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Figure 1: LazyFluids in action—an artist first designs a target fluid animation that consists of a sequence of motion fields (a) and alpha
masks (b), and then selects a video exemplar of a fluid element with desired appearance (c) and alpha mask (d). Finally, our algorithm
transfers appearance of the exemplar to the target animation while respecting its motion properties and boundary effects (e). The resulting
animation can then be used as a part of a more complex composition (f). All alpha masks in the paper are visualised in a way that fully
opaque pixels are black and fully transparent are white. Dragon painting (©) Jakub Javora.

Abstract

In this paper we present a novel approach to appearance transfer for
fluid animations based on flow-guided texture synthesis. In contrast
to common practice where pre-captured sets of fluid elements are
combined in order to achieve desired motion and look, we bring the
possibility of fine-tuning motion properties in advance using CG
techniques, and then transferring the desired look from a selected
appearance exemplar. We demonstrate that such a practical work-
flow cannot be simply implemented using current state-of-the-art
techniques, analyze what the main obstacles are, and propose a so-
lution to resolve them. In addition, we extend the algorithm to allow
for synthesis with rich boundary effects and video exemplars. Fi-
nally, we present numerous results that demonstrate the versatility
of the proposed approach.
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1 Introduction

Special effects based on fluid elements are ubiquitous in current
digital movie production. To achieve a desired look, an artist typi-
cally makes a composition out of pre-captured videos of real fluids
with a desired appearance. A key limitation here is that the mo-
tion properties of these videos remain fixed. When finer control is
needed the artist has to resort to full fluid simulation followed by
an advanced rendering algorithm. In this scenario, however, lim-
ited resolution and the complexity of material properties, lighting,
or other parameters may hinder delivering the desired visual look.

We would like to offer artists a more practical workflow that can
narrow the gap between appearance and motion controllability:

1. Quickly design the target animation using 2D CG techniques
(e.g., a real-time fluid simulator [Stam 1999] or particle sys-
tem [Reeves 1983]; see Fig. 1a,b).

2. Pick a photo or a video sequence containing the desired look
(the source exemplar; see Fig. 1c).



3. Add an alpha channel to the source exemplar to distinguish
between interior and boundary samples (see Fig. 1d).

4. Run an example-based synthesis algorithm to transfer appear-
ance from the source exemplar to the target fluid animation
(see Fig. 1e).

Although such example-based workflow can considerably simplify
the creation of fluid elements, we found that the current state of
the art in flow-guided appearance transfer [Neyret 2003; Kwatra
et al. 2005; Bénard et al. 2013; Browning et al. 2014] does not
solve (4), either producing disturbing temporal artifacts or failing
to reproduce visual characteristics of real fluid elements.

In this paper we analyze the source of failure in methods originat-
ing from Kwatra et al. [2005] and formulate a novel optimization
method that addresses it. We extend the formulation to use video
exemplars and support rich boundary effects, which are crucial for
compelling appearance transfer. Finally, we compare our results
with the current state-of-the-art and demonstrate various realistic
use cases that confirm the practical utility of our approach.

2 Related Work

Texture advection is a common approach to appearance transfer
for fluid animations. This technique was pioneered by Max and
Becker [1992] and later extended by others [Neyret 2003; Bousseau
et al. 2007; Yu et al. 2011]. Although this simple yet effective solu-
tion produces impressive results, its key limitation is that it suffers
from notable texture distortion that needs to be alleviated by blend-
ing with a new, undistorted texture source. This typically leads to
disturbing ghosting artifacts. Another disadvantage is that larger
texture exemplars are required to cover longer motions. In situa-
tions when the length of motion is not known a priori, procedurally
generated textures [Perlin 1985] or blending multiple textures can
alleviate this limitation.

A different approach to appearance transfer, requiring only small
exemplars, was presented by Kwatra et al. [2005] and later im-
proved by Lefebvre et al. [2006]. The method has also been ex-
tended to work on arbitrary surfaces [Han et al. 2006; Bargteil et al.
2006; Kwatra et al. 2007; Narain et al. 2007]. A great advantage
of this technique is that the amount of texture distortion is effec-
tively controlled by a texture synthesis algorithm whose aim is to
match the target appearance with the source texture. Although these
techniques achieve compelling results on a carefully selected set of
sources we found they often fail on exemplars of real fluid elements,
generating excessive repetition or flat areas.

