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Abstract

Sketching is one of the simplest ways to visualize ideas. Its key advantage is its easy availability and accessibility, as it require
the user to have neither deep knowledge of a particular drawing program nor any advanced drawing skills. In practice, however,
all these skills become necessary to improve the visual fidelity of the resulting drawing. In this paper, we present ShipShape—a
general beautification assistant that allows users to maintain the simplicity and speed of freehand sketching while still taking into
account implicit geometric relations to automatically rectify the output image. In contrast to previous approaches ShipShape works
with general Bézier curves, enables undo/redo operations, is scale independent, and is fully integrated into Adobe Illustrator. We
show various results to demonstrate the capabilities of the proposed method (Figure 1).
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Figure 2: Incremental beautification workflow. Every newly drawn stroke
(blue) is beautified using previously created data (gray). The first stroke is
left unchanged. As the drawing continues, more suitable geometric constraints
emerge and are applied, such as path identity (2,6,7), reflection (2,6) or arc
fitting (3,4). For comparison with the final beautified output (8), 7 shows the
original input strokes.

1 1. Introduction

2 Sketching with a mouse, tablet, or touch screen is an easy
s and understandable way to create digital content, as it closely
+ mimics its real-world counterpart, pen and paper. Its low de-
s mands make it widely accessible to novices and inexperienced
s users. However, its imprecision means that it is usually only
7 used as a preliminary draft or a concept sketch. Making a more
s polished drawing requires significantly more time and experi-
s ence with the drawing application being used. Furthermore,
10 when working with drawing or sketching software, users are of-
11 ten forced to switch between different drawing modes or tools
12 Or to memorize cumbersome shortcut combinations.

13 While we do not question the necessity or usefulness of
12 complex tools to achieve non-trivial results, we argue that for
15 certain scenarios, such as geometric diagram design or logo
16 study creation, the interactive beautification [1] approach is
17 more beneficial. Such workflows retain the intuitiveness of
1 freehand input while benefiting from an underlying algorithm
19 that automatically rectifies strokes based upon their geomet-
20 ric relations, giving them more formal appearance. With the
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21 quickly growing popularity of touch-enabled devices, the ap-
22 plicability of this approach expands greatly. However, what-
23 ever the potential of automatic beautification in a more general
24 sketching context, most of the existing applications focus on
25 highly structured drawings like technical sketches.

2 One of the biggest challenges in drawing beautification is
27 resolving ambiguity of the user input, since the intention and
28 its execution are often considerably dissimilar. Additionally,
29 this issue becomes progressively more complex as the number
a0 of primitives present in the drawing increases.

a1 In this paper, we present a system for beautifying freehand
a2 sketches that provides multiple suggestions in spirit of Igarashi
s et al. [1]. Strokes are processed incrementally (see Figure 2) to
a prevent the combinatorial explosion of possible outputs. Unlike
a5 previous work, our approach supports polycurves composed of
s general cubic Bézier curves in addition to simple line segments
a7 and arcs. The system is scale-independent, and can easily be
as extended by new operations and inferred geometric constraints
a0 that are quickly evaluated and applied. The algorithm was in-
40 tegrated into Adobe Illustrator, including undo/redo capability.
s We present various examples to demonstrate its practical us-
s ability.

4 2. Related Work

s The need to create diagrams and technical drawings that
45 satisfy various geometric constraints led to the development of
s complex design tools such as CAD systems. However, these
47 systems’ complexity often limits their intuitiveness. Pavlidis
s and Van Wyk [2] were one of the first to try to alleviate this
so conflict by proposing a method for basic rectification of simple
so rectangular diagrams and flowcharts. However, their process
st became ambiguous and prone to errors when more complex
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Figure 1: Examples of drawings created using ShipShape. The final drawings (black) were created from the imprecise user input (gray) by beautifying one stroke at
a time, using geometric properties such as symmetry and path identity. See Figure 17 for more results.
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Figure 3: Supported geometric rules and transformations in our framework. The blue paths represent the data being beautified, while gray paths are data already
processed. For more detailed description of the criteria used to evaluate these constraints, see Section 3.1.

s2 drawings were considered, since the method needed to drop
s2 many constraints to keep the solution tractable.

