
Video Codec for Classical Cartoon Animations
with Hardware Accelerated Playback

Daniel Sýkora, Jan Buriánek, and Jǐŕı Žára

Czech Technical University in Prague,
Digital Media Production

Abstract. We introduce a novel approach to video compression which
is suitable for traditional outline-based cartoon animations. In this case
the dynamic foreground consists of several homogeneous regions and the
background is static textural image. For this drawing style we show how
to recover hybrid representation where the background is stored as a
single bitmap and the foreground as a sequence of vector images. This
allows us to preserve compelling visual quality as well as spatial scal-
ability even for low encoding bit-rates. We also introduce an efficient
approach to play back compressed animations in real-time on commod-
ity graphics hardware. Practical results confirm that for the same storage
requirements our framework provides better visual quality as compared
to standard video compression techniques.

1 Introduction

Generations of children and adults enjoy classical cartoon animations and want
to see them again and again in the best possible quality. However, the lifetime
of traditional archive formats (such as celluloid negative) is strongly limited.
Variety of physical degradations may significantly reduce visual quality or com-
pletely destroy the original artwork. When one decides to rescue these amazing
works, it is necessary to perform telecine [1], i.e. to transfer motion picture from
film negative into a digital video format. During this process two important fac-
tors leverage the final visual quality and the amount of required storage space:
resolution and compression technology.

In the movie industry cartoon animations are typically intended for televi-
sion broadcasting or DVD production, therefore PAL or NTSC resolution is used for
digital conversion. Regarding compression the most popular format for broad-
casting is Digital Betacam tape [2] that can run up to 124 minutes of high-quality
video with nearly lossless 2:1 compression. For DVD production MPEG-2 [3] is used
with average bit-rates around 3.5 Mbps which is lower quality but still accept-
able for most cases. However these commercial standards produce video stream
that requires large storage space and is not simply spatially scalable.

In this paper we adopt well known concept of layered compression which
has been standardized in MPEG-4 video compression scheme [4]. We show how
to detach the dynamic foreground layer and how to reconstruct the static back-
ground layer in outline-based cartoon animations. We also introduce a novel
space-saving vectorization scheme which allows to preserve high visual quality

G. Bebis et al. (Eds.): ISVC 2005, LNCS 3804, pp. 43–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

44 D. Sýkora, J. Buriánek, and J. Žára

and resolution independency even for low encoding bit-rates. Finally an effi-
cient decompression scheme is addressed to play back compressed animations in
real-time on consumer graphics hardware.

The rest of paper is organized as follows. First we present a brief overview
of related work on video compression. Next, we describe our method including
implementation details and optimization issues. Finally we present several results
on real cartoon animations to confirm the efficiency of proposed solution and
conclude with plans for future work.

2 Related Work

For decades video compression was and still is a very active research area (for
survey see [5, 6]). However to our best knowledge there has been only one method
published [7] which takes into account visual aspects of cartoon animations. In
this approach each region is first represented as a 3D volume by sweeping its
2D shape through the time. Then edge-breaker compression scheme is used to
encode volume geometry. Decoding is done by intersecting compressed volume
with image plane using GPU-based solid clipping technique. Unfortunately this
compression is suitable only for regions that change their shape and/or position
slightly. Authors also did not address the problem of region shape extraction for
more complicated color and gray-scale image sequences.

Standard approaches to video compression such as MPEG-2 assume that strong
discontinuities are not frequent in natural image sequences and thus 2D dis-
crete cosine transform (DCT) [8] can by used to efficiently encode small image
blocks. However blocking and ringing artifacts may arise when DCT is applied
to cartoon images that contain lots of sharp edges. Even promising discrete
wavelet transform DWT [9] does not overcome this problem while quantization
errors still produce visible ringing artifacts. To suppress such degradations var-
ious post-processing techniques have been developed [10, 11]. However they are
usually computationally expensive and thus not tractable for real-time appli-
cations. Another possibility is to completely avoid coding along strong edges
as in segmentation and object-based compression techniques [12, 13]. Here the
aim is to divide the input image into a set of homogeneous regions and then
compress each of them separately. Unfortunately these methods require usually
much higher encoding bit-rates due to over-segmentation.

3 Framework

Shortcomings of previous approaches lead us to develop our novel framework. It
consists of five independent phases: unsupervised segmentation, background re-
construction, foreground vectorization, temporal coherency issues and playback.
In this section we describe each step in more details.