Bhat et al. [2004] proposed a different flow-based video synthesis
technique that can be classified as a middle ground between texture
advection and synthesis. It uses a set of textured particles moving
along user-specified flow-lines and leverages video textures [Schodl
et al. 2000; Kwatra et al. 2003] to generate infinite or looped se-
quences from a short video exemplar. The technique can produce
compelling results; however, it supports only simple flow fields and
requires a suitable video source of the appropriate fluid element.

Our approach bears some resemblance to regenerative morphing
techniques [Shechtman et al. 2010; Darabi et al. 2012] that produce
visually interesting transitions between dissimilar images. They
were recently applied to stylization of fluid simulations [Browning
et al. 2014] with compelling results. Nevertheless, a key drawback
is that the user must prepare a set of keyframes that roughly match
the appearance of the target flow at selected time steps. When syn-
thesizing transitions between these keyframes, these techniques can
produce temporal artifacts such as ghosting and pulsation, which
break the smoothness of the resulting animation.

Recently, Bénard et al. [2013] proposed an extension of image
analogies [Hertzmann et al. 2001] to synthesize impressive stylized
animations guided by a synthetic motion field. Although their ap-
proach can be applied in our scenario, we found that it tends to lose
high frequency details (both in the interior and at the boundaries)
and produces distinct temporal artifacts such as popping and drift-
ing. These are perceived as natural in the context of stylization but
feel disturbing when applied to smooth fluid animations.

3 Problem Formulation

There are two inputs to our method (see Figures 10 and 11):

e An exemplar of a fluid element Z that can be a single RGBA
M

image or a sequence of M RGBA images (Z*){<;.
e A sequence of N target alpha masks (X)L, (gray-scale im-
ages) with corresponding 2D motion fields (F*)f,.

Source Z represents the desired appearance, X, captures the shape,
and F' captures the motion of the target fluid animation. The aim
is to transfer the appearance from Z to X in a way that the result-
ing visual content moves along with F’, is coherent in time, and
respects boundary-specific effects prescribed by X, and Z, (the
alpha channel of 7).

3.1 Analysis

Kwatra et al. [2005] addresses a simpler problem with no alpha
masks (Z, and X), treating the source Z as a single RGB image
and the target X as a sequence of RGB images. For simplicity in
the analysis we do the same and later we extend the formulation
to handle alpha masks. In this simplified scenario the problem is
formulated as a minimization of the following energy (originally
proposed by Kwatra et al. [2005]):

E(Z, X', X" )= B, (Z, X" + AE.(X", X" (1)

where X" is the currently synthesized frame and Xt1is the previ-
ously synthesized frame, forward-warped using motion field F*~!.

The energy (1) contains two terms:

e Source coherence:

. 2
E.(2,X)=Y" Z%IEHX; — 74| )

peXt

This ensures the appearance of the target animation frame X*
is similar to the exemplar Z. Here z, and x,, denote source
and target patches centered at pixels p € X' and ¢ € Z
respectively.

e Temporal coherence:

E(X X" =3 IX'0) - XTI 0

peX?t

This ensures the resulting fluid animation changes smoothly
in time and moves along with I'. Here X*(p) denotes color
at a pixel p € X*.

To minimize (1) Kwatra et al. [2005] proposed a method that pro-
duces impressive results (see Fig. 2b) when used with carefully se-
lected sources containing repetitive patterns where the size of the
repeated elements is similar to that of the source patch z,, (Fig. 2a).
However, even a small modification of these sources (Fig. 2c) can
lead to notable degradation (Fig. 2d). This behavior becomes much
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Figure 2: Examples of gradual wash-out. Previous approach to flow-guided synthesis [Kwatra et al. 2005] produce compelling results (b)
when applied to exemplars containing repetitive patterns where the size of the repeated element corresponds to the patch size used for the
synthesis (a). With a source that contains areas that are comparatively smooth, like blurred areas (c) or low-contrast parts of real fluid
elements (e), the results are initially good. But after several frames the resulting animation degrades into a repetitive use of the smoothest
patches (d,f) because of an effect described by Newson et al. [2014]. This effect prevails even if more advanced techniques such as (g) discrete
solvers [Han et al. 2006], (h) bi-directional similarity [Simakov et al. 2008], or (i) occurrence maps [Kaspar et al. 2015] are used. Our
approach (j) resolves this problem thanks to the ability to enforce uniform patch usage. Smoke exemplar (©) Richard Roscoe.

more apparent (Fig. 2f) when Z is an exemplar with variable con-
tent such as realistic smoke or fire elements (Fig. 2e). These exem-
plars are not repetitive, and they often contain areas of low contrast.
We call this effect gradual wash-out and seek a viable strategy to
avoid it.

