

Fifth International Conference on Information Visualisation - IV 2001, London, UK, 2001

A Scaleable Approach to Visualization of Large Virtual Cities

Jiri Zara1, Pavel Chromy2, Jiri Cizek2, Kamil Ghais2, Michal Holub2, Stanislav Mikes2, Jakub Rajnoch2
1Department of Computer Science and Engineering, Czech Technical University in Prague

 zara@fel.cvut.cz
2Faculty of Mathematics and Physics, Charles University in Prague

{pchr5077, jciz6107, kgha6147, mhol5152, smik6381, jraj7493}@barbora.ms.mff.cuni.cz

Abstract

Visualization of large urban complexes on the web is

highly demanding task both from the networking and
computational point of view. The whole three-
dimensional model of a city is mostly too big to be
downloaded in a reasonable time and to be stored in
a memory of commonly used computers. This paper
presents a scaleable approach for subdividing an urban
model into smaller parts. Dynamic loading and
unloading data allows theoretically unlimited extension
of a model with constant network and computation load.
Further requirements specific to presentation of virtual
cities are also discussed. Theoretical considerations are
followed by a practical implementation utilizing VRML
language for modeling historical city of Prague.

1. Introduction

Contemporary technologies (fast CPU, 3D accelerated
graphic cards, and fast network) allow interactive
visualization of quite detailed parts of a virtual city with
very authentic 3D models combined with
photographically obtained textures. Several cities can be
currently found on the web including well-known towns
like Paris [1], Glasgow [2], New Orleans [3], Sydney [4]
or Toronto [5]. Two main technologies are frequently
used for modeling and visualization – QuickTime VR [6]
and VRML [7]. While QuickTime approach is based on
photographs only, the VRML uses both 3D models and
images. In this paper we focus on utilization of VRML
due to its higher interactive functionality.

The common problem arising in almost all examples
mentioned above is the amount of data that must be sent
through the web and rendered in one. The size of such
city models ranges from hundreds of kilobytes up to tens
of megabytes per city district. Most users are unable to
download this data in interactive time due to the network
connection speed. Moreover, such large data cannot be
rendered in a real time even when powerful graphic

accelerators are used. Therefore the solution is to send to
the user only a small amount of data describing his/her
vicinity. Because of memory limits, no longer used data
should be simultaneously removed from the memory as
a user walks through the virtual town. Similarly, new
data should be downloaded and prepared in advance.
These demands require well-prepared and structured city
models, designed for this specific purpose. Most of
currently implemented virtual cities use either no data
hierarchy or they divide the city into smaller blocks
connected via hyperlinks and presented by parts. While
the first approach is inefficient the second causes
undesirable pauses/jumps when walking from one virtual
district to another one. This paper proposes a universal
data structures and methods suitable for smooth and
continuous walk-through arbitrary virtual city.

The paper presents in Section 2 typical requirements
for virtual cities presented on the web. Section 3
introduces a solution for scaleable structured models and
Section 4 describes one concrete implementation of the
proposed approach.

2. Characteristics of Virtual Cities

Three-dimensional interactive models of real cities
have several specific features different from other spatial
virtual scenes. They are characterized by large number of
virtual houses covered by texture images of big sizes.
Hardware support for texture mapping is often required
when the city is presented to users. Number of textures
can reach hundreds or even thousands of images. The
modeled area covers several squared kilometers and
includes from tens to hundreds of houses. On the other
hand, virtual models of houses can have simple shapes
because users mostly walk on the streets and do not enter
any houses. This fact leads to significant simplification –
houses are typically represented by their front faces
(frontages) only. Neither roofs or floors are to be
specified. The only exception is the bird view of a city
when all roofs are visible. This case should be suppressed
since it requires rendering of the whole town. This is

usually impossible for large cities thus the visitor should
be delighted by a number of other nice urban features
rather than the bird view.

The main purpose when presenting virtual cities is to
give a complex information to users. Virtual visitors can
be attracted to become real visitors/tourists later. The 3D
model is only a subset of offered information. The full
and rich model should contain the following components:
• 2D map synchronized with user’s movement in 3D

virtual space
• Additional textual information, description of sights
• Direct choosing of target places from a list or a map
• Interactivity (animations, hyperlinks)
• Virtual bus tour (animated viewpoint)
• Search function combined with automatic navigation

from current to target place
• Help subsystem, hints, advices
All those information are usually stored in a database.
The idea to store also a structured 3D model in
a database is thus straightforward. Some applications
already use a database [8], but mostly for searching
purposes and not for the task of spatial arrangement of
virtual houses and other models. The following section
discusses problems and solutions for such a task.