3.1 Segmentation

First we need to separate the original image into a set of regions. For this task
we adopt image segmentation technique first presented in [14] and later refined

Video Codec for Classical Cartoon Animations 45

in [15, 16]. This approach has been designed directly for outline-based cartoons.
The main idea is to exploit negative response of Laplacian-of-Gaussian (L ◦ G)
to locate outlines. Similarly to [16] we additionally perform interpolation in the
L◦G domain to reach fourfold sub-pixel precision [17]. In this case unsupervised
σ-fitting [15] helps us to suppress spurious regions that arise inside outlines when
extrapolating L ◦ G response to the higher resolution.

Next we want to detach foreground regions and reconstruct one single image
of the whole background layer. To do that we first roughly estimate whether a
given region belongs to the background layer using region area size thresholding
as in [15]. Then a hierarchical motion estimation [18] helps us to register parts of
the background layer using consecutive animation frames. After the registration
fragments of background are stitched together and stored as a single image
using standard JPEG compression [19]. We also store estimated camera motion
vectors. Later this information allows us to extract currently visible portion of
the background layer.

In the second phase we refine classification of smaller regions. We accumulate
normalized sum of absolute differences between region pixels and corresponding
pixels in the reconstructed background. When this sum falls under a specified
limit then the region is classified as a background. This approach may fail to
classify very small regions while anti-aliased outlines can significantly bias the
sum of absolute differences. However such regions are usually homogenous and
thus from the visual point of view it does not matter when they remain in the
foreground layer.

Finally, it is necessary to assign visually dominant color to each region in
the foreground layer. To avoid flickering due to biased mean color estimation we
apply mean-shift clustering [20] to obtain static palette of most used colors.

3.2 Vectorization

After the segmentation we need to convert shapes of homogeneous regions into
a scalable vector representation. There are various techniques suitable for this
task. In our framework we experiment with cubic B-splines [21] and 1D DCT [22].
B-splines are optimal in the sense of rate distortion and DCT representation is
more suitable for scalable compression.

In order to combine advantages of both approaches we first apply standard
contour tracing algorithm [23] to fit a set of cubic B-splines to the raster repre-
sentation of the original shape. Then we perform curvature sensitive subdivision
using central differencing [24] to obtain adaptive sampling of the original shape
that is much more suitable for compression in the frequency domain than uni-
form sampling (see Figure 1). Moreover in our experiments we found that there
is a high correlation between the optimal number of DCT coefficients and the
optimal number of control points in the original B-spline representation. We use
this feature to estimate the number of DCT coefficients needed to store vector
representation without significant loss of precision.

Finally, when DCT coefficients are extracted, we normalize them and quan-
tize uniformly to 16-bit representation. Burrows-Wheeler block transform [25]

46 D. Sýkora, J. Buriánek, and J. Žára

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100
-1000

-500

0

500

1000

1500

0 10 20 30 40 50 60 70 80 90 100
-1000

-500

0

500

1000

1500

Fig. 1. Compare the efficiency of 1D DCT-based vector compression for uniformly (top)
and adaptively (bottom) sampled shape. For the same number of DCT coefficients adap-
tive sampling produces better approximation.

together with Huffman coding [26] is used to store them into the output stream.
In contrast to the original B-spline representation DCT-based compression can
save up to 50% of storage space with negligible loss of precision.

3.3 Temporal Coherency

Usually it is not necessary to store foreground layer for each frame since in
cartoon animations lots of frames are identical. To alleviate tedious manual
inbetweening artists usually decide to significantly reduce frame rate. Typi-
cally only every second frame is different. For long animations they also use
repetitive sequences of same frames. In our framework we exploit this redun-
dancy by maintaining pool of already stored frames in which we search for
duplicities.

The search itself is hierarchical and the similarity is computed only for
outline-extracted images. We use phase correlation [27] to align and preselect
similar down-sampled thumbnails of past frames. Then we apply bitwise XOR
and distance transform [28] to obtain weighted difference bitmap which empha-
sizes large changes against small global shifts. Finally we sum up weights in this
bitmap and if the sum falls under the user-specified threshold we store only the
identification number of the corresponding frame. By tuning this threshold we
can further lower encoding bit-rate by omitting frames containing insignificant
changes.

Video Codec for Classical Cartoon Animations 47

3.4 Playback

In order to reach compelling visual quality as well as real-time performance
during the playback, we implement a simple OpenGL-based player that utilizes
GPU to render anti-aliased background and foreground layer for each animation
frame. See our web-site1 where this player is available together with short testing
sequence.

