
StyLit: Illumination-Guided Example-Based Stylization of 3D Renderings

Jakub Fišer1∗ Ondřej Jamriška1 Michal Lukáč1 Eli Shechtman2 Paul Asente2 Jingwan Lu2 Daniel Sýkora1

1Czech Technical University in Prague, Faculty of Electrical Engineering 2Adobe Research

(a) (b) (c) (d) (e)

Figure 1: Stylization of a 3D rendering (a) produced by our method using various style exemplars provided by the artist (top inset): (b) tonal
drawing, (c) colored pencils, (d) oil pastel, and (e) comic drawing. Note how the specific stylization of individual lighting effects on the
exemplar sphere is transferred to a similarly illuminated location in the target 3D rendering. Exemplar images: c© Daichi Ito (b), Pavla
Sýkorová (c, d), and Lukáš Vlček (e).

Abstract

We present an approach to example-based stylization of 3D render-
ings that better preserves the rich expressiveness of hand-created
artwork. Unlike previous techniques, which are mainly guided by
colors and normals, our approach is based on light propagation
in the scene. This novel type of guidance can distinguish among
context-dependent illumination effects, for which artists typically
use different stylization techniques, and delivers a look closer to re-
alistic artwork. In addition, we demonstrate that the current state of
the art in guided texture synthesis produces artifacts that can signifi-
cantly decrease the fidelity of the synthesized imagery, and propose
an improved algorithm that alleviates them. Finally, we demon-
strate our method’s effectiveness on a variety of scenes and styles,
in applications like interactive shading study or autocompletion.

Keywords: example-based, texture synthesis, global illumination,
light path expressions

Concepts: •Computing methodologies → Non-photorealistic
rendering;

1 Introduction

Stylizing synthetic renderings of 3D models to give them a
hand-crafted artistic appearance has wide applications in design,

∗e-mail:fiserja9@fel.cvut.cz
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SIGGRAPH ’16 Technical Paper, July 24–28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925948

advertising, games, and movies. Previous example-based ap-
proaches [Sloan et al. 2001; Hertzmann et al. 2001; Bénard et al.
2013; Fišer et al. 2014; Barnes et al. 2015] have made significant
progress, but the synthesized results still have a distinctively syn-
thetic look when compared to real artwork. In this paper we iden-
tify two main factors that cause this problem and propose a solution
to alleviate them.

The first limiting factor is that the state-of-the-art techniques rely
mainly on color information to determine the stylized appearance.
This leaves them unable to distinguish among different regions that
have similar colors (see Fig. 2, top). Actual artists pay as much at-
tention to lighting effects as they do to color when painting a scene.
They often use different types of brush strokes and even different
colors to depict differently lighted regions, even if they have the
same color—for example, a gray diffuse region and a similarly-
colored shadow might be painted differently (see Fig. 3). Artists
purposefully deviate from the true colors in the scene to empha-
size the lighting effects. To better emulate the look of real paint-
ings, synthesis must take the illumination conditions of the syn-
thetic scene into account. Although normals can partially alleviate
this limitation [Sloan et al. 2001], they are useful only for a simple
shading scenario where the light source is sufficiently far away that
the normals correctly determine the locations of the lighting effects.
When this assumption is not satisfied, or when there are other more
advanced illumination effects like shadows or glossy reflections,
normals become insufficient (see Fig. 2, bottom).

To allow illumination-dependent stylization, we propose a novel
approach in which we compute light propagation in a simple scene
(inset in Fig. 1a), and let the artist provide a corresponding painting
(insets in Fig. 1b–e) that depicts various global illumination effects
in arbitrary styles. (For brevity, we refer to the artist’s creation as
a painting, but it can use any technique like pen-and-ink, pastel, or
colored pencil.) Then, for a more complex target scene (Fig. 1a)
with a similar lighting environment, we compute the light propaga-
tion and use it to guide the synthesis—to find appropriate regions
in the exemplar painting to transfer appearance from. The shadow,
highlight and diffuse regions in the synthesis result exhibit similar
visual style to the corresponding regions in the exemplar.

http://dx.doi.org/10.1145/2897824.2925948

The second limiting factor of previous example-based stylization
techniques is that they tend to distort high-level textural features
like individual brush strokes [Sloan et al. 2001; Hertzmann et al.
2001; Bénard et al. 2013] (see Fig. 10d) or excessively reuse a small
subset of source patches [Fišer et al. 2014; Barnes et al. 2015], pro-
ducing a distinct wash-out effect manifesting as artificial repetitions
or homogeneous areas that do not exist in the original style exem-
plar [Kaspar et al. 2015; Jamriška et al. 2015] (see Fig. 10i). Both
types of artifacts give a distinctively synthetic look that decreases
the fidelity of the synthesized image. Our solution encourages uni-
form usage of source patches while controlling the overall error
budget to avoid enforcing the use of patches that can cause dis-
turbing visual artifacts. This improvement allows us to generate
compelling results in cases where previous approaches fail.

source stylized source target stylized target

Figure 2: Colors and normals are insufficient to guide the synthesis
of stylized artwork. (Top) Color-based stylization fails when an
artist wishes to apply different styles to parts of the source that have
similar colors. (Bottom) Normal-based stylization cannot capture
illumination changes that result when the light source is relatively
close to the object. It also fails to transfer advanced illuminaiton
effects such as shadows.

Figure 3: Examples of stylized still life paintings. Note how unique
stylization was used to depict different illumination effects, e.g.,
pink shading on the bottom of the apple (left) or blue tint in the
shadow region of the red pepper (right). Image courtesy c© Kerry
Daley (left) and Gail Sibley via howtopastel.com (right).

