to cel painting in our case it is possible to

exploit a more stable feature: gray-scale intensity. If we

simply compare source and target regions in terms of their

intensity medians, it is possible to propagate color labels

between the regions which have the minimal median

difference. However, like in luminance keying this

straightforward approach suffers from wrong prediction

when different colors are assigned to regions that have the

same intensity median or when luminance fluctuation and

image vignetting cause global and local intensity shifts in

the original gray-scale image.
3.4.3. Patch-pasting

To overcome limitations of pure intensity-based

approach we previously introduced color prediction scheme

that exploits patch-pasting [44]. In this method dominant

curvature points and junctions (see Fig. 10) are located

using hierarchical Kanade–Lucas–Tomasi feature extractor

[45]. Each feature is then represented by a set of square

patches which cover local neighborhood of this feature in a

specified number of orientations. Such representation allows

us to retrieve for each target feature the best matching patch

from the source image by searching over all possible

source–target pairs in all possible orientations. Then a small

rectangular area around each corresponding feature is

extracted from the source color buffer and then correspond-

ing color information is pasted on the proper position in the

target color buffer (see Fig. 10). To avoid patch overlapping

and to handle occlusions we exploit so called quality buffer

[44] which is similar to well-known z-buffer, however, in

place of depth it uses local matching quality to discard

dissimilar portions of patches from pasting. Finally for each
rget frame after the patch-pasting where corresponding source color patches



Fig. 11. Two sets of associated patches in the source (left) and target (right) frame.
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target region the most frequently used color label is

selected.

Prediction performance of patch-pasting is far limited by

the number of local structural correspondences. When the

source frame contains a few similar features, it is usually not

possible to determine which of them corresponds to a

similar feature in the target frame. To discriminate such

ambiguity we suggested to use probabilistic relaxation

scheme [44] which utilizes histogram of pasted color labels

in the target region as a prior for color assignment. Posterior

probability is then computed by iterating over each regions

using color neighborhood model from the source frame.

Unfortunately histograms of used color labels sometimes do

not provide sufficient priors and consequently the correction

after probabilistic relaxation brings no advantage in contrast

to pure patch-pasting.
4 Two regions are in neighborhood if and only if they share at least one

associated patch.
3.4.4. Color prediction scheme

In this section we introduce our novel color prediction

scheme that is more robust in searching corresponding features

than our previous approach. The substantial difference as

compared with global matching scheme proposed in [44]

consists in the use of region-to-region correspondences as a

prior information which allows us to reduce the amount of

false positives during the following patch-pasting phase.

Our novel method works as follows: we extract two

sets of features (Fs and Ft) using Kanade–Lucas–Tomasi

feature extractor [45] to cover important curvature points

and junctions in the target and source frame. Each source

Fs
k 2Fs and target Ft

l 2Ft feature is represented by a

square patch Ps
k and Pt

l respectively that covers a small

neighborhood around a feature point. For each source

Rs
i 2Rs and target Rt

j 2Rt region we form a set of

associated patches: Rs
i Z fPs

k : Ps
k hRs

i s:g and

Rt
j Z fPt

l : Pt
l hRt

j s:g, respectively, where PhRs:
denotes non-empty spatial intersection between patch P

and region R (see Fig. 11). Afterwards it is possible to

estimate the structural similarity of the target Rt
j and

source region Rs
i using the best possible mapping between

the sets of associated patches Rs
i and Rt

j:
SimðRs
i ;R

t
jÞ Z jRs

i j$
X

Ps
k
2Rs

i

min
Pt

l
2Rt

j

Diff ðPs
k;P

t
lÞ

0
@

1
A

K1

: (8)

To express prior probability that the region Rs
i

corresponds to Rt
j (denoted Rs

i /Rt
j) we normalize

structural similarity SimðRs
i ;R

t
jÞ as follows:

P0ðR
s
i /Rt

jÞ Z SimðRs
i ;R

t
jÞ$

X
Rs

k
2Rs

SimðRs
k;R

t
jÞ

0
@

1
A

K1

(9)

Then a posterior probability is estimated using

relaxation scheme inspired by [46]. In this approach

posterior is refined iteratively using the following equation

PnC1ðR
s
i /Rt

jÞ

Z
PnðR

s
i /Rt

jÞ$QnðR
s
i /Rt

jÞP
Rs

k
2Rs PnðR

s
k /Rt

jÞ$QnðR
s
k /Rt

jÞ
; (10)

where

QnðR
s
i /Rt

jÞ Z
1

jNs
i j

!
X

Rs
k
2Ns

i

X
Rt

l
2Nt

j

PnðR
s
k /Rt

lÞ$PnðR
s
i /Rt

jÞ
(11)

is the region compatibility function which expresses how

feasible is the assignment Rs
i /Rt

j in the context of local

neighborhood4 Ns
i of the region Rs

i and Nt
j of the region Rt

j.