54 To alleviate this limitation, Igarashi et al. [1] proposed an in-
ss teractive beautification system in which the user added strokes
ss one by one and the system improved the solution incrementally
s7 while keeping the previously processed drawing unchanged.
ss This solution kept the problem tractable even for very complex
s drawings. Moreover, the system also presented several beauti-
e fied suggestions and let the user pick the final one. This brought
¢t more user control to the whole beautification process. Follow-
e ing a similar principle, other researchers developed systems for
es more specific scenarios such as the interactive creation of 3D
e« drawings [3], block diagrams [4, 5], forms [6], and mathemati-
es cal equations [7].

o However, a common limitation of the approaches mentioned
7 above is that they treat the image as a set of line segments. To
es alleviate this drawback Paulson and Hammond [8] proposed a
6o system called PaleoSketch that fit the user input to one of eight
70 predefined geometric shapes, such as line, spiral or helix. In
7 a similar vein, Murugappan et al. [9] and Cheema et al. [10]
72 allowed line segments, circles and arcs.

7 Related to drawing beautification, there are also approaches
74 to beautify curves independently, without considering more com-
75 plex geometric relationships. Those approaches are orthogonal
76 to our pipeline. They use either geometric curve fitting [11, 12]

100

78 vanced methods for vectorizing and refining raster inputs have
70 been proposed [15, 16], which enable users to convert bitmap
s images into high quality vector output. However these do not
s1 exploit inter-stroke relationships. In our case we assume that
s2 the built-in curve beautification mechanism of Adobe Illustra-
s tor preprocesses the user’s rough input strokes into smooth, fair
a4 paths.

& This paper extends our previous work [17]. In Section 3.1
s we discuss improvements to the arc and circle center rules, and
s7 introduce a generalized transformation adjustment framework.
ss Section 3.4 describes a new method for curve alignment, and
s Section 3.5 describes the transformation adjustment mechanism
o in detail. Finally, Section 4 describes a new framework for han-
ot dling curves with corners.

22 3. Our Approach

% A key motivation for our system is wanting to work with ar-
o bitrarily curved paths. This capability was not available in pre-
s vious beautification systems. Although some can recognize a
s variety of curves including spirals and general 5th degree poly-
o7 nomials (PaleoSketch [8]), they recognize them only in isola-
s tion and do not allow to take other existing paths into consider-
s ation, which is important for interactive design.

Systems like that of Igarashi et al. [1] generate a set of po-

77 or some example-based strategy [13, 14]. Additionally, ad- ., tenial constraints and then produce suggestions by satisfying
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102 subsets of these. A key challenge that prohibits simply gen-
103 eralizing these systems to support general curved paths is the
1« number of degrees of freedom, which boosts the number of po-
105 tential constraints that need to be evaluated. Moreover, unlike
106 line or arc segments, many of a general path’s properties, for
17 example the exact coordinates of a point joining two smooth
108 curves, do not have any meaning to the user. It would not be
109 helpful to add constraints for this point. Finally, satisfying con-
1o straints on a subset of the defining properties might distort the
111 path into something that barely resembles the original. Sup-
112 porting generalized paths requires a different approach.

Our system is based on an extensible set of self-contained
114 geometric rules, each built as a black box and independent of
s other rules. Every rule represents a single geometric property,
116 such as having an endpoint snapped or being a reflected ver-
117 sion of an existing path. The input to each rule is an input path
118 consisting of an end-to-end connected series of Bézier curves,
19 and the set of existing, resolved paths. The black box evaluates
120 the likelihood that the path conforms to the geometric property,
121 considering the resolved paths, and outputs zero or more mod-
122 ified versions of the path. Each modified version gets a score,
123 representing the likelihood that the modification is correct.

For example, the same-line-length rule would, for input that
125 1s a line segment, create output versions that are the same lengths
126 as existing line segments, along with scores that indicate how
127 close the segment’s initial length was to the modified length.
12s BEach rule also has some threshold that determines that the score
120 for a modification is too low, and in that case it does not output
120 the path.

The rules also mark properties of the path that have become
122 fixed and therefore can no longer be modified by future rules.
133 For example, the endpoint-snapping rule marks one or both
1.« endpoint coordinates of a path as fixed. The same-line-length
135 and parallel-line rules do not attempt to modify a segment with
136 two fixed endpoints.

Since the rules do not depend on each other, it is easy to add
138 new rules to support additional geometric traits. Figure 3 shows
139 an illustrated list of rules supported in our system.