2 Related Work

The goal of computer-assisted stylization [Kyprianidis et al. 2013]
as pioneered by Paul Haeberli [1990] is to convert a photo or com-
puter generated image into a digital painting. Numerous tech-
niques were developed to achieve this goal, using physical sim-
ulation [Curtis et al. 1997; Haevre et al. 2007], procedural tech-
niques [Bousseau et al. 2006; Bénard et al. 2010], advanced image

filtering [Winnemöller et al. 2012; Lu et al. 2012], or an algorith-
mic composition of exemplar strokes [Salisbury et al. 1997; Zhao
and Zhu 2011]. Zeng et al. [2009] decomposed the stylized image
into a set of meaningful parts for which semantic interpretation is
available [Tu et al. 2005], and then modified the stroke placement
process to better convey the semantics of individual regions. All
those techniques can produce impressive stylization results in cer-
tain cases, but they are limited to a specific appearance determined
by the algorithm or by the library of used strokes.

Sloan et al. [2001] introduced The Lit Sphere—a generic example-
based technique that uses a shaded sphere painted by an artist as the
style exemplar. Pixels from this spherical exemplar are then trans-
ferred to the target 3D model using environment mapping [Blinn
and Newell 1976], i.e., the color for a target pixel is transferred
from the location in the source with the same normal. This leads
to disturbing stretched-texture artifacts (see Fig. 10c, in which the
orange shading lines are very stretched on the biggest torus). More-
over, since the technique requires one-to-one mapping between nor-
mals and lighting effects it can be used only for a simple shading
scenario where the target has the same lighting environment as the
source, the light is very far away, and there are no advanced illumi-
nation effects like shadows or glossy reflections.

Hertzmann et al. [2001] proposed a concept of image analogies
where a pair of images (unfiltered and filtered) serves as an ex-
emplar. For each pixel in the target, the algorithm finds the best
corresponding location in the unfiltered source and transfers the
look from the filtered counterpart. Due to its greedy nature it tends
to resolve the balance between maintaining the texture coherency
and following the guidance by introducing visible seams, which de-
grades the overall fidelity of the synthesized image (see Fig. 10d).
This approach was later extended to handle animations [Hashimoto
et al. 2003; Bénard et al. 2013] and to control the spatial location as
well as local orientation of the source textural features in the syn-
thesized image [Wang et al. 2004; Lee et al. 2010]. However, the
guidance is still mainly based on color, making these approaches
unable to handle illumination-dependent stylization.

In recent work [Fišer et al. 2014; Barnes et al. 2015] the origi-
nal Hertzmann et al. synthesis algorithm has been replaced by a
texture optimization technique [Kwatra et al. 2005; Wexler et al.
2007]. However, this approach suffers from a wash-out effect
(see Fig. 10i) caused by excessively reusing patches with low-
frequency content [Newson et al. 2014]. Numerous strategies have
been developed to mitigate this phenomena. Those include a dis-
crete solver [Han et al. 2006], feature masks [Lefebvre and Hoppe
2006], color histogram matching [Kopf et al. 2007], and bidirec-
tional similarity [Simakov et al. 2008; Wei et al. 2008]. However,
as recently demonstrated by Kaspar at al. [2015] and Jamriška et
al. [2015], those techniques only work in some particular cases, for
example when the source is mostly stationary and does not contain
many nearly-homogeneous patches. Those conditions are usually
violated for realistic style exemplars. Instead, Kaspar at al. and
Jamriška et al. proposed more viable content-independent solutions
that encourage uniform patch usage. A similar technique was previ-
ously used in [Chen and Wang 2010] and [Bénard et al. 2013]. Un-
fortunately, this uniform usage constraint does not apply in our sce-
nario since some patches need to be used more often than others—
for example when patches from one source highlight need to be
reused for multiple highlights in the target.

Recently, an alternative approach to computer assisted stylization
was proposed by Gatys et al. [2015]. It uses a deep neural network
trained on object recognition [Simonyan and Zisserman 2014] to
establish a mapping between features in the style and target image.
Although this technique produces impressive results, it learns com-
mon visual features from a generic set of natural images and thus

does not fit the task of style transfer for rendered scenes. More im-
portantly, the transfer is based purely on statistics of color patterns
and provides no intuitive way to control the transfer process, so the
result of the style transfer is mostly unpredictable.

In a related domain, Diamanti et al. [2015] showed how complex
material appearance can be synthesized from limited examples us-
ing additional annotations, including normals and a simple shading
descriptor. Similar to our method, they use rendered 3D models
as targets. However, they focus on realistic material synthesis, and
their annotations cannot capture the complex lighting phenomena
expressed in our exemplars. In addition, for the synthesis, they use
image melding [Darabi et al. 2012], which is unfortunately also
prone to the wash-out problem described above.

3 Our Approach

We created a generic example-based stylization algorithm that sup-
ports arbitrary natural media and styles. The input is an example
painting that is coarsely aligned to a simple 3D scene (Section 3.1).
Our framework can then synthesize renderings of complex new
scenes that imitate the visual style of the exemplar painting.

Previous stylization approaches based solely on color or normals
cannot reproduce the richness of hand-painted images—higher
level information is needed. One source of information can come
from semantically parsing the objects [Zeng et al. 2009], but we
believe that it is more important to analyze the light propagation
in the scene. Because artists typically paint according to illumi-
nation effects, style-specific variations are driven more by illumi-
nation changes rather than by object identities (see Fig. 3). Since
the 3D geometry is known in a computer-generated scene, the light
propagation can be computed using established rendering algo-
rithms [Kajiya 1986]. This allows us to distinguish differently illu-
minated regions (Section 3.2). We use the illumination information
to guide the synthesis algorithm to achieve context-dependent styl-
ization (Section 3.3).

3.1 Workflow Overview

In our workflow, an artist first prepares a stylized exemplar. We
begin by creating a simple 3D scene that contains all important
illumination effects that may subsequently occur in target scenes.
A typical example of this scene is “a sphere on a table” (see in-
set in Fig. 1a), which bears resemblance to the Lit Sphere [Sloan
et al. 2001]. The key difference is that placing the sphere on the
table allows us to extend the the highlights and shading captured
by Lit Sphere to additional illumination effects like soft shadows,
color bleeding, and glossy reflections. We render the scene using a
global illumination algorithm [Kajiya 1986] and print it on a paper
in low contrast with special alignment marks. The artist then paints
on this paper using any preferred media so that the final painting
roughly aligns with the dimmed scene preview. We align a photo
or scan of the painting with the original rendered image using the
alignment marks.

