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Abstract 
 
Visualization of large urban complexes on the web is 

highly demanding task both from the networking and 
computational point of view. The whole three-
dimensional model of a city is mostly too big to be 
downloaded in a reasonable time and to be stored in 
a memory of commonly used computers. This paper 
presents a scaleable approach for subdividing an urban 
model into smaller parts. Dynamic loading and 
unloading data allows theoretically unlimited extension 
of a model with constant network and computation load. 
Further requirements specific to presentation of virtual 
cities are also discussed. Theoretical considerations are 
followed by a practical implementation utilizing VRML 
language for modeling historical city of Prague. 
 
1. Introduction 

Contemporary technologies (fast CPU, 3D accelerated 
graphic cards, and fast network) allow interactive 
visualization of quite detailed parts of a virtual city with 
very authentic 3D models combined with 
photographically obtained textures. Several cities can be 
currently found on the web including well-known towns 
like Paris [1], Glasgow [2], New Orleans [3], Sydney [4] 
or Toronto [5]. Two main technologies are frequently 
used for modeling and visualization – QuickTime VR [6] 
and VRML [7]. While QuickTime approach is based on 
photographs only, the VRML uses both 3D models and 
images. In this paper we focus on utilization of VRML 
due to its higher interactive functionality. 

The common problem arising in almost all examples 
mentioned above is the amount of data that must be sent 
through the web and rendered in one. The size of such 
city models ranges from hundreds of kilobytes up to tens 
of megabytes per city district. Most users are unable to 
download this data in interactive time due to the network 
connection speed. Moreover, such large data cannot be 
rendered in a real time even when powerful graphic 

accelerators are used. Therefore the solution is to send to 
the user only a small amount of data describing his/her 
vicinity. Because of memory limits, no longer used data 
should be simultaneously removed from the memory as 
a user walks through the virtual town. Similarly, new 
data should be downloaded and prepared in advance. 
These demands require well-prepared and structured city 
models, designed for this specific purpose. Most of 
currently implemented virtual cities use either no data 
hierarchy or they divide the city into smaller blocks 
connected via hyperlinks and presented by parts. While 
the first approach is inefficient the second causes 
undesirable pauses/jumps when walking from one virtual 
district to another one. This paper proposes a universal 
data structures and methods suitable for smooth and 
continuous walk-through arbitrary virtual city. 

The paper presents in Section 2 typical requirements 
for virtual cities presented on the web. Section 3 
introduces a solution for scaleable structured models and 
Section 4 describes one concrete implementation of the 
proposed approach. 

 
2. Characteristics of Virtual Cities 

Three-dimensional interactive models of real cities 
have several specific features different from other spatial 
virtual scenes. They are characterized by large number of 
virtual houses covered by texture images of big sizes. 
Hardware support for texture mapping is often required 
when the city is presented to users. Number of textures 
can reach hundreds or even thousands of images. The 
modeled area covers several squared kilometers and 
includes from tens to hundreds of houses. On the other 
hand, virtual models of houses can have simple shapes 
because users mostly walk on the streets and do not enter 
any houses. This fact leads to significant simplification – 
houses are typically represented by their front faces 
(frontages) only. Neither roofs or floors are to be 
specified. The only exception is the bird view of a city 
when all roofs are visible. This case should be suppressed 
since it requires rendering of the whole town. This is 



 

 

usually impossible for large cities thus the visitor should 
be delighted by a number of other nice urban features 
rather than the bird view. 

The main purpose when presenting virtual cities is to 
give a complex information to users. Virtual visitors can 
be attracted to become real visitors/tourists later. The 3D 
model is only a subset of offered information. The full 
and rich model should contain the following components: 
• 2D map synchronized with user’s movement in 3D 

virtual space 
• Additional textual information, description of sights 
• Direct choosing of target places from a list or a map 
• Interactivity (animations, hyperlinks) 
• Virtual bus tour (animated viewpoint) 
• Search function combined with automatic navigation 

from current to target place 
• Help subsystem, hints, advices 
All those information are usually stored in a database. 
The idea to store also a structured 3D model in 
a database is thus straightforward. Some applications 
already use a database [8], but mostly for searching 
purposes and not for the task of spatial arrangement of 
virtual houses and other models. The following section 
discusses problems and solutions for such a task. 
 