3. Scaleable urban model

When thinking about the structure for the virtual city
an idea of regular space subdivision seems to be inviting
and suitable. A regular grid has good properties from the

perspective of finding neighboring city parts for a given
region. When a user examines a certain cell of a grid,
four or eight neighboring cells can be read in advance
and prepared for the visualization. Similarly, when a user
leaves currently visited cell, a set of probably no longer
examined city areas can be easy determined and
unloaded.

Unfortunately, the problem of advanced data
preparation cannot be solved on the base of topology
only. A user can see a number of virtual houses that are
very far from a given area. This is demonstrated on the
Figure 1 showing a user examining a square in the city
center. While house frontages around the square hide
many houses in the closed vicinity, long and straight
streets allow seeing objects placed hundreds of meters
from a user. The conclusion is that the city structure
should take both topology and visibility issues into
a consideration. A presentation system should download
models which are both near the user and visible from
his/her current position.

3.1. Topology

The grid or other regular structure does not fit into
arbitrary city configuration. Only a few real towns like
New York has a strict rectangular structure while other
cities with historical centers delight users with serpentine
alleys and variously shaped plazas. A topology of
a virtual city has to correspond with the reality thus non-
uniform but flexible data structures are required. Of

Figure 1. Example taken from 2D map of Dublin shows that a given square area determines a lot of visible
objects in various directions and distances. The small circle marks an area currently examined by a user.
The big circle containing all potentially visible objects has a radius about 300 m. Visible objects represent less
than 10 % of data covered by the big circle. (Courtesy of Jiri Bittner, CTU Prague)

course the request for fast determination of neighbors for
a given area has a big importance.

We propose a system of blocks corresponding with
streets, plazas and other open spaces. One block is
typically assigned to a square while several successive
blocks represent one long street. This approach is similar
to space subdivision used for QuickTime VR
presentations [6] where the whole space is covered by set
of cylindrical panoramas. Here we extend this method to
universal description of 3D virtual space.

The block is depicted on Figure 2. The polygonal
layout is basically two-dimensional. The border consists
of edges holding house frontages and gates allowing
walking from one block to the neighboring one. Special
closing gates serve as obstacles when a user wants to
visit spaces that are not modeled yet. Standalone 3D
models representing statues, fountains, tram stops, trees
and other solitaires can be placed into a polygonal block.

A standard gate is invisible and users can cross it. The
main purpose for introducing a gate is that it holds an
information about neighboring block. Each time a user
crosses a gate a request for loading/unloading data is
produced. This approach suppresses the need for
continuous evaluation of user’s position in the whole city,
because the only important moment is the time when
a user walks through a gate. That is why we call gates
proxy gates. Note that proxy gate is actually two-sided. It
should detect whether the user enters into a block or
leaves it. Leaving a block leads to releasing certain data,
entering causes downloading new models. A two-sided
proxy gate can be implemented either by two separate
sensors or by one proximity area combined with
evaluation routine checking avatar’s movement.

It is useful to read data belonging not only to one
block but to have a possibility to specify the amount of
models to be downloaded in advance. Based on the actual
available computer memory a visualization system can
request the database holding the city structure for

sending data from blocks in specific distance from
currently examined block. This can be achieved by
breadth-first search algorithm known from graph theory.

A simple set operation is needed to determine data for
unloading – the difference between newly specified set of
blocks and a set of blocks already presented in a memory.
Note that these two sets should contain a common subset
of blocks ensuring that a user can walk through blocks
without undesirable waiting for a data. Figure 3 depicts
the situation when the user leaves block C and enters
block D. A common subset consists of blocks B, C, D,
and E for that case.

An ordinary edge in the block structure holds data for
several adjacent house frontages. A closing gate can be
also considered as an edge with one face. Usually this
face is covered by photography showing street or other
free space that is not included into a 3D model.

3.2. Visibility

A potentially visible area for a given user’s position
contains typically quite different blocks than those found
on the base of topology only as shown on Figure 1. Thus
the visibility issue has to be included into a city structure.
Each block contains a list of blocks that could be seen as
a user moves within this block. Data belonging to
potentially visible blocks should be read as soon as the
block is evaluated by topology search algorithm to be
a candidate for advanced downloading. Note that lists of
visible blocks can overlap for neighboring blocks thus

Figure 2. Each block consists of area surrounded
by house frontages, optional 3D objects and
several gates connecting neighboring blocks. The
two-sided proxy gate holds information on objects
that are to be loaded/unloaded when a user
crosses the gate.