Once the exemplar is ready, a more complex target scene can be
created and rendered (see Fig. 1a). Our algorithm then transfers the
hand-painted look from the exemplar to the target scene, preserving
the stylization of individual illumination effects.

Implementing this workflow requires two components: (1) a mech-
anism to calculate light propagation in the scene and (2) an
example-based algorithm that uses this light propagation informa-
tion as guidance to synthesize a target image, preserving the styliza-
tion of individual illumination effects in the source exemplar. We
describe these components in the following sections.

3.2 Light Path Expressions

In light transport, light-surface interactions can generally be clas-
sified as either diffuse or specular. Examining the interactions that
happen on a path from a light source to the sensor lets us distinguish
most important global illumination effects. This technique, known
as Light Path Expressions (LPEs), has long been used in render-
ing [Heckbert 1990]. One of its uses is to separate the various illu-
mination effects into distinct buffers for the purposes of filtering or
in order to use a different rendering algorithm for each.

In our method, we use the same technique to gain insight into the
light-scene interactions as seen in image space. By isolating the
prominent global illumination effects, we gain additional informa-
tion about how a real-life scene would appear to an artist, and we
can take that information into account in the matching phase of the
synthesis. This helps us make sure that effects like specular high-
lights, shadows, or diffuse interreflections—all of which are impor-
tant shape and spatial relationship cues—are stylized consistently
with the artist’s intent.

We take advantage of existing renderers’ ability to render these LPE
buffers with little computational overhead (we use NVIDIA Iray
SDK). We then create multi-channel images of the exemplar ren-
dering and the target rendering, with channels containing the tra-
ditional RGB representation and the LPE buffers. All matching
operations are performed on these multi-channel pixels.

(a) (b) (c)

(d) (e) (f)

Figure 4: An example of a style exemplar with Light Path Ex-
pression images: (a) full global illumination render, (b) direct dif-
fuse (LDE), (c) direct specular (LSE), (d) first two diffuse bounces
(LD{1,2}E), (e) diffuse interreflection (L.*DDE), (f) hand-drawn
style image. Exemplar image c© Daichi Ito.

The light paths used in our examples (see Fig. 4) include direct
diffuse and specular components (LDE and LSE), as well as the
diffuse interreflection component (L.*DDE) and the first two dif-
fuse bounces (LD{1,2}E). Additional channels can be added as
necessitated by the given scene (e.g., the caustics channel LS*DE);
our synthesis algorithm does not expect any particular number or
set of channels and does not require that the path sets captured in
different buffers be disjoint.

3.3 Synthesis Algorithm

Similarly to image analogies [Hertzmann et al. 2001] our task
(see Fig. 5) is to take three multi-channel imagesA (exemplar scene
rendered with LPE channels), A′ (stylized exemplar aligned to the
exemplar scene), andB (target scene rendered with LPE channels),
and synthesize a new target image B′ such that A : A′ :: B : B′,

A A′ B B′

: :::

Figure 5: The concept of image analogies. Exemplar image
c© Pavla Sýkorová.

i.e., that style from A′ is transferred to B′ according to the similar-
ity between A and B.

To solve this problem Hertzmann et al. originally proposed a simple
multi-scale algorithm. For each resolution level and each pixel q ∈
B′ in scan-line order, a best matching pixel p is found in the source
A′ such that

E(A,B, p, q, µ) = ||A′(p)−B′(q)||2 + µ||A(p)−B(q)||2 (1)

is minimized. Here A = {A,A′}, B = {B,B′}, and µ is a weight
that controls the influence of guidance. For any image I , we use
I(p) to denote a feature vector at a pixel p. The vector I(p) is
a concatenation of all pixels in a small square patch of width w
centered at the pixel p, where each pixel can have multiple feature
channels. For features, Hertzmann et al. use the intensity value
and an output from a steerable filter, whereas Bénard et al. [2013]
augment the RGB colors with several additional guidance channels,
including temporal coherence and a distance transform. In our case
the feature vector contains colors of the full rendered image (RGB)
and four LPE channels (each stored as a RGB image):

{A,B} = (FULL,LDE,LSE,L.*DDE,LD{1,2}E). (2)

More LPE channels could be added to increase the discriminative
power of the feature vector.

Although the original Hertzmann et al. algorithm produces impres-
sive results, it suffers from its greedy nature and can fail to preserve
high-level structures (see Fig. 10f). Subsequent work [Fišer et al.
2014; Barnes et al. 2015] showed that better results can be obtained
using the optimization scheme described by Kwatra et al. [2005]
and Wexler et al. [2007], which minimizes the following energy:∑

q∈B

min
p∈A

E(A,B, p, q, µ) (3)

using EM-like iteration executed multiple times from coarse to fine
resolution:

input : multi-channel images A = {A,A′} and Bk = {B,B′k}
output: synthesized target image B′k+1

for each pixel q ∈ Bk do
NNF (q) = argmin

p∈A
E(A,Bk, p, q, µ)

for each pixel q ∈ Bk do
B′k+1(q) = Average(A,NNF , q)

Algorithm 1: EM-like iteration used to minimize energy (3).

Here B′k denotes the current pixel values stored in B′ and B′k+1

the updated values. NNF is the nearest neighbour field that assigns
source patch to each target patch and function Average computes
the average color of colocated pixels in neighbour patches.

This approach produces notably better results, but as described
in Section 2, it frequently leads to the wash-out effect (see Fig. 10i).

Kaspar et al. [2015] and Jamriška et al. [2015] mitigate this problem
by encouraging uniform source patch usage. However, this restric-
tion is suitable only when each randomly picked sub-region of the
source texture is perceived similarly. Enforcing uniform patch us-
age in our scenario would create artifacts; see Fig. 7 for a simplified
illustration of this problem. For example, if the target has compar-
atively more highlight region than the source, uniform patch usage
would force the highlight in the target to be filled with non-highlight
source patches (see, e.g., Fig. 10m, n). In our scenario we need a
different scheme that avoids the excessive use of certain patches
while still permitting non-uniform utilization.