Bargteil et al. [2006] were the first who noted that the approach
of Kwatra et al. [2005] produces gradual wash-out and thought
that there was a trade-off between temporal coherence and content
preservation. They tried to suppress it by lowering A in (1), i.e.,
reducing the influence of the temporal coherence term (3). This so-
lution slows the degradation down, but it cannot resolve the root of
the problem.

In the results of Han et al. [2006], gradual wash-out is also visible
although not explicitly addressed. They mentioned a different prob-
lem that might seem to be a source of gradual wash-out—that the
least-square solver used during the E-step of Kwatra et al.’s algo-
rithm tends to produce blurring artifacts. They tried to alleviate this
behavior by using a discrete solver based on k-coherence search.
Although their solution can bring some improvement when synthe-
sizing a single image, we found that it makes the gradual wash-out
even worse (see Fig. 2g) and that the source of the problem is actu-
ally hidden somewhere else.

An better explanation for this erroneous behavior was recently pro-
vided by Newson et al. [2014], who show that during the nearest
neighbour retrieval, textured patches are more likely to be matched
with smooth ones. We observe that, in conjunction with Kwatra
et al.’s algorithm, this effect leads to positive feedback that prop-
agates smoother patches, which come to prevail. If the source Z
does not contain visibly smoother patches, the algorithm tends to
pick a patch or a set of patches that are as smooth as possible (e.g.,
areas with lower contrast) and starts to prefer them. This explains
why all the methods originating from Kwatra et al. work only for
exemplars consisting of repetitive patterns (see Fig. 2a) and why
they fail for other exemplars (Fig. 2e).

To avoid a preference for smoother patches Newson et al. pro-
posed using texture features, which resemble feature masks used
in [Lefebvre and Hoppe 2006]. However, a fundamental issue is
that it is not clear how to initialize the solution in a way that avoids

excessive repetitions of texture features during the synthesis. New-
son et al. used inpainting, which is not applicable in our scenario.

Wei et al. [2008] and independently Simakov et al. [2008] proposed
a bi-directional similarity (BDS) measure that in addition to source
coherence (2) uses a new source completeness term:

Be(2,X") = ) min |1z, — x| “

pPEZ

Its aim is to ensure that all source patches are represented in the
synthesized output. Although this extension can bring an improve-
ment, there is a fundamental limitation that the source must be at
least as large as the target. If this is not satisfied, an optimal so-
lution would have a few small islands of source patches with the
rest filled with repetitions of the smoothest patches. This is the case
in our scenario, where appearance exemplars are typically much
smaller than the target (see Fig. 2h).

Kopf et al. [2007] and later Chen and Wang [2010] proposed an
approach in which histogram matching of patch colors and offsets
is used to bias the optimization towards a solution that penalizes
excessive use of a certain subset of source patches. Recently, in
concurrent work to ours, Kaspar et al. [2015] extended this tech-
nique to explicitly reject patches that have already been used more
than twice the uniform usage level. Although these approaches
have the potential to suppress the gradual wash-out, they can still
lead to a solution with non-uniform patch usage. The key issue
is that there is no mechanism to strictly enforce all source patches
being used equally in the target, and thus the degradation is still
visible (see Fig. 2i).

4 Our Approach

To fully avoid the preference for particular patches that leads to
appearance degradation, we need to strictly preserve uniformity of
patch usage. We do this by minimizing (1) subject to an additional
uniformity constraint:

> 6(p)=|X| and 6&(p) — K € {0,1} (5)

peEZ



where d(p) counts the usage of a source patch z, centered at a pixel
p € Z and K is the floor of the ratio between the number of target
| X | and source |Z| patches, i.e., K = || X|/|Z]].