During the playback we first activate hardware accelerated full screen anti-
aliasing (FSAA) to preserve smooth polygon boundaries. Then the background
layer is rendered as a textured rectangle with proper shift and scale according
to the estimated camera motion vectors. In front of this background we put the
foreground layer. For each region we first apply zero-padding in the frequency
domain to increase the resulting number of control points. Then we use IDCT to-
gether with proper normalization to obtain coordinates of control points. Thanks
to prior adaptive sampling this process yields a good piecewise linear approxima-
tion of the region shape that can be directly used for polygon rendering. Extra
processing is required only for non-convex polygons that have to be tesselated
into convex triangle strips.

Rendering phase itself is time critical since we need to generate all control
points and tessellation of non-convex polygons in real-time (typically tens of
polygons with hundreds of vertices 25 times per second). To achieve this perfor-
mance it is necessary to utilize fast FFT-based implementation of the IDCT [29].
For tessellation of non-convex polygons we exploit standard framework gluTess*
[30]. However for larger polygons we recommend to use FIST [31].

4 Results

In this section we present several results obtained on real cartoon animations
scanned in PAL resolution (720x576) from the original celluloid negative of Czech
cartoon O loupežńıku Rumcajsovi. We encode five different sequences using our
codec and using DivX with comparable storage requirements. We set the pa-
rameters to reach average encoding bit-rate of 256 kbps. Using AMD Athlon A64
2800+ with ATI Radeon 9700 and 6x FSAA it takes in average 10 seconds to
compress and 30 milliseconds to decompress and render one frame. See our web-
site1 and compare visual quality with accompanied AVI encoded using DivX
codec.

In Figure 2 three still images from different sequences are presented. To
render them we use the original PAL resolution. However the resolution itself can
be much higher (to see this try to maximize rendering window in our player).
The limiting factor is bilinear interpolation of the background texture which
is fortunately not so disturbing while the background layer usually does not
contain sharp edges. In Figure 2 no blocking or ringing artifacts are visible in
the output of our codec, only several shape details are omitted. There are also
a few examples of small misclassified regions that are not disturbing during the
playback while the background layer is almost homogeneous at the same position.
1 http://www.cgg.cvut.cz/~sykorad

48 D. Sýkora, J. Buriánek, and J. Žára

Fig. 2. Still image results – in each column see: the original image (top), vectorization
of the foreground layer (middle), and detail views of different compression techniques
(bottom). Small nested columns: detail views of DivX with comparable storage require-
ments (left), the original image (middle), and the output of our codec (right). In the
vectorization of the foreground layer see misclassified foreground regions (e.g. small
region between general’s boot and leg). They are not disturbing during the playback
while the background layer is homogeneous at the same position (images in this figure
are published with permission of c© Vı́t Komrźı, Universal Production Partners and
Lubomı́r Celar, Digital Media Production).

Video Codec for Classical Cartoon Animations 49

5 Conclusions and Future Work

A novel video compression scheme for traditional outline-based cartoon ani-
mations has been presented. Practical experiments performed on real cartoon
animations confirm that for comparable encoding bit-rates our approach achieve
better visual quality as compared to standard video compression techniques.

As a future work, we plan to significantly speed up compression phase and
further lower encoding bit-rates by estimating warping transformation between
corresponding regions. Next we also contemplate to adopt our approach for other
drawing styles e.g. cartoon animations that contain only outlines and homo-
geneous regions. Another issue is an automatic sequence annotation which is
desirable for consistent background reconstruction.

Acknowledgements

This work has been supported by the Ministry of Education, Youth and Sports of
the Czech Republic under research program No. MSM-6840770014 (Research in
the area of information technologies and communications) and under the student
research program: FRVŠ-2005-1170.