A possible solution would be for each source patch to estimate its
optimal usage and then augment the original uniformity-preserving
approaches to handle this non-uniform case. However, it is diffi-
cult to estimate optimal patch utilization in advance unless we run
the actual synthesis. To overcome this chicken-and-egg problem
we propose a different approach that inspects the actual matching
errors during the synthesis and detects cases when the algorithm
starts to force patches into inappropriate locations.

Our solution is based on the idea of reversed NNF retrieval [Rosen-
berger et al. 2009; Jamriška et al. 2015], in which a best match-
ing target patch is retrieved for each source patch. The advantage
of this approach is that it can enforce uniform usage of source
patches. However, we must avoid forcing source patches to in-
appropriate locations in the target. We observe that, in practice,
when we sort all matching error values and plot them with nor-
malized axes, the resulting graph has a distinct, hyperbolic shape
(see Fig. 6). It starts with small error values, corresponding to fea-
sible assignments (A∗ in Fig. 6). There is a knee point k where
the error starts to increase rapidly. We estimate k by fitting a hy-
perbolic function f(x) = (a − bx)−1 to the data and retrieving
the point where f ′(x) = 1, i.e., k =

√
1/b + a/b. Patches with

indices above k are probably erroneous assignments (A× in Fig. 6)
that need to be avoided. We thus set a feasible error budget T that is
an integral of all patch errors with indices below k and modify the

feasible assignments

er
ro

ne
ou

s
as

si
gn

m
en

ts

pa
tc

h
er

ro
r

source patches

source (A) target (B)

A∗1

A∗2

A×

T

k

f(x)

Figure 6: Estimation of the error budget T : the sorted matching
errors of all potential source-to-target patch assignments can be
approximated by a hyperbolic curve f(x) on which a knee point k
is detected and used to distinguish between feasible A∗ and erro-
neous A× assignments. The integral of the errors in A∗ gives an
estimate of the error budget T .

source target(a) (b) source target (c) source target (d) source target

Figure 7: Why enforcing uniform source patch usage is inappropriate in our scenario. (a) We often have the case when different types of
patches have different distributions in the source and the target; here the source has much more blue than yellow, but the target requires
much more yellow than blue. (b) The uniformity-preserving algorithm initially transfers source patches (marked with gray color) to proper
locations in the target. (c) Eventually all suitable target locations can become occupied, leading the algorithm to force remaining source
patches (not gray in b) into target positions with high matching error. (d) Our approach detects this erroneous case and restarts the retrieval
so that appropriate source patches can be reused to fill remaining suitable positions in the target.

jihgfedcba

tsrqponmlk

Figure 8: A collection of 20 different models used to produce the results in this paper and supplementary material. The supplementary
material shows the computed LPE channels. Source meshes via TurboSquid: Veleran (a), Gerzi 3D ART (b), shoiko (e), cvbtruong (f),
cartoomotion (h), luxxeon (i, r), Fernando Luceri (k), sylky (m), Giimann (n), oliverlaric (o), Nagashi (p), WindTrees (q), shiyamon (s).

original source-to-target assignment in a way that maximizes the
number of used source patches |A∗| while satisfying an additional
feasibility constraint:∑

p∈A∗

min
q∈B

E(A∗,B, p, q, µ) < T (4)

Such a constrained assignment leads to the desired situation with
some target patches remaining unassigned because assigning them
would introduce artifacts (c.f. Fig. 7c). We can repeat the retrieval
(c.f. Fig. 7d) and reuse good source patches to cover remaining po-
sitions in the target.

This iterative scheme stops when all target patches are covered. In
practice it is feasible to stop even earlier (e.g., when 95% are cov-
ered) and use standard target-to-source nearest-neighbour retrieval
to speed up the process. The number of iterations depends on
the structure of the target scene and the complexity of the exem-
plar. Typically after 10 iterations more than 80% of target patches
have been covered. In the general case, the number of iterations is
roughly proportional to the ratio of the areas of corresponding il-
lumination effects in the source and target images. For example, if
the source contains one highlight and the target has four of similar
size, then at least four iterations will be necessary to cover them. In
practice, the number of iterations is typically slightly higher due to
different structures of individual effects.

To complete the algorithm we plug our modified patch assignment
process into the original EM iteration (Algorithm 1) by replacing
the step where the nearest neighbour field NNF is created. We
then run the standard coarse-to-fine synthesis.

3.4 Implementation details

We implemented our technique in C++ and CUDA. To accelerate
the retrieval of nearest neighbours, we use PatchMatch with inte-
grated support for masking [Barnes et al. 2009]. To further accel-
erate the processing we exploit multicore processing using parallel
tiling on the CPU [Barnes et al. 2010] and jump flooding on the
GPU [Rong and Tan 2006]. We use fixed patch size w = 5 and

guidance influence µ = 2. Our pyramid uses 2 for the downsam-
pling ratio, and for a one-megapixel image, we run the synthesis
on 6 levels with 6 optimization iterations on each level. The NNF
retrieval is accelerated with 6 PatchMatch iterations.

Synthesizing a one-megapixel image takes about 15 minutes on a
3GHz CPU with 4 cores or 3 minutes on the GPU (GeForce GTX
Titan Black). In addition to high quality synthesis, we also imple-
mented a preview mode of the algorithm that uses half resolution,
compresses LPE channels using PCA, and stores all textures as inte-
gers instead of the floating-point numbers used by the high-quality
version. This achieves interactive response within 3–6 seconds on
the GPU, enabling the applications discussed in Section 4.2.