Proxy gates
Closing gate

3D solitaires
House
pivot
points

A B
C

D

E

H

F
G

Figure 3. Based on the topology only, the specified
distance 2 (blocks) ensures, that blocks A, B, D,
and E are already in a memory when a user
examines the block C. When crossing the gate
between C and D, blocks F, G, and H should be
downloaded while A can be released.

they have to be maintained using set operations similarly
like in the previous case of topology.

The problem of finding the potentially visible set of
polygons for a given spatial arrangement has been
intensively investigated in past decades. The literature
from the field of computational geometry and computer
graphics [9] introduces a lot of methods that differ in the
speed (from off-line to real time processing), utilization
of additional data structures (mostly based on trees),
computations performed in various coordinate systems
(dual space, 2D space only) and other features. Here we
do not suggest using any specific method. Relatively slow
algorithms can be used since the evaluation is performed
in time of creating a city structure. This preprocessing
saves resources for later real-time visualization.

Note that the visibility computations should be
repeated each time when a database containing the city
structure is changed. Newly added houses can be visible
from many blocks. The example is Eiffel Tower in Paris.
While the topology evaluation is 2D problem only,
a visibility should be really computed in 3D space.

3.3. Memory management

When designing data structures for scaleable virtual
cities, the VRML language has been considered as a tool
for the final presentation. The memory management in
this language is unfortunately not directly accessible and
the visualization system cannot control the memory
allocation/de-allocation. VRML browsers are often part
of WWW browsers. They depend on the host memory
management algorithm based mostly on late garbage
collection. No explicit command in VRML allows for
memory control.

The future extension of the VRML language will
bring certain improvement. The GeoVRML specification
[10] introduces GeoLOD and GeoInline nodes allowing
requesting a browser for releasing data from a memory.
Although the basic approach to geographic data expects
a use of orthogonal 2D grid for the description of
a virtual world, a proposed structure for virtual cities

could also benefit from the new VRML nodes. Currently
the implementation of visualization system has to trust to
external languages like JavaScript and Java and their
memory management subsystems. Routines written in
those languages are able to communicate with the
database on the server, to transfer 3D data from it, and to
control relevant VRML scene structure.

3.4. Urban Level of Detail

The principle known as “Level of detail” is frequently
used in virtual reality systems. It allows achieving
a higher speed of rendering by simplifying a model
representation when an object appears far from a user.
While this simplification is often based on decreasing
a number of polygons per object, virtual houses require
different approach. High number of polygons does not
cause a problem here since only a few faces represent
each house. The most demanding task is to map and
render big texture images. Our observation shows that
levels of details should carefully work with textures. We
have designed the following “urban” levels of detail that
save both memory and rendering time markedly.

We propose a four-step level of detail for each virtual
house. Those levels are shown on Figure 4 from the
simplest to the most complex one. A distance from the
user together with graphic performance of client
computer can be taken into a consideration when
switching between levels. While the simplest
representation definitely does not look wonderfully, the
second one gives surprisingly realistic results with small
network and computation demands. The idea is based on
downloading a texture for a window that is the most
noticeable part of a house. This image has always a small
size (typically 64 x 64 pixels) and it is fast transferred
from a server to the client. A window is then repeatedly
placed on the front face thus saving a lot of texture
memory. One house can hold several windows with
various shapes. The visible difference between level b)
and c) on Figure 4 varies from case to case, but the
memory savings are evident in all cases.

Figure 4. Newly proposed levels of details for virtual houses. The simplest representation consists of one
polygon, two intermediate levels use textures and the best model is fully three-dimensional.

a) Colored front face b) Repeated small texture(s) c) Overall texture d) Textured 3D model

4. Virtual Old Prague

The principles described above have been utilized for
the model of historical part of Prague [11]. A student
team has implemented a database holding the proposed
city structure as well as a number of additional
informations (viewpoints, web addresses of shops and
other objects located in a city etc.). The database
(MySQL) runs on the web server. PHP scripts process
requests from clients and prepare new data for them.
Virtual Prague is modeled using VRML. Client Java
applet synchronizes attached 2D map with user’s walk
through the town using External Authoring Interface
[12]. A program written in JavaScript loads all necessary
3D data and releases unused models from the memory.

All modules of the system are shown on Figure 5. Two
utilities have been developed. The first (House Editor)
allows semi-automatic construction of “urban” level of
detail. It works in connection with another program for
drawing a front face of a house when a texture image is
given. The second utility (City Editor) maintains
geographical data in the database. It allows creation and
editing urban blocks with proxy gates and other
information. The visibility is not solved automatically yet
but it is written to the database explicitly by the
author/designer.