After a few iterations of (10) when a relative difference

between the prior Pn and posterior PnC1 falls under a

specified limit, we compute MAP solution by assigning the

most probable source region to each target region.

Now it is possible to transfer color labels directly

between corresponding regions. However, the problem will

arise when the user assigns two different colors to regions

that have similar intensities and share a few associated



Fig. 12. Transferring color information—locally inconsistent region correspondences may occur when several regions have similar gray-scale intensity and

share most of features (top). We remove this misclassification using patch-pasting where a more precise pixel-to-pixel color transfer is performed (bottom).
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patches (see Fig. 12). In this case it is not possible to provide

a good discriminative power using (8). Although in some

special cases MAP solution removes such ambiguity,

generally it still produces erroneous results.

To overcome this problem we utilize patch-pasting.

We first sort region-to-region correspondences by non-

decreasing structural similarity (8) and in this order we

perform patch-pasting between the sets of associated patches

using the same approach as in [44]. Finally for each target

region we compute the most frequently used color.

The main advantage of patch-pasting is that it allows to

transfer color information pixel-by-pixel between the

corresponding features. As we stated above this is useful

especially when two regions share a lot of associated

patches (see Fig. 12). In this case, it does not matter whether

region correspondences are locally inconsistent because

they determine the same spatial context for more precise

patch-pasting.
3.4.5. Implementation issues

An issue is the implementation of Diff(A,B) in (8). It

stands for the metric to compare patches A and B in terms of

their structural similarity. A good prediction performance is

reached when the selected metric is invariant to some subset

of local and global deformations. This is classical problem

of early vision and it has been extensively studied in a

literature (for survey see [47]). Authors usually trade off

computational complexity and accuracy under a specified

deformation model. In our case we assume only rigid

deformations by the reason that global freeform changes in

cartoons can be locally approximated using translation,

rotation and scale. We additionally omit local scale changes

because in cartoons size of objects and camera field-of-view

remain usually static during the animation. If not, it is

usually possible to resample whole image to reach the same

scale for all objects. Following these assumptions, we

express translation and rotation invariant metric as follows:
DiffðA;BÞ Z min
½x0;y0;a�

X
x

X
y

ðAðx Cx0; y Cy0Þ

KRotðBðx; yÞ; naÞÞ2 (12)
where Rot denotes bitmap rotation.

A time-consuming brute force approach to evaluation of

(12) guarantees exact value however is not tractable for a

real application. To speed up evaluation of (12) we exploit

approximation which will return nearly exact value much

faster. We perform several experiments with a number of

approximation approaches namely: log-polar phase corre-

lation [39], gradient descent [17], approximate nearest

neighbor [48], fast Fourier transform [49] and hierarchical

block matching [50]. The best ratio between prediction

performance and computational overhead has been reached

using oriented hierarchical block matching. In this

approach each target feature is represented by a set of

rotation patches that cover local neighborhood around the

feature in a selected number of possible orientations.

Hierarchical block matching over this set is used to

approximate (12). In this step we also exploit winner-

update strategy [51] to reduce the number of tested

positions.

Furthermore it is also possible to speed up computation

of (8) using the following approximation: for each target

region we first pre-select a set of possible candidates that

have similar intensity median. To accomplish this we use a

single threshold that takes into account luminance fluctu-

ation and image vignetting in the original sequence. Regions

which fall above this threshold receive zero prior probability

in (9). We also allow for the fact that some regions share one

or more associated patches (see Fig. 11 and 12). In this case

it is possible to exploit a simple look-up table in which yet

computed structural differences (12) are stored. Anytime we

want to compare source and target patch we simply look at

this table and if we found the appropriate value we reuse it,



Fig. 13. Changing the brightness of colors: (a) the original gray-scale image, (b) intensity shifting produces step changes, (c) intensity scaling empowers a noise

scattering, and (d) our approach.
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otherwise we recall the oriented hierarchical block matching

to refresh the look-up table.
3.5. Color image synthesis

In this section, we show how to apply color information

on the gray-scale image. We also address a seamless

composition of foreground and background layers, and a

simple dust spot removal technique.
3.5.1. Color modulation

The brightness of the user-defined colors usually does not

correspond to the intensity in the original gray-scale image.