4 Results

To validate our method we created a simple “sphere on the table”
exemplar scene (see Fig. 4) and had five trained artists paint it in
various styles using different kinds of media, including colored pen-
cils, pastels, acrylic paint, watercolor, pen-and-ink, and markers
(see Fig. 9, top). The artists had the option of including or not in-
cluding certain effects; for example, they were not required to paint
shadow or background if they did not want us to synthesize them.

In practice, a different exemplar scene could have been created to
contain specific illumination effects (see, e.g., Figures 13 and 15),
but we found that in most cases very good results could be ob-
tained using a generic “sphere on the table” scene. This proves
that our technique generalizes well despite the complexity of the
target scene. Once the exemplar was painted we selected vari-
ous meshes and rendered them under similar lighting conditions
(see Fig. 8), i.e., light positions and materials were similar to the
exemplar scene (Figures 16 & 17 and supplementary videos demon-
strate how changing lighting conditions affect the final stylization).

We used different colors to distinguish the object from the back-
ground. This helped to avoid patch transfer between different ma-
terials and also allowed discrimination among different light inter-
action effects when one object reflected other, differently colored
objects on its surface. The resulting color mixture guided the algo-

109876

54321

d10s10r9q9j9

g8d8b8i7p7

o7n7m6l6k6

h6j5d5i5b4

g4h4g3f3e3

d2b2c2b1a1

Figure 9: Results—style examplars created by two trained artists in different kinds of media (top, denoted by numbers) were applied to
models presented in Fig. 8 (denoted by letters) using our algorithm. Note how the resulting synthesized images (bottom) convey the stylization
of lighting effects and preserve the textural richness of the source exemplar. Exemplar images c© Daichi Ito (1, 2, 3, 7), Karel Seidl (4), Lukáš
Vlček (5), Lucie Svobodová (9), and Pavla Sýkorová (6, 8, 10).

(a) source (b) target

(k) [Simakov et al. 2008] LPE

(f) [Hertzmann et al. 2001] LPE

(l) [Darabi et al. 2012] LPE

(g) [Bénard et al. 2013] LPE

(m) [Jamriška et al. 2015] LPE

(h) [Gatys et al. 2015] N/A

(c) [Sloan et al. 2001] N

(n) [Kaspar et al. 2015] LPE

(i) [Wexler et al. 2007] LPE

(d) [Hertzmann et al. 2001] RGB

(j) [Kopf et al. 2007] LPE

(e) [Bénard et al. 2013] RGB

(o) our approach LPE

(c) (d) (e) (f) (g) (i) (j) (k) (l) (m) (n) (o)

Figure 10: Comparison with previous work—an expressive style exemplar (a) has been applied to a scene with five toruses (b) using previous
approaches to example-based stylization (c, d, e, h, i, j) and techniques for general patch-based texture synthesis (f, g, k, l, m, n). Different
approaches use different guidance channels: normals (N), colors (RBE), LPEs (LPE), and no guidance (N/A). Note how our approach (o)
better preserves the visual structure of the target and the textural details of the source (see insets below). Exemplar image c© Pavla Sýkorová.

rithm to use samples that correspond to a similar interaction area in
the source exemplar. In our results only two colors (white and red)
were used, however, this color-coded guidance could be generalized
to handle more objects with different materials.

The resulting synthesized images are presented in Figures 1 and 9
with additional results in the supplementary material. Note how ac-
curately they follow the exemplar style. Strokes that correspond to
highlights and shadows in the source are consistently transferred to
proper locations in the target. Although there is no special treatment
for object boundaries, the algorithm synthesizes them convincingly
even in the presence of overdrawn strokes (see Fig. 1c, d). This
happens because the discontinuities in LPE channels guide the syn-
thesis to place boundary patches from the source at the boundaries
in the target. Furthermore, the mechanism for eliminating exces-
sive use of smooth patches encourages the algorithm to use high-
frequency patches that typically contain overdrawn strokes.

The feedback from the trained artists who created the exemplars
was very positive, with some commenting that many results looked
exactly as if they had painted them by hand.

4.1 Comparison

We compared our technique with previous example-based styliza-
tion algorithms. For this we prepared a source exemplar and a
rendering of a target scene where all previously mentioned issues
occur; see Fig. 10. The exemplar (Fig. 10a) contains distinct styl-

ization of each individual illumination effect and has rich texture
details. In the target (Fig. 10b) the colors of the background and
highlights match. The area light is close to the object, so that the
assumption of the light being far away is violated, and the distri-
bution of areas representing different lighting conditions is notably
different from the source.

The Lit Sphere [Sloan et al. 2001] (Fig. 10c) uses normals to guide
the rendering, causing flaws in the stylization and position of the
highlights in the rendered scene. Because it just uses texture map-
ping to transfer the appearance in a pixel-wise fashion, there is no
patch-wise consistency of the rendered output. The result is that the
texture details of the exemplar are not reproduced correctly.

Image analogies [Hertzmann et al. 2001] (Fig. 10d) and exten-
sion [Bénard et al. 2013] (Fig. 10e) use color for guidance. They
fail to retrieve patches from appropriate locations in the exemplar,
most visibly by mistakenly using patches from the background for
the highlights. The greedy nature of the algorithm leads to texture
details being corrupted by artificial seams that break the fidelity of
the synthesized image. We extended both approaches using our ad-
ditional LPE channels (Fig. 10f, g), but the appearance of texture
in the output is still far from the exemplar. Even with the LPE
channels, Bénard et al. fails to reproduce highlights because of an
additional histogram term [Chen and Wang 2010] that tries to en-
courage uniform patch usage.

The deep neural network approach of Gatys et al. [2015] strongly
depends on visual patterns used during the training phase. In our

LDE LSE LD1,2E L.*DDE

on off on off on off on off

Figure 11: The effect of adding individual LPE channels: diffuse (LDE) emphasizes contrast between lighted areas and areas in shadow,
specular component (LSE) provides proper stylization of highlights, first and second diffuse bounce (LD{1,2}E) emphasizes details in
shadows, and diffuse interreflections (L.*DDE) transfer the stylization of indirect illumination. Exemplar image c© Daichi Ito.