References

1. Bancroft, D.J.: Advanced and economical telecine technology for global DTV
production. In: Proceedings of Broadcast Engineering Conference. (2000)

2. Sykes, P.J.: Digital Betacam: A new approach to broadcast digital recording. In:
Proceedings of International Conference on Storage and Recording Systems. (1994)
9–14

3. Wong, A.H., Chen, C.: Comparison of ISO MPEG1 and MPEG2 video-coding
standards. In: Proceedings of SPIE Visual Communications and Image Processing.
Volume 2094. (1993) 1436–1448

4. Ebrahimi, T., Horne, C.: MPEG-4 natural video coding – An overview. Signal
Processing: Image Communication 15 (2000) 365–385

5. Reid, M.M., Millar, R.J., Black, N.D.: Second-generation image coding: An
overview. ACM Computing Surveys 29 (1997) 3–29

6. Clarke, R.J.: Image and video compression: A survey. International Journal of
Imaging Systems and Technology 10 (1999) 20–32

7. Kwatra, V., Rossignac, J.: Space-time surface simplification and edgebreaker com-
pression for 2D cel animations. International Journal on Shape Modeling 8 (2002)
119–137

8. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Transac-
tions on Computers C (1974) 90–93

9. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing 41 (1993) 3445–3463

10. Yang, Y., Galatsanos, N.P., Katsaggelos, A.K.: Projection-based spatially adaptive
reconstruction of block-transform compressed images. IEEE Transactions on Image
Processing 4 (1995) 896–908

50 D. Sýkora, J. Buriánek, and J. Žára

11. Fan, G., Cham, W.K.: Model-based edge reconstruction for low bit-rate wavelet-
compressed images. IEEE Transactions on Circuits and Systems for Video Tech-
nology 10 (2000) 120–132

12. Kwon, O., Chellappa, R.: Segmentation-based image compression. Optical Enge-
neering 7 (1993) 1581–1587

13. van Beek, P.J.L., Tekalp, A.M.: Object-based video coding using forward tracking
2-D mesh layers. In: Proceedings of SPIE Visual Communications and Image
Processing. (1997) 699–710

14. Sýkora, D., Buriánek, J., Žára, J.: Segmentation of black and white cartoons. In:
Proceedings of Spring Conference on Computer Graphics. (2003) 245–254

15. Sýkora, D., Buriánek, J., Žára, J.: Colorization of black-and-white cartoons. Image
and Vision Computing 23 (2005) 767–852

16. Sýkora, D., Buriánek, J., Žára, J.: Sketching cartoons by example. In: Proceedings
of Eurographics Workshop on Sketch-Based Interfaces and Modeling. (2005) 27–34

17. Huertas, A., Medioni, G.: Detection of intensity changes with subpixel accuracy
using Laplacian-Gaussian masks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 8 (1986) 651–664

18. Odobez, J.M., Bouthemy, P.: Robust multiresolution estimation of parametric
motion models. Journal of Visual Communication and Image Representation 6
(1995) 348–365

19. Wallace, G.K.: The JPEG still picture compression standard. Communications of
the ACM 34 (1991) 30–44

20. Comaniciu, D., Meer, P.: Mean Shift: A robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24
(2002) 603–619

21. Spaan, F., Lagendijk, R.L., Biermond, J.: Shape coding using polar coordinates
and the discrete cosine transform. In: Proceedings of International Conference on
Image Processing. (1997) 516–519

22. Zaletelj, J., Pecci, R., Spaan, F., Hanjalic, A., Lagendijk, R.L.: Rate distortion
optimal contour compression using cubic B-splines. In: Proceedings of European
Signal Processing Conference. (1998) 1497–1500

23. Weber, M.: AutoTrace: A utility for converting bitmap into vector graphics (2004)
http://autotrace.sourceforge.net.

24. Clark, J.H.: A fast scan-line algorithm for rendering parametric surfaces. IEEE
Transactions on Image Processing 13 (1979) 289–299

25. Burrows, M., Wheeler, D.J.: Block-sorting lossless data compression algorithm.
Technical Report 124, SRC, Palo Alto, USA (1994)

26. Salomon, D.: Data compression: The complete reference. Springer Verlag (1998)
27. Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. In:

Proceedings of IEEE International Conference on Cybernetics and Society. (1975)
163–165

28. Borgefors, G.: Distance transformations in digital images. Computer Vision,
Graphics, and Image Processing 34 (1986) 344–371

29. Frigo, M., Johnson, S.G.: FFTW: Library for computing the discrete Fourier trans-
form (2005) http://www.fftw.org.

30. Woo, M., Davis, T., Sheridan, M.B.: OpenGL Programming Guide: The Official
Guide to Learning OpenGL. Addison-Wesley (1999)

31. Held, M.: FIST: Fast industrial-strength triangulation of polygons. Algorithmica
30 (2001) 563–596

	Introduction
	Related Work
	Framework
	Segmentation
	Vectorization
	Temporal Coherency
	Playback

	Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