3. Scaleable urban model 

When thinking about the structure for the virtual city 
an idea of regular space subdivision seems to be inviting 
and suitable. A regular grid has good properties from the 

perspective of finding neighboring city parts for a given 
region. When a user examines a certain cell of a grid, 
four or eight neighboring cells can be read in advance 
and prepared for the visualization. Similarly, when a user 
leaves currently visited cell, a set of probably no longer 
examined city areas can be easy determined and 
unloaded. 

Unfortunately, the problem of advanced data 
preparation cannot be solved on the base of topology 
only. A user can see a number of virtual houses that are 
very far from a given area.  This is demonstrated on the 
Figure 1 showing a user examining a square in the city 
center. While house frontages around the square hide 
many houses in the closed vicinity, long and straight 
streets allow seeing objects placed hundreds of meters 
from a user. The conclusion is that the city structure 
should take both topology and visibility issues into 
a consideration. A presentation system should download 
models which are both near the user and visible from 
his/her current position. 

 
3.1. Topology 

The grid or other regular structure does not fit into 
arbitrary city configuration. Only a few real towns like 
New York has a strict rectangular structure while other 
cities with historical centers delight users with serpentine 
alleys and variously shaped plazas. A topology of 
a virtual city has to correspond with the reality thus non-
uniform but flexible data structures are required. Of 

 

Figure 1. Example taken from 2D map of Dublin shows that a given square area determines a lot of visible 
objects in various directions and distances.  The small circle marks an area currently examined by a user. 
The big circle containing all potentially visible objects has a radius about 300 m. Visible objects represent less 
than 10 % of data covered by the big circle. (Courtesy of Jiri Bittner, CTU Prague) 



 

 

course the request for fast determination of neighbors for 
a given area has a big importance. 

We propose a system of blocks corresponding with 
streets, plazas and other open spaces. One block is 
typically assigned to a square while several successive 
blocks represent one long street. This approach is similar 
to space subdivision used for QuickTime VR 
presentations [6] where the whole space is covered by set 
of cylindrical panoramas. Here we extend this method to 
universal description of 3D virtual space. 

The block is depicted on Figure 2. The polygonal 
layout is basically two-dimensional. The border consists 
of edges holding house frontages and gates allowing 
walking from one block to the neighboring one. Special 
closing gates serve as obstacles when a user wants to 
visit spaces that are not modeled yet. Standalone 3D 
models representing statues, fountains, tram stops, trees 
and other solitaires can be placed into a polygonal block. 

A standard gate is invisible and users can cross it. The 
main purpose for introducing a gate is that it holds an 
information about neighboring block. Each time a user 
crosses a gate a request for loading/unloading data is 
produced. This approach suppresses the need for 
continuous evaluation of user’s position in the whole city, 
because the only important moment is the time when 
a user walks through a gate. That is why we call gates 
proxy gates. Note that proxy gate is actually two-sided. It 
should detect whether the user enters into a block or 
leaves it. Leaving a block leads to releasing certain data, 
entering causes downloading new models. A two-sided 
proxy gate can be implemented either by two separate 
sensors or by one proximity area combined with 
evaluation routine checking avatar’s movement. 

It is useful to read data belonging not only to one 
block but to have a possibility to specify the amount of 
models to be downloaded in advance. Based on the actual 
available computer memory a visualization system can 
request the database holding the city structure for 

sending data from blocks in specific distance from 
currently examined block. This can be achieved by 
breadth-first search algorithm known from graph theory. 

A simple set operation is needed to determine data for 
unloading – the difference between newly specified set of 
blocks and a set of blocks already presented in a memory. 
Note that these two sets should contain a common subset 
of blocks ensuring that a user can walk through blocks 
without undesirable waiting for a data. Figure 3 depicts 
the situation when the user leaves block C and enters 
block D. A common subset consists of blocks B, C, D, 
and E for that case. 