To solve this new constrained optimization we draw inspiration
from a concept previously proposed by Rosenberger et al. [2009]
that was originally used to optimize BDS in the context of shape
synthesis. There are algorithms such as Simakov et al. [2008] that
can achieve better BDS. However, in our scenario the aim is not to
optimize BDS but to perform synthesis in a way that the uniformity
constraint (5) is satisfied. For this goal the concept proposed by
Rosenberger et al. is more suitable as it provides a mechanism to
satisfy uniform patch usage.

In the following sections we first demonstrate how to apply the
concept of Rosenberger et al. [2009] in our scenario (Section 4.1).
Then we extend it to enable rich boundary effects (Section 4.2) and
temporal coherence (Section 4.3). Finally, we propose a joint for-
mulation (Section 4.4) which encompasses all mentioned features
into one optimization problem and provide two additional improve-
ments (Section 4.5).

4.1 Nearest-neighbour Field

We made a key modification to Kwatra et al.’s [2005] algorithm
to enforce uniform patch usage. We changed how the nearest-
neighbour field (NNF) is computed during each iteration of the
algorithm. Similarly to Rosenberger et al. [2009] we reverse the
direction of NNF retrieval (cf. Fig. 3), i.e., for each source patch
z,, p € Z we find a target patch x, that has minimal distance:
D(zp,%q) = ||Zp — X4||°. Since we do this search independently,
it can happen that two source patches can identify the same target
patch as their nearest neighbour. We resolve this collision by keep-
ing the correspondence with the smaller patch distance. Moreover,
since the number of patches in Z is usually smaller than the num-
ber in X we need to repeat the NNF retrieval until all patches in X
have been assigned their counterparts in Z (see Fig. 3). To make
sure every patch from Z is used equally in X we:

1. use a counter ¢, that is initially set to O and then gradually in-
cremented whenever z,, is assigned to x, (the white numbers
inside circles in Fig. 3).

2. perform nearest neighbour retrieval only between patches z,,
with ¢, < K and yet unassigned patches in X (the empty
circles in Fig. 3)

When | X | is not divisible by |Z], i.e., when there is a non-zero re-
mainder R = |X| mod |Z]|, the situation becomes more complex.
Rosenberger et al. [2009] proposed randomly picking R patches
from Z to even up R; however, this random pick may bias the so-
lution towards patches that unnecessarily increase the overall en-
ergy (1). We instead propose a better solution that lets all patches
equally participate during the NNF retrieval phase.

During the repeated retrieval we ease the original limitation that
only patches with ¢, < K can be considered for assignment and
also allow patches with ¢, = K since some of them need to be used
to even up a non-zero R. We then sort the list of nearest neighbours
candidates (z,, X4) in order of increasing D(z,, X4) (supposing all
colliding pairs have been removed) and in this order we perform the
following operations for each nearest neighbour candidate (z,, X4):

if ¢, < K then

we assign z, to X, and increment ¢,
else if ¢, = K and R > 0 then

we assign z, to X4, increment ¢, and decrement R.

This ensures that the uniformity constraint (5) is satisfied while let-
ting all source patches participate equally during the NNF retrieval.

K=2 K=2 K=2 K=2
0 o 2] 3]

Z 00 00 00 00
00 00 (2 X3) 00

! | | !

00O O
O000 00800 O o
X0000O0O 00000 00000 00000
00000 00000 00000 00000
O0000 OOO0O 0000 o0
R=7 R=7 R=3 R=0

Figure 3: Reversed construction of nearest-neighbour field. For
all patches in the source Z we find best matching candidates in the
target X. Since |Z| < |X| and some nearest neighbour candi-
dates can collide with others we need to repeat the retrieval until
all patches from X have been assigned their corresponding patches
in Z. Patch counters c,, (white numbers), quotient K = || X|/|Z|]
and remainder R = |X| mod |Z| ensure uniformity of source
patch usage (see text for details).