(a) source (a) target (c) colors (d) normals (e) colors + normals (f) colors + LPE

Figure 12: To show the need for guidance based on LPE channels, we show the result of our improved synthesis method when based upon
different sets of input channels: (c) colors only (d) normals only (e) colors with normals (f) colors with LPE. Only colors with LPE correctly
capture the highlights, shadows, and shading effects. Exemplar image c© Daichi Ito.

scenario this approach completely fails (Fig. 10h); without proper
guidance it is impossible to recover a meaningful assignment be-
tween the source and target features.

Fig. 10i shows how image analogies guided with LPE chan-
nels would look when computed using the texture optimization
scheme [Wexler et al. 2007] with the original EM-like iteration (Al-
gorithm 1). The wash-out effect is clearly visible because patches
with low-frequency content [Newson et al. 2014] have been heavily
overused. The variation by Kopf et al. [2007] (Fig. 10j) fails to take
into consideration that the color histogram of the target must be dif-
ferent from the source, so its matching cannot improve the result in
our scenario. Using bidirectional similarity [Simakov et al. 2008;
Wei et al. 2008] (Fig. 10k) improves the results only a bit.

The same issue occurs also in the Image Melding method [Darabi
et al. 2012] where patches are allowed to change color, rotate and
scale and where image gradient channels are used in addition to our
LPEs to guide the synthesis (Fig. 10l).

Enforcing uniform patch usage according to [Jamriška et al. 2015]
gives good texture quality, but completely breaks the overall struc-
ture (Fig. 10m). Kaspar et al. [2015] give more flexibility by pro-
viding a parameter λ that controls the strength of the uniformity en-
forcement. However, we have found that λmust be manually tuned
per scene to produce compelling results. Setting λ too low does
not eliminate the wash-out effect, and setting it too high breaks the
structure by enforcing overly uniform patch usage. To get the best
result for the target in Fig. 10b we experimentally set λ = 0.1. This

setting reduces the wash-out effect at the expense of distorting some
highlights (Fig. 10n). Other settings of λ produce worse results—
see supplementary material for comparison. Finally, our approach
preserves both the textural richness and the overall structure of the
target scene without tedious parameter tuning (Fig. 10o).

In Fig. 11 we show the influence of individual LPE channels on the
resulting synthesis. Despite some changes being rather subtle, they
significantly improve the fidelity of the resulting image and makes
the style transfer more visually compelling. We also show in Fig. 12
how our improved synthesis algorithm behaves when used with
only colors and normals as a guide. Just using colors (Fig. 12c)
cannot distinguish between the highlights and the background. Just
using normals (Fig. 12d) fails to place the highlights in the correct
places, because the relatively close light source places highlights
in areas with different surface orientations from the source. Using
colors and normals together (Fig. 12e) works better, but still fails
to place all highlights correctly and fails to reproduce some of the
shading effects. Only using colors combined with LPE (Fig. 12f)
correctly reproduces all the lighting effects of the target.

4.2 Applications

Our approach has numerous potential applications. It can be used
to preview a target rendering style on various different geometries
(see Fig. 9) or to test out multiple rendering styles on the same ge-
ometry (see Fig. 1). Alternatively, exemplars made by experienced
artists can be used by others to produce stylized digital content.

It can also be used in animation (see supplementary video) or for
autocompletion [Xing et al. 2014; Xing et al. 2015]. The user can
stylize a single frame or only a portion of the model (see Fig. 13)
and then use our technique to transfer the hand-drawn look to the
rest of the model or sequence.

(a) (b) (c)

Figure 13: Autocomplete shading—an artist draws shading for one
finger (b) and our method synthesizes (c) the rest of the hand (a).
Exemplar image c© Daichi Ito.

Figure 14: On-the-fly shading study—the artist paints a simplified
“sphere on the table” scene (top row) and watches as the stylization
is transferred to the target model (bottom row). Such a continuous
feedback helps to gradually improve the final stylization. Exemplar
image c© Karel Seidl.

(a) (b) (c) (d)

Figure 15: Transferring style when a reference 3D model does not
exist (a). We create an approximate 3D reconstruction, and light
it to roughly capture illumination conditions in the original paint-
ing (b). We can then render a target model (c) and use our al-
gorithm to transfer the style (d). Exemplar image c© Tina Wassel
Keck via Etsy.

Artists and designers whose skills are insufficient to create a con-
vincing painting of a detailed scene can instead create a “shading
study” (as in Sloan et al. [2001]), and then let our method trans-
fer the appearance to the target model automatically. Thanks to
our GPU implementation this process can be performed on the
fly (see Fig. 14) using a camera mounted above the canvas. The
artist can improve the study based on immediate visual feedback.
In Fig. 14, after seeing the rendering preview of the target model
(bottom row), our artist decided to increase the color contrast and
make the shadows darker. This approach can also be useful when an
artist needs to paint an entire model by hand but would appreciate
some reference visualizing how the actual stylization would look
like on a more complex surface. Our technique can also be used
to transfer style from an existing painting when a reference scene

does not exist. We exploit existing techniques for 3D reconstruc-
tion from a single image [Zeng et al. 2015] and manually set up
lights to mimic the illumination conditions of the original painting.
Then we render corresponding LPE channels and feed them into
our stylization pipeline to obtain a roughly corresponding stylized
target scene (see Fig. 15).

5 Limitations and Future Work

Although our approach works quite well for many hand-painted ex-
emplars and many target 3D scenes, there are some limitations that
must be taken into account.

In Fig. 9 we demonstrate that our technique does a good job in
generalizing illumination effects from a simple exemplar to rela-
tively complex scenes. However, roughness in the style exemplar
can sometimes suppress fine geometric details (see Fig. 16b, k, g).
This effect can be alleviated with an additional edge map channel
that emphasizes visually important features (Fig. 16c, d, m).