An ordinary edge in the block structure holds data for 
several adjacent house frontages. A closing gate can be 
also considered as an edge with one face. Usually this 
face is covered by photography showing street or other 
free space that is not included into a 3D model. 

 
3.2. Visibility  

A potentially visible area for a given user’s position 
contains typically quite different blocks than those found 
on the base of topology only as shown on Figure 1. Thus 
the visibility issue has to be included into a city structure. 
Each block contains a list of blocks that could be seen as 
a user moves within this block. Data belonging to 
potentially visible blocks should be read as soon as the 
block is evaluated by topology search algorithm to be 
a candidate for advanced downloading. Note that lists of 
visible blocks can overlap for neighboring blocks thus 

Figure 2. Each block consists of area surrounded
by house frontages, optional 3D objects and
several gates connecting neighboring blocks. The
two-sided proxy gate holds information on objects
that are to be loaded/unloaded when a user
crosses the gate.
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Figure 3. Based on the topology only, the specified
distance 2 (blocks) ensures, that blocks A, B, D,
and E are already in a memory when a user
examines the block C. When crossing the gate
between C and D, blocks F, G, and H should be
downloaded while A can be released.



 

 

they have to be maintained using set operations similarly 
like in the previous case of topology. 

The problem of finding the potentially visible set of 
polygons for a given spatial arrangement has been 
intensively investigated in past decades. The literature 
from the field of computational geometry and computer 
graphics [9] introduces a lot of methods that differ in the 
speed (from off-line to real time processing), utilization 
of additional data structures (mostly based on trees), 
computations performed in various coordinate systems 
(dual space, 2D space only) and other features. Here we 
do not suggest using any specific method. Relatively slow 
algorithms can be used since the evaluation is performed 
in time of creating a city structure. This preprocessing 
saves resources for later real-time visualization. 

Note that the visibility computations should be 
repeated each time when a database containing the city 
structure is changed. Newly added houses can be visible 
from many blocks. The example is Eiffel Tower in Paris. 
While the topology evaluation is 2D problem only, 
a visibility should be really computed in 3D space. 
 
3.3. Memory management 

When designing data structures for scaleable virtual 
cities, the VRML language has been considered as a tool 
for the final presentation. The memory management in 
this language is unfortunately not directly accessible and 
the visualization system cannot control the memory 
allocation/de-allocation. VRML browsers are often part 
of WWW browsers. They depend on the host memory 
management algorithm based mostly on late garbage 
collection. No explicit command in VRML allows for 
memory control. 

The future extension of the VRML language will 
bring certain improvement. The GeoVRML specification 
[10] introduces GeoLOD and GeoInline nodes allowing 
requesting a browser for releasing data from a memory. 
Although the basic approach to geographic data expects 
a use of orthogonal 2D grid for the description of 
a virtual world, a proposed structure for virtual cities 

could also benefit from the new VRML nodes. Currently 
the implementation of visualization system has to trust to 
external languages like JavaScript and Java and their 
memory management subsystems. Routines written in 
those languages are able to communicate with the 
database on the server, to transfer 3D data from it, and to 
control relevant VRML scene structure. 

 
3.4. Urban Level of Detail 

The principle known as “Level of detail” is frequently 
used in virtual reality systems. It allows achieving 
a higher speed of rendering by simplifying a model 
representation when an object appears far from a user. 
While this simplification is often based on decreasing 
a number of polygons per object, virtual houses require 
different approach. High number of polygons does not 
cause a problem here since only a few faces represent 
each house. The most demanding task is to map and 
render big texture images. Our observation shows that 
levels of details should carefully work with textures. We 
have designed the following “urban” levels of detail that 
save both memory and rendering time markedly. 