4.2 Boundary Effects

The algorithm described in the previous section assumes that all
patches from the source will be used equally in the target. In
our scenario, however, we need to make a distinction between the
boundaries (B) and interiors (I) of fluid elements (see Fig. 4).
To construct I and B we blur the corresponding alpha masks
(Za — Zq and X, — X,) using Gaussian blur with radius r
and apply lower [ and upper u opacity thresholds. For Z this yields
Bz:Za € (l,u)and Iz: Zo > u (likewise for X, see Fig. 4). This
segmentation lets us restrict the NNF retrieval so that all patches
from Bz are matched to those from Bx and all patches from [z to
those from Ix. To enforce uniformity (5) in each segment we set
K = |Ix|/|Iz| and R = |Ix| mod |Iz| for all patches in Iz and
K =|Bx|/|Bz| and R = |Bx| mod | Bz| for all patches in Bz.

Z,
. &

Zam
Xa Xa s DBx
Figure 4: Construction of boundary B and interior I segments in
the source Z and the target X. Input alpha masks Z, and X, are
blurred (Zo, and X)) and then lower (green curve) and upper (red

curve) opacity thresholds are applied to obtain Bz and Bx, and
Iz and Ix.

v Bz

To enable the synthesis of a detailed alpha mask for the target we
use Z, and X, as additional pixel channels. During each iteration
of the modified Kwatra et al. algorithm [2005] a pixel channel cor-
responding to the target alpha mask X, is modified along with the



regular color channels X, X, and X3. To increase the influence of
these additional channels when computing the pixel difference we
set their weight to be three times higher than the individual color
channels.

For some exemplars a simple boundary/interior distinction might
not be sufficient since patches from the outer part of the boundary
can still be assigned to the inner part and vice versa. To alleviate
this confusion, we add blurred alpha masks Z., and X,, as additional
pixel channels. X, stays fixed during the synthesis and biases the
NNF retrieval so that patches closer to the transition Bz <> Iz
in the source are more likely to be mapped to the target transition
Bx < Ix and vice versa. We let the user control this bias by
adding a special weighting parameter n. Lower n means greater
variability in the synthesized boundary effects.

4.3 Temporal Coherence

To ensure temporal coherence (3) Kwatra et al. [2005] iteratively
blend the currently synthesized frame with a forward-warped ver-
sion of the previously synthesized frame Xt Unfortunately, this
approach works only for static sources since it enforces similarity
only to the previously synthesized frame (see Fig. 5, left). However,
we would like to support video exemplars (Zt)ﬁl as well, so we
need a different approach.

Zt=1 Xt—l Zt—1 Xt-1
—_—
A X A Xt
—_—

[Kwatra et al. 2005]

Figure 5: Temporal coherence in the case of video exemplar—the
original approach of Kwatra et al. [2005] (left) enforces temporal
coherence by measuring similarity between the synthesized frame
X" and the forward-warped previously synthesized frame Xt In
case of a video exemplar (Z t)?il the synthesis yields incorrect re-
sults since the temporal coherence term enforces continuity in spite
of changes between frames Z' and Z'~'. In our solution (right)
we search for patches that are independently similar to the source,
both in the forward-warped version of the previous frame and the
currently synthesized frame.

our approach

Our approach is similar to what we do for boundary effects: we in-
troduce 4 additional RGBA channels into the source Z*(p) and tar-
get X *(q) pixels that contain values from collocated pixels in previ-

ous frames Z'~'(p) and X*~!(q). The additional RGBA channels
influence the overall patch similarity (see Fig. 5, right) and thus
bias the NNF retrieval to prefer source patches whose appearance
is close to both the current and the forward-warped previous frame.
For a static exemplar we simply duplicate the content of the regular
RGBA channel.

Spatially variable temporal coherence is needed to handle
emitters—places where new fluid is spawned. At those places
the forward-warping mechanism would incorporate the surround-
ing empty pixels, but we need to create a new patch of fluid inside
the emitter instead. To accomplish this we set A\, equal to A\ for
pixels where fluid exists in both the previous and current frames,
and set it to zero for pixels where the new fluid appears. These re-
gions can easily be deduced from the current frame mask X’ and

the forward-warped mask of the previous frame X1 (see Fig. 6)
using the following equation:

Ag = (1 — max(0, X! (q) — X&' (@) (6)

Figure 6: Allowing new fluid to be injected into the domain by
locally down-weighting the temporal coherence term. It becomes
a spatially varying function \y (right), which is zero where the
forward-mapped mask of the previous frame X =1 does not overlap
the current frame’s mask XE (left).