When one wants to apply a bright color on a dark region and

vice versa, it is necessary either to shift or scale the original

intensity to reach the required brightness. However the

problem is that intensity shifting produce step changes and

scaling empowers a noise scattering inside the region. Both

artifacts are visually disturbing (see Fig. 13).

To produce visually acceptable results we use smooth

transition between the shift and scale modulation. Only

pixels that belong to outline anti-aliasing are scaled,

remaining pixels vary color brightness via shift modulation.

This technique yields following color modulation equation:

C Z ð1 KaÞðC0 C I K ÎÞCaC0I=Î; (13)

where C0 is the user-defined color, Î represents the region

intensity median, I is the intensity of the actual pixel in the
Fig. 14. Color modulation in the foreground layer and composition with the back

color image, (c) the case where a bright color has been applied on a dark region,
original gray-scale image, and finally a is a spatially driven

blending factor that allows us to smoothly combine shift and

scale modulation. It is computed for each pixel using blurred

version of original outlines (see Fig. 14).
3.5.2. Layer composition

We use similar technique to compose foreground and

background layer seamlessly. In general, the original

background layer is not homogeneous, hence it is necessary

to compute the intensity median in a small neighborhood

(e.g. 7!7) of the current pixel. For median computation we

consider only pixels which do not belong to detected

outlines and foreground regions. In contrast to (13) we then

blend together the original color in a background layer with

the scaled version of this color. To do that we use the

following formula:

C Z ð1 KaÞCb CaCbI=Îb; (14)

where Cb denotes the color of the actual pixel in the

background layer, I is the intensity of the actual pixel in the

original gray-scale image, and Îb is the intensity median of

pixels from a local neighborhood of the current pixel. See

Fig. 14 to overview results of proposed background and

foreground color modulation.
3.5.3. Restoration

Thanks to the region homogeneity we are also able to

simply detect and remove distortions which reside on the
ground layer: (a) the original gray-scale image, (b) an example of the final

and (d) alpha channel: white color denotes aZ0 and black aZ1.



Fig. 15. Unsupervised dust spot removal: (a) the original color image, (b) black and white dust spot removal, and (c) white dust spot removal.
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original celluloid. Using the intensity median Î we compute

the standard deviation of the pixel intensities sI in the

current region. Pixels which exceed sI above the user-

defined threshold are restored using a novel intensity taken

as a random sample from the Gaussian distribution which

has the following probability density function:

pdfðxÞ Z expðKðx K ÎÞ2=ns2
I Þ: (15)

This technique is not suitable for regions where some

wanted inhomogeneities exist (like cheek in Fig. 15c).

Usually we perform digital conversion from the original

negative celluloid where dust spots are black and due to

the digital inversion they become white in the resulting
Fig. 16. Prediction performance (common case)—intensity-based prediction versu

and numbers in images represent the overall number of prediction errors. White
gray-scale image. If the local inhomogeneities are black it is

possible to perform only white dust spot removal.
4. Experiments

In this section we discuss several experiments preformed

on real cartoon images. They confirm usability of proposed

framework both in the reduction of manual intervention and

in the improvement of the final visual quality. Images used

in these experiments are scanned in a resolution of 720!
576 from the original celluloid negative of the Czech black-

and-white cartoon O loupežnı́ku Rumcajsovi which has been

designed and produced by Radek Pilař in 1967.
s our novel color prediction scheme: pink regions denote prediction errors

dots in the source and target image denote extracted features.



Fig. 17. Prediction performance (difficult case)—ordering is the same as in Fig. 16. Two difficult cases where many regions arise or change their position/shape

(left side). See also how our method predicts color-to-region assignment for two cel paintings where no gray-scale information is available (right side).
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4.1. Prediction performance

To verify the performance of our novel color

prediction scheme (see Section 3.4) we realize two

experiments. In the first one (Fig. 16) we show how our

approach behaves in a typical situation. For this purpose

we select four representative pairs of nearly consecutive

frames from several cartoon animations. In the second

experiment (Fig. 17) we demonstrate four difficult cases

where our approaches tend to fail, however still produce

helpful results.