Our method produces best results when the lighting environment
is similar to that in the exemplar scene. While some illumination
changes can be handled (see adding a light source in Fig. 16f, h) we
assume that all important illumination effects present in the target
are present in the exemplar scene. For example, if the target scene
has a dark shadow that is not present in the exemplar, our method
cannot find proper patches and fills that area with inappropriate con-
tent, producing artifacts (see Fig. 17). We can sometimes alleviate
this by matching the appearance of the exemplar’s rendering with
the rendering of the target scene (Fig. 16i, j, q).

When the rendering of the target scene is even more complicated,
like having multiple objects with interreflections or challenging
lighting effects like caustic or subsurface scattering, a different ex-
emplar must be prepared and new LPE channels must be added.
Our method is also not suitable for highly exaggerated stylization
that does not closely fit the exemplar 3D scene—for example, when
a stylized highlight is drawn where there is no rendered highlight.

In the future we would like to extend our technique to better handle
animations. We plan to incorporate temporal coherence between
stylized frames and give artistic control over the perceived tempo-
ral noise in the spirit of Fišer et al. [2014]. We would also like
to explore how our synthesis algorithm with the error budget can
address more general texture synthesis problems.

6 Conclusion

We have presented an approach to example-based stylization of
3D renderings that takes into account illumination effects. It in-
cludes an extended synthesis algorithm that better preserves the vi-
sual richness of hand-created style exemplars. Both the general
approach and the synthesis algorithm dramatically improve the fi-
delity of the stylized images. We have demonstrated that our tech-
nique can handle a great variety of different stylizations. Our ap-
proach confirms the great potential of example-based techniques,
and we hope it will inspire others to explore further their applica-
bility in the field of non-photorealistic rendering.

Acknowledgements

We would like to thank artists D. Ito, P. Sýkorová, K. Seidl, L. Svo-
bodová, L. Vlček, and J. Javora for creating examplars and record-
ing interactive sessions. We are grateful also to J. Hendrich, T.
Krupka, R. Smetana, D. Sedláček, M. Dvorožňák, J. Bittner, and
P. Bénard for helping us with preparation of this paper and to
all anonymous reviewers for insightful comments and suggestions.

(b) (d) (f) (h) (j)

(g) (m) (o) (p) (q)

(a) (c) (e) (l) (i)

(k) (n)

Figure 16: Stylization of renderings with fine geometric details (b) and different lighting conditions (f, h, i). (a, e, l, i) are the source
renderings and (k, n) are the style exemplars used to produce stylized targets (g, m) and (o, p, q) respectively. Lack of geometric details in the
stylized rendering (g) can be alleviated (m) with an additional edge map channel (c, d). (o) shows synthesis of rendering with single and (p)
with multiple light sources. (q) shows synthesis with the source rendering (i) matched to the target rendering (j). Exemplar images c© Daichi
Ito (k) and Karel Seidl (n). Source mesh via CGTrader: luisma l (b).

(a) (b) (c)

Figure 17: Limitation—when the lighting environment is similar to
that in the original exemplar scene (a) our approach produces best
results (b). It can fail (c) when some illumination effects are miss-
ing in the source exemplar—here, highly shaded areas with little
indirect illumination. Exemplar image c© Karel Seidl.

This research was funded by Adobe and has been supported by
the Technology Agency of the Czech Republic under research pro-
gram TE01020415 (V3C – Visual Computing Competence Cen-
ter) and by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS16/237/OHK3/3T/13 (Research of Modern
Computer Graphics Methods). Access to computing and storage
facilities owned by parties and projects contributing to the National
Grid Infrastructure MetaCentrum provided under the programme
”Projects of Projects of Large Research, Development, and Inno-
vations Infrastructures” (CESNET LM2015042), is greatly appre-
ciated.

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Transactions on
Graphics 28, 3, 24.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized PatchMatch correspondence
algorithm. In Proceedings of European Conference on Computer
Vision, 29–43.

BARNES, C., ZHANG, F.-L., LOU, L., WU, X., AND HU, S.-M.
2015. PatchTable: Efficient patch queries for large datasets and
applications. ACM Transactions on Graphics 34, 4, 97.

BÉNARD, P., LAGAE, A., VANGORP, P., LEFEBVRE, S., DRET-
TAKIS, G., AND THOLLOT, J. 2010. A dynamic noise primitive
for coherent stylization. Computer Graphics Forum 29, 4, 1497–
1506.

BÉNARD, P., COLE, F., KASS, M., MORDATCH, I., HEGARTY,
J., SENN, M. S., FLEISCHER, K., PESARE, D., AND BREE-
DEN, K. 2013. Stylizing animation by example. ACM Transac-
tions on Graphics 32, 4, 119.

BLINN, J. F., AND NEWELL, M. E. 1976. Texture and reflection
in computer generated images. Communications of the ACM 19,
10, 542–547.

BOUSSEAU, A., KAPLAN, M., THOLLOT, J., AND SILLION,
F. 2006. Interactive watercolor rendering with temporal co-
herence and abstraction. In International Symposium on Non-
Photorealistic Animation and Rendering, 141–149.

CHEN, J., AND WANG, B. 2010. High quality solid texture syn-
thesis using position and index histogram matching. The Visual
Computer 26, 4, 253–262.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER,
K. W., AND SALESIN, D. H. 1997. Computer-generated water-
color. In SIGGRAPH Conference Proceedings, 421–430.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image Melding: Combining inconsistent im-
ages using patch-based synthesis. ACM Transactions on Graph-
ics 31, 4, 82.

DIAMANTI, O., BARNES, C., PARIS, S., SHECHTMAN, E., AND
SORKINE-HORNUNG, O. 2015. Synthesis of complex image ap-
pearance from limited exemplars. ACM Transactions on Graph-
ics 34, 2, 22.

FIŠER, J., LUKÁČ, M., JAMRIŠKA, O., ČADÍK, M., GINGOLD,
Y., ASENTE, P., AND SÝKORA, D. 2014. Color Me Noisy:
Example-based rendering of hand-colored animations with tem-
poral noise control. Computer Graphics Forum 33, 4, 1–10.