4.4 Joint Formulation

The extensions proposed in Sections 4.1, 4.2 and 4.3 can now be
formally combined into one joint optimization problem. We con-
catenate all additional channels to form a new enriched source Z =
(Z',Z%,, Z*71) and new enriched target X = (X' X%, X' 1)
(see Fig. 7). Now the aim becomes minimizing the following en-
ergy:

Ey(Z,X,\n) =Y _ minD(Zp, g, Ag,7) )

~ pEZ

subject to uniformity constraint (5). Here A, is the spatially vari-
ant weight for temporal coherence, n is the weight for boundary
coherence, and x and z denote patches with 9 channels per pixel:

M

ot t ot at—1 st—1
- (xrgln Xas Xas Xrgb y Xa )

-1 i1 ®)

it t ot
z = (nglnzavzou zrgb yZg )

where xﬁgb denotes the color and x/, the alpha mask of the cur-
rently synthesized frame, x/, is the blurred alpha mask of the cur-
rent frame, 5{:—; is the color and %% ~! the alpha mask of the pre-
vious frame (likewise for z). Finally D is the distance measure

between patches X and z (see Fig. 7):

D(z,%,\,1) = ||zkg — Xgl[®
+3]|zh, — x4 ||
+ |zt — x5 [ )

—1 st—1p2
+ )\Hzf‘gb - Xigb ||

3Nz - %7

To minimize (7) we use the EM-like multi-scale algorithm de-
scribed by Kwatra et al. [2005] and Wexler et al. [2007]. The only
necessary modifications are that the source and target patches con-
tain pixels with 9 weighted channels (4 are synthesized and 5 are for
guidance, c.f. Fig. 7) and that the NNF retrieval phase is replaced
by our method supporting uniform patch usage (see Sections 4.1
& 4.2). Temporal coherence is implicitly incorporated thanks to
additional pixel channels—there is no need to use a special algo-
rithm for controllable texture synthesis as described by Kwatra et



al. The first frame is synthesized with A = 0 and then we proceed
in frame-by-frame order analogous to Kwatra et al. An interesting
side-effect of the uniformity constraint is that the algorithm does
not require any specific initialization. It is possible to use either the
initialization described in Kwatra et al. or any other (e.g., zeroing).
The algorithm always comes up with a solution that uses all source
patches an equal number of times.

VA ( r|l—1r )2
2
2y, (9|9 )2
+( b || o )
Z
+3( al—1a )2
Z,
Z,
W, Mnin)
7t (-1
il (][]
in i
t—1 +)\( b - b ) ot—1
zt , X.
ZZI—’ (e ]-[e]) %

Figure 7: Measuring the distance between a source and target pixel
within patches z and X. The distance is the sum of 9 terms corre-
sponding to the following pixel channels: 4 for the current frame
([Z, X1t gpa). 4 for the previous frame ([Z, X]i;l}a), and 1 for the
blurred alpha mask of the current frame [Z,X]%,. Channels Xﬁgba
(red squares) are modified during the synthesis while the others
(green squares) remain fixed. Parameter X\ is the spatially vari-
ant weight that enforces temporal coherence and 7 is the boundary
coherence weight.

source Z

Figure 8: Rotating the input exemplar to ensure that boundaries of
all orientations are available in the source.

4.5 Further Extensions
The method can be extended to handle arbitrarily rotated patches by

having the NNF retrieval phase look over the space of rotations in
addition to translations. The patch counting mechanism and NNF

construction would remain unchanged. Although such an extension
could improve the appearance on some specific flows (e.g., pure
rotation in Fig. 2) it can significantly increase the overall process-
ing time. In practice we use a simpler approximation with notably
lower computational overhead, originally proposed in [Lukac et al.
2013]. We pre-rotate the exemplar by 90°, 180°, and 270° and
perform synthesis with this enriched source (see Fig. 8).

L/ v,

Figure 9: Adding synthetic motion blur to improve the fidelity of
the resulting fluid animation—the direction and magnitude of mo-
tion vectors in the target motion field F' are used to perform line
convection with an anisotropic Gaussian filter.

The fidelity of the resulting animation can further be improved us-
ing synthetic motion blur. This additional effect can easily be im-
plemented since we know the exact motion field of the target anima-
tion; thus we can perform line convection using anisotropic Gaus-
sian filter in a direction and length given by the target motion field
(see Fig. 9).