In each experiment we first let the artist to prepare color

examples. Then we extract 200 features for structural

prediction where size of corresponding patches is set to

32!32 and the number of possible orientations for each

patch is 32. We also set the intensity median threshold for

pruning dissimilar regions to 16.

We compare our novel color prediction scheme with a

naive intensity-based technique (see Section 3.4.2). In this

comparison we consider the amount of user intervention

needed to correct prediction errors. This amount is

expressed by the number of prediction errors. Each error

requires from the user to move mouse pointer over the

erroneous region and place there a marker that has the
correct color label. This action usually takes several seconds

per error.

The numbers of errors confirm that in contrast to

intensity-based approach our technique significantly

reduces the amount of hand-driven intervention. Results

are also good for cel painting where no gray-scale

information is available. Nevertheless our method usually

fails to predict correct labeling for some small or partially

occluded regions. The fundamental problem is also how to

assign appropriate color labels when a new structural pattern

arises in the target frame. Due to these circumstances

limited manual interaction is still required to produce

errorless color sequences.
4.2. Visual quality

In this section we show how our color transferring

technique outperforms previous approaches in the sense of

visual quality. See Fig. 18 to compare our results with

Levin’s colorization framework [16]. Besides visual quality

it is also interesting to compare the amount of user

intervention needed to produce the final colorization.

The first problem is that artists usually prefer to prepare

colors in a full color space by the reason that color



Fig. 18. Compare the final visual quality—colorization produced by Levin’s framework (top) in contrast to our novel approach (bottom): (a) color markers, (b)

foreground layer colorization, (c) and (d) detail views.
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components provide only a limited variance in the final

appearance. In Fig. 18, see e.g. soldier’s epaulets where the

artist assigns slightly darker color in contrast to intensity in

the original image.
Fig. 19. Selected sequences from cartoon O loupežnı́ku Rumcajsovi, wh
Similar situation is also visible on the soldier’s hand

where he wants to preserve the same color as for the uniform

although the hand is slightly darker in the original image.

The another problem in Fig. 18 is a low contrast of outlines.
ich has been semi-automatically colorized using our framework.
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This artifact arises due to YUV color modulation which has

been used in [16]. Levin’s method also produces color

bleeding over the sharp edges. This is due to least-square

solution which does not preserve discontinuities.
5. Results

Proposed framework has been implemented as a stand-

alone application in which the colorization pipeline

consists of three independent stages. In the first stage

we perform off-line pre-calculations that will prepare raw

input data for interactive processing. This phase covers

outline detection, image segmentation and structural

similarity computations. It takes in average tens of

seconds per frame on commodity hardware. In the second

interactive stage the user colorizes the foreground layer

frame-by-frame. He or she uses mouse or tablet to select

pre-defined color labels from the user-defined palette and

corrects labeling of regions when prediction scheme fails.

During this step the camera motion estimation is also

performed and visible parts of the background layer are

extracted to form one big image. It is then colorized

manually using standard image manipulation software.

Finally in the third stage the color image synthesis phase

follows. Here already colorized foreground and back-

ground layer are automatically putted together to produce

the final color image.

Selected results are presented in Fig. 19. At average two

trained artists were able to colorize one episode (roughly

10,000 frames) during one week (40 working hours) in

contrast to previous approaches which takes more than two

months to process the same amount of frames. In our

framework the most of time has been spent on background

colorization which is manual and requires a large amount of

hand-driven intervention. In the case of foreground color-

ization the user interaction takes in average 5 s per frame.

However the real processing speed strongly depends on the

complexity of a given sequence.
6. Conclusion

In this paper we have made the following contributions.

A novel colorization framework has been presented.

Especially we addressed probabilistic reasoning scheme

which takes into account region similarity and neighbor-

hood relations to predict feasible matching context for

patch-pasting. Further a novel labor saving s-fitting

algorithm has been presented to retrieve the optimal

response of outline detector when the thickness of outlines

is large. Finally we have introduced color modulation,

composition and dust spot removal techniques to produce

the final color images in a broadcast quality without

additional user intervention. Our practical experiments on

real cartoon images confirm that proposed framework
allows one to produce high quality colorization of black-

and-white cartoons within much shorter time frames as

compared with previous approaches.
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