GATYS, L. A., ECKER, A. S., AND BETHGE, M. 2015. A neural
algorithm of artistic style. CoRR abs/1508.06576.

HAEBERLI, P. 1990. Paint by numbers: Abstract image represen-
tations. SIGGRAPH Computer Graphics 24, 4, 207–214.

HAEVRE, W. V., LAERHOVEN, T. V., FIORE, F. D., AND REETH,
F. V. 2007. From Dust Till Drawn: A real-time bidirectional
pastel simulation. The Visual Computer 23, 9-11, 925–934.

HAN, J., ZHOU, K., WEI, L.-Y., GONG, M., BAO, H., ZHANG,
X., AND GUO, B. 2006. Fast example-based surface texture
synthesis via discrete optimization. The Visual Computer 22,
9–11, 918–925.

HASHIMOTO, R., JOHAN, H., AND NISHITA, T. 2003. Creating
various styles of animations using example-based filtering. In
Proceedings of Computer Graphics International, 312–317.

HECKBERT, P. S. 1990. Adaptive radiosity textures for bidirec-
tional ray tracing. SIGGRAPH Computer Graphics 24, 4, 145–
154.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In SIGGRAPH
Conference Proceedings, 327–340.

JAMRIŠKA, O., FIŠER, J., ASENTE, P., LU, J., SHECHTMAN, E.,
AND SÝKORA, D. 2015. LazyFluids: Appearance transfer for
fluid animations. ACM Transactions on Graphics 34, 4, 92.

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Com-
puter Graphics 20, 4, 143–150.

KASPAR, A., NEUBERT, B., LISCHINSKI, D., PAULY, M., AND
KOPF, J. 2015. Self tuning texture optimization. Computer
Graphics Forum 34, 2, 349–360.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2D exemplars. ACM Transactions on Graphics 26, 3, 2.

KWATRA, V., ESSA, I. A., BOBICK, A. F., AND KWATRA, N.
2005. Texture optimization for example-based synthesis. ACM
Transactions on Graphics 24, 3, 795–802.

KYPRIANIDIS, J. E., COLLOMOSSE, J., WANG, T., AND ISEN-
BERG, T. 2013. State of the “art”: A taxonomy of artistic styl-
ization techniques for images and video. IEEE Transactions on
Visualization and Computer Graphics 19, 5, 866–885.

LEE, H., SEO, S., RYOO, S., AND YOON, K. 2010. Directional
texture transfer. In Proceedings of International Symposium on
Non-Photorealistic Animation and Rendering, 43–48.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. ACM Transactions on Graphics 25, 3, 541–548.

LU, C., XU, L., AND JIA, J. 2012. Combining sketch and tone for
pencil drawing production. In Proceedings of International Sym-
posium on Non-Photorealistic Animation and Rendering, 65–73.

NEWSON, A., ALMANSA, A., FRADET, M., GOUSSEAU, Y., AND
PÉREZ, P. 2014. Video inpainting of complex scenes. SIAM
Journal of Imaging Science 7, 4, 1993–2019.

RONG, G., AND TAN, T.-S. 2006. Jump flooding in GPU with
applications to Voronoi diagram and distance transform. In Pro-
ceedings of Symposium on Interactive 3D Graphics and Games,
109–116.

ROSENBERGER, A., COHEN-OR, D., AND LISCHINSKI, D. 2009.
Layered Shape Synthesis: Automatic generation of control maps
for non-stationary textures. ACM Transactions on Graphics 28,
5, 107.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND
SALESIN, D. H. 1997. Orientable textures for image-based
pen-and-ink illustration. In SIGGRAPH Conference Proceed-
ings, 401–406.

SIMAKOV, D., CASPI, Y., SHECHTMAN, E., AND IRANI, M.
2008. Summarizing visual data using bidirectional similarity. In
Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition.

SIMONYAN, K., AND ZISSERMAN, A. 2014. Very deep con-
volutional networks for large-scale image recognition. CoRR
abs/1409.1556.

SLOAN, P.-P. J., MARTIN, W., GOOCH, A., AND GOOCH, B.
2001. The Lit Sphere: A model for capturing NPR shading from
art. In Proceedings of Graphics Interface, 143–150.

TU, Z., CHEN, X., YUILLE, A. L., AND ZHU, S.-C. 2005. Im-
age Parsing: Unifying segmentation, detection, and recognition.
International Journal of Computer Vision 63, 2, 113–140.

WANG, B., WANG, W., YANG, H., AND SUN, J. 2004. Efficient
example-based painting and synthesis of 2D directional texture.
IEEE Transactions on Visualization and Computer Graphics 10,
3, 266–277.

WEI, L.-Y., HAN, J., ZHOU, K., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Inverse texture synthesis. ACM Transactions on
Graphics 27, 3.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 29, 3, 463–476.

WINNEMÖLLER, H., KYPRIANIDIS, J. E., AND OLSEN, S. C.
2012. XDoG: An extended difference-of-gaussians compendium
including advanced image stylization. Computers & Graphics
36, 6, 740–753.

XING, J., CHEN, H.-T., AND WEI, L.-Y. 2014. Autocomplete
painting repetitions. ACM Transactions on Graphics 33, 6, 172.

XING, J., WEI, L.-Y., SHIRATORI, T., AND YATANI, K. 2015.
Autocomplete hand-drawn animations. ACM Transactions on
Graphics 34, 6, 169.

ZENG, K., ZHAO, M., XIONG, C., AND ZHU, S.-C. 2009. From
image parsing to painterly rendering. ACM Transactions on
Graphics 29, 1, 2.

ZENG, Q., CHEN, W., WANG, H., TU, C., COHEN-OR, D.,
LISCHINSKI, D., AND CHEN, B. 2015. Hallucinating stere-
oscopy from a single image. Computer Graphics Forum 34, 2,
1–12.

ZHAO, M., AND ZHU, S.-C. 2011. Portrait painting using active
templates. In Proceedings of International Symposium on Non-
Photorealistic Animation and Rendering, 117–124.