5 Results

We have implemented our technique in C++. To achieve feasi-
ble performance we accelerated the NNF retrieval phase described
in Section 4.1 using PatchMatch with integrated support for mask-
ing [Barnes et al. 2009]. To further accelerate this performance
bottleneck we used a parallel tiled algorithm [Barnes et al. 2010].
With this optimization it usually takes around 5 minutes to synthe-
size one 1Mpix frame on a 3GHz CPU with 4 cores.

To prepare data sets we implemented a custom fluid simula-
tor [Stam 1999] that allows an artist to quickly design desired fluid
animations in real-time. Using this tool we created 7 different
fluid animations with different motion properties to be used as tar-
gets, and selected 10 different fluid elements (7 static images and
3 videos) with variable appearance and complexity to be used as
exemplars. To produce the results we used the following parameter
setting: patch size 5 X 5, temporal coherence A = 0.2, richness
of boundary effects = 3, radius for Gaussian blur: r = 3 (this
setting might change according to the resolution of the target an-
imation), and thresholds: I = 0.1, u = 0.9 to extract boundary
region from of the blurred target alpha channel.

First we synthesized a single fluid animation using multiple exem-
plars (see Fig. 10). Our approach produced convincing results de-
spite notable visual differences between individual sources. For the
fire exemplars in Figures 1 and 11 we compared the static source to
the video source. From the comparison (see supplementary video)
it is visible that our approach produces convincing results for both
cases. The advantage of the video source is that it nicely enhances
the motion richness of the target animation.

We also compared our approach with the original Kwatra et
al. [2005] method as well as Bénard et al. [2013] and Browning



Figure 10: Results and comparison: various fluid exemplars consisting of color Z,4, and alpha mask Z, (both static images) were used to

180

synthesize a target fluid animation X specified by a sequence of flow fields (F*){29 and alpha masks (X%)18% (showing only a single frame,
see supplementary video for the whole sequence). Note how our approach produces convincing results despite varying source complexity.
Fire blast exemplar (2" column) © Corteck via flickr, volcano smoke exemplar (5" column) © Arnar Thorisson.

et al. [2014], two current state-of-the-art techniques in flow-guided
appearance transfer. For each method we used the same fluid ani-
mation as well as fluid exemplars as in Fig. 10 to enable side-by-
side comparison. Since Kwatra et al. does not natively support syn-
thesis with boundary effects we decided to illustrate its behavior
by using our own approach, but with the original NNF retrieval
phase—not our improved method that enforces uniform patch us-
age. Setup for Bénard et al. was very close to our method. For
style input .S we used the blurred alpha channel of our exemplar
Z,, for style output S we used the RGB channels of our exemplar
Zrgb, and finally for input image I we used our blurred target alpha
mask X, . For Browning et al. we had to prepare a set of keyframes
(every 10th frame) that were synthesized using our approach as in-
dependent frames (i.e., we set A = 0).

-

Figure 11: Synthesis with a video exemplar: input flow fields F'

with alpha masks X o and fluid exemplar Zq and Z,4, was used to

synthesize fluid animation X. The fireball sequence (F t)tliol was

used to compare a static source and a video source (Z t)tliol (see

supplementary video for the comparison).

We ran these methods on all 180 frames of the test sequence
in Fig. 10. Static frames from this sequence are presented in Fig. 13
and complete videos are in supplementary materials. It is clear from
the results that the original NNF retrieval used by Kwatra et al. pro-
duces severe gradual wash-out and thus quickly diverts the appear-
ance of the resulting sequence from the appearance of the exemplar.
In the results of Bénard et al. the gradual wash-out is also visible,
however, it is not as apparent thanks to the offset histogram match-
ing used in the original method. However, several disturbing tem-
poral artifacts are visible such as high-frequency popping, and the
boundary effects are not as detailed as in our results. The results
of Browning et al. exhibit the closest appearance to the exemplar.
There is no gradual wash-out visible since the method relies on fre-
quent keyframes that were synthesized using our method. However,
the results show ghosting and a disturbing pulsation effect that is
more visible in the video.