We propose a four-step level of detail for each virtual 
house. Those levels are shown on Figure 4 from the 
simplest to the most complex one. A distance from the 
user together with graphic performance of client 
computer can be taken into a consideration when 
switching between levels. While the simplest 
representation definitely does not look wonderfully, the 
second one gives surprisingly realistic results with small 
network and computation demands. The idea is based on 
downloading a texture for a window that is the most 
noticeable part of a house. This image has always a small 
size (typically 64 x 64 pixels) and it is fast transferred 
from a server to the client. A window is then repeatedly 
placed on the front face thus saving a lot of texture 
memory. One house can hold several windows with 
various shapes. The visible difference between level b) 
and c) on Figure 4 varies from case to case, but the 
memory savings are evident in all cases. 

Figure 4. Newly proposed levels of details for virtual houses. The simplest representation consists of one
polygon, two intermediate levels use textures and the best model is fully three-dimensional.

a) Colored front face b) Repeated small texture(s) c) Overall texture d) Textured 3D model



 

 

 
4. Virtual Old Prague 

The principles described above have been utilized for 
the model of historical part of Prague [11]. A student 
team has implemented a database holding the proposed 
city structure as well as a number of additional 
informations (viewpoints, web addresses of shops and 
other objects located in a city etc.). The database 
(MySQL) runs on the web server. PHP scripts process 
requests from clients and prepare new data for them. 
Virtual Prague is modeled using VRML. Client Java 
applet synchronizes attached 2D map with user’s walk 
through the town using External Authoring Interface 
[12]. A program written in JavaScript loads all necessary 
3D data and releases unused models from the memory.  

All modules of the system are shown on Figure 5. Two 
utilities have been developed. The first (House Editor) 
allows semi-automatic construction of “urban” level of 
detail. It works in connection with another program for 
drawing a front face of a house when a texture image is 
given. The second utility (City Editor) maintains 
geographical data in the database. It allows creation and 
editing urban blocks with proxy gates and other 
information. The visibility is not solved automatically yet 
but it is written to the database explicitly by the 
author/designer. 

The user interface consists of several parts as shown 
on Figure 6. A user can either directly choose 
a viewpoint from a list or to interactively pick it from 2D 
map. Simultaneously updated icon on the map 
symbolizes user’s position and orientation in the city. 
The 3D window offers real time walk through the town. 
Sensitive parts (billboards, tram stops etc.) are connected 
to hyperlinks that are targeted to a new standalone 
window. A textual and pictorial information is presented 
on the bottom right side accordingly to user’s movement 
from one block to another one. Several control icons on 
the top allows to set a view angle, a height of a user, 
a walking speed, to display a process of loading data 
from the server, and to change various system settings 
like required quality of houses with levels of detail, 
computer performance, and network parameters. 

 
5. Conclusion 

The scaleable data structures describing virtual cities 
have been introduced in this paper. A sequence for levels 
of detail specific to urban modeling has been designed. 
Although originally targeted to VRML, the proposed 
approach can be directly used in arbitrary visualization 
tool working with 3D models. 

Theoretical work has been followed by a practical 
implementation of visualization system for historical city 

of Prague. Currently about 60 houses were modeled and 
placed into a database. Even though this number is far 
from real requirements to complex presentation of the 
whole city, the measurements performed on those data 
have demonstrated the accomplishment of intended 
goals. The virtual walk through the town is smooth 
thanks to reading 3D data in advance. Careful loading 
and processing textures in levels of details saves graphics 
performance thus the Virtual Old Prague can be 
presented on ordinary computers with acceptable speed of 
rendering. 

It should be stressed that the visualization system 
utilizing several technologies and components (HTML, 
VRML, Java applets, and JavaScript routines) is not as 
steady as we wish. The bottleneck of the system seems to 
be a VRML browser. Its stability when manipulating 
with scene structure is low. Two browsers were tested –
CosmoPlayer and Cortona. The final visualization 
program had to be adapted in such a way that it uses 
different techniques for different VRML browsers. We 
hope that VRML browsers will be implemented much 
more robustly in the future thus the dependencies on 
certain browser could be removed. 
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Figure 5. Modules used for the model of the Virtual
Old Prague. The database stores basic geometrical
information. VRML models and texture images are
located on the web server file system.
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Figure 6. Main window of Virtual Old Prague visualization system contains several components. Virtual 
houses are modeled in four levels of details. All of them can be found in VRML window in this figure. 