The user interface consists of several parts as shown
on Figure 6. A user can either directly choose
a viewpoint from a list or to interactively pick it from 2D
map. Simultaneously updated icon on the map
symbolizes user’s position and orientation in the city.
The 3D window offers real time walk through the town.
Sensitive parts (billboards, tram stops etc.) are connected
to hyperlinks that are targeted to a new standalone
window. A textual and pictorial information is presented
on the bottom right side accordingly to user’s movement
from one block to another one. Several control icons on
the top allows to set a view angle, a height of a user,
a walking speed, to display a process of loading data
from the server, and to change various system settings
like required quality of houses with levels of detail,
computer performance, and network parameters.

5. Conclusion

The scaleable data structures describing virtual cities
have been introduced in this paper. A sequence for levels
of detail specific to urban modeling has been designed.
Although originally targeted to VRML, the proposed
approach can be directly used in arbitrary visualization
tool working with 3D models.

Theoretical work has been followed by a practical
implementation of visualization system for historical city

of Prague. Currently about 60 houses were modeled and
placed into a database. Even though this number is far
from real requirements to complex presentation of the
whole city, the measurements performed on those data
have demonstrated the accomplishment of intended
goals. The virtual walk through the town is smooth
thanks to reading 3D data in advance. Careful loading
and processing textures in levels of details saves graphics
performance thus the Virtual Old Prague can be
presented on ordinary computers with acceptable speed of
rendering.

It should be stressed that the visualization system
utilizing several technologies and components (HTML,
VRML, Java applets, and JavaScript routines) is not as
steady as we wish. The bottleneck of the system seems to
be a VRML browser. Its stability when manipulating
with scene structure is low. Two browsers were tested –
CosmoPlayer and Cortona. The final visualization
program had to be adapted in such a way that it uses
different techniques for different VRML browsers. We
hope that VRML browsers will be implemented much
more robustly in the future thus the dependencies on
certain browser could be removed.

6. Acknowledgment
This work has been supported by the Ministry of
Education, Youth and Sports of the Czech Republic
under research program No. Y04/98: 212300014
(Research in the area of information technologies and
communications).

Figure 5. Modules used for the model of the Virtual
Old Prague. The database stores basic geometrical
information. VRML models and texture images are
located on the web server file system.

House Editor
C++

City Editor
C++

Database
MySQL

WWW Server
PHP

WWW Client
Java, HTML, VRML

User’s position
and settings

VRML scene
Texture images

Current block Block(s) description

VRML Urban LOD City topology

7. References

[1] Virtual Paris (based on blaxxun technology)
http://www.2nd-world.fr/
[2] Virtual Glasgow (VRML model)
http://iris.abacus.strath.ac.uk/glasgow/
[3] Virtual New Orleans (VRML model)
http://www.planet9.com/earth/neworleans/
[4] Virtual Sydney (VRML model)
http://www.planet9.com/earth/sydney/
[5] Virtual Toronto (VRML model)
http://www.intoronto.com/
[6] QuickTime VR (Apple web site)
http://www.apple.com/quicktime/qtvr/
[7] The Virtual Reality Modeling Language.
International Standard ISO/IEC 14772-1:1997,
http://www.web3d.org/technicalinfo/specifications/
vrml97/index.htm

[8] A. Heinonen, S. Pulkkinen, and I. Rakkolainen: “An
Information Database for VRML Cities”. In Proceedings
of IV 2000 - Information Visualization 2000, London,
Great Britain. IEEE Computer Society, ISBN 0-7695-
0743-3, pages 469-473.
[9] F. Durand: “A multidisciplinary survey of visibility”.
ACM SIGGRAPH Course notes. Visibility, Problems,
Techniques, and Applications, July 2000.
[10] M. Reddy, L. Iverson, and Y. G. Leclerc: “Under the
Hood of GeoVRML 1.0”. In Proceedings of The Fifth
Web3D/VRML Symposium. Monterey, California.
February 21-24, 2000
http://www.ai.sri.com/geovrml/
[11] Virtual Old Prague. Student Project.
http://www.ms.mff.cuni.cz/vsp/
[12] The Virtual Reality Modeling Language - External
Authoring Interface. Draft ISO/IEC 14772-2,
http://www.vrml.org/WorkingGroups/vrml-
eai/Specification/

Figure 6. Main window of Virtual Old Prague visualization system contains several components. Virtual
houses are modeled in four levels of details. All of them can be found in VRML window in this figure.