Finally, to further demonstrate practical utility of our approach we
produced 4 compositions where different fluid animations were
synthesized using realistic fluid exemplars and then combined with
an environment to create a desired visual effect (see Figures 1
and 12 and supplementary video). Such practical results were im-
possible to achieve using previous techniques as they either suffer
from gradual wash-out or produce disturbing temporal artifacts.

6 Limitations and Future Work

We found that in practice our method performs very well. It is quite
robust, being agnostic to parameter settings, type of input fluid sim-
ulation and the choice of exemplar. Nevertheless, there are several
limitations that we would like to mention.

In cases where the source exemplar is substantially bigger than the
target, and when it contains large areas with noticeably smoother
or lower contrast patches, our technique cannot always fully
avoid gradual wash-out since the harmful preference for smoother
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Figure 12: A more complex composition created by an artist using our system (top). Three different flow fields F with alpha masks X, and
exemplars Zq, with alpha channels Z, (bottom) were used to synthesize the resulting fluid animations. Firepit painting (©) Jakub Javora.

patches [Newson et al. 2014] can still prevail. This is a challenging
situation that has great potential for further investigation.

Our technique does not take into account additional flow-field pa-
rameters such as curvature, divergence or Jacobian. Those can be
computed by the simulation and can be used to guide the appear-
ance of synthesized texture locally (like in [Narain et al. 2007])
to better convey realistic physical properties of the given fluid ele-
ment. Similar limitations hold for shading, self shadowing, or volu-
metric effects. Those are baked into the exemplar for some particu-
lar lighting conditions, but they might not be realistic in a different
environment. Both issues are good candidates for follow-up work.

Since our algorithm synthesizes the i-th target frame using the i-th
frame of the video exemplar we need the video exemplar to have
at least as many frames as the output sequence. If it is shorter,
some additional looping is necessary to avoid hard jumps in appear-
ance. Techniques that produce looped sequences from unlooped
footage [Schadl et al. 2000; Liao et al. 2013] can help the user pre-
pare input data in this case. A related issue is motion in the input
sequence. When its direction or speed do not match the target ani-
mation our method can produce unsatisfactory results. In this case
some additional stabilization of the source would be necessary.

7 Conclusion

We have presented a novel approach to appearance transfer for fluid
animations. Our technique is the first that performs flow-guided

texture synthesis that convincingly preserve the appearance of re-
alistic fluid exemplars, while at the same time avoiding disturbing
temporal artifacts. We have demonstrated the practical utility of
our technique in realistic scenarios, giving practitioners a new op-
tion for creating fluid-based special effects. We also believe that
our novel constrained formulation, which ensures uniform patch
use, should inspire future research that will improve the quality of
patch-based texture synthesis and related image editing techniques.

Acknowledgements

We would like to thank Jakub Javora for creating the composi-
tions in Figures 1 and 12. We are grateful to Pierre Bénard,
Michael Bufiler, Mark Browning, Adam Finkelstein, Alexandre
Kaspar, and Johannes Kopf for helping us with evaluation. Thanks
also go to all anonymous reviewers for their constructive com-
ments. This research was funded by Adobe and has been sup-
ported by the Technology Agency of the Czech Republic under
research program TE01020415 (V3C), by the Czech Science Foun-
dation under research program P202/12/2413 (OPALIS), and by
the Grant Agency of the Czech Technical University in Prague,
grant No. SGS13/214/0OHK3/3T/13 (Research of Progressive Com-
puter Graphics Methods). Access to computing and storage fa-
cilities owned by parties and projects contributing to the National
Grid Infrastructure MetaCentrum, provided under the programme
”Projects of Large Infrastructure for Research, Development, and
Innovations” (LM2010005), is greatly appreciated.



[Kwatra et al. 2005] [Bénard et al. 2013]

- L 1 3 y

[Browning et al. 2014] our approach

Figure 13: Results and comparison (see text for details): a single frame (No. 135) extracted from a longer sequence synthesized using [ Kwatra
etal. 2005], [Bénard et al. 2013 ], [Browning et al. 2014], and our approach on five different exemplars of fluid elements (shown in the bottom
right corner in each view). The top left corner shows a detail of the synthesized result. Fire blast exemplar (1" row) © Corteck via flickr,
volcano smoke exemplar (4" row) © Arnar Thorisson.
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