Chaining the rules can lead to complex modifications of the
11 input stroke and is at the core of our framework. We treat the
122 rule application as branching in a directed rooted tree of paths,
113 where the root node corresponds to the unmodified input path.
1.« Each branch of the tree corresponds to a unique application of
1as one rule and the branch is given a weight corresponding to the
1 Tule’s score.

To find suitable transformations for the user input, we tra-
148 verse down to the leaf nodes (see Figure 4).

Formally, given a node n’ with Bézier path p, the set of
150 resolved paths S, and the set of all rules r; € R, we compute an
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151 output set P = {rj (pi, S)} We then create a child node n’j for
122 each p’. € P'. If P' is empty, n' is a leaf node.

Since we need to compare scores among different rules,
1s4 likelihoods are always normalized into the interval [0, 1]. If
155 a rule generates any modified paths, it also generates a copy of
1ss the unmodified path, indicating the suggestion that the rule did
157 not apply. The likelihood for the unmodified path is 1 minus

153

18 the maximum likelihood of any modified path.

We can then use all scores from the nodes we visited while
descending into a particular leaf node n to calculate the overall
likelihood score for the chained transformation as

d-1

Li=1-]](1-£(r(d"5)))

k=1

ey

159 where d is the depth of #n in the tree, aF is the kth ancestor of
160 1, and L (r I (ak, S )) denotes the likelihood score from applying

11 rule r; to node a*.

We expand the search tree in a best-first search manner,
16 where the order of visiting the child nodes is determined by the
164 overall score L of the node’s path. While traversing the tree,
165 We construct a suggestion set Q of leaf nodes, which is initially
1es empty and gets filled as the leaf nodes are encountered in the
167 traversal. Once not empty, Q helps prune the search. Before we
1es expand a particular subtree, we compare the geometric proper-
160 ties of its root with properties of each path g € Q. If all tested
170 properties are found in some path g, the whole subtree can be
17+ omitted from further processing (see Figure 5).

Furthermore, to keep the user from having to go through
173 t00 many suggestions, we limit the size of Q. Since we traverse
174 the graph in a best-first manner, we stop the search after finding
175 some number of unique leaf nodes (10 in our implementation).

162

172

176 3.1. Supported Rules and Operations
Geometric transformations in our framework are evaluated
178 by testing various properties of the new path and the set of pre-

177

Figure 4: Successive rule evaluation and application. In this example, the eval-
uation engine consists of three geometric rules—endpoint snapping, perpen-
dicularity, and length equality. The old data (gray path) is fixed in the canvas.
When a new path (blue) is added, it becomes the root node of the evaluation
graph and the expansion begins by testing all rules on it. A likelihood score is
calculated for each rule application and the tree is expanded using a best-first
search scheme, until leaf nodes are reached. Due to the significant redundancy
in the search space, many leaf nodes will contain duplicate suggestions. There-
fore, we prune the graph during the expansion step using the information from
already reached leaf nodes (see Section 3 and Figure 5 for more information).
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Figure 5: Search graph pruning. The rules are represented by colored boxes
with hue being distinct rules and lightness their unique applications (e.g., if red
color represents endpoint snapping, then different shades of red correspond to
snapping to different positions). An inner node n has been expanded into three
branches (a,b,c). Before further traversal, all subtrees stemming from the child
nodes of n are tested against suggestions ¢ € Q. Here, branches (a) and (c) are
fully contained in go and g» respectively and thus only branch (b) is evaluated
further.

179 viously drawn and processed paths. While tests of some prop-
10 erties are simple, others, such as path matching, require more
11 complex processing. We first summarize rules supported by
12 our system (illustrated in Figure 3), and then we present some
1e3 additional implementation issues including a more detailed de-
184 scription for non-trivial rules.

1s Line Detection We estimate a path’s deviation from straight-
186 Ness by measuring the ratio between its length and the distance
17 between its endpoints, as in QuickDraw [10].

18s Arc Detection We sample the input path and perform a least-
189 squares circle fit on the samples to obtain center and radius pa-
190 rameter values. To determine the angular span value, we project
191 the samples onto the circle fit. The arc is then sampled again
192 and we evaluate the discrete Fréchet distance [18] between the
193 arc samples and the samples of the input path. When the span is
194 close to 27 or the path is closed, we replace it with a full circle.

15s Endpoint Snapping We look at the distance between each of
16 the path endpoints and resolved endpoints. Additionally, we
197 also try snapping to inner parts of the resolved paths. Special-
108 ized tests based on the properties of line segments and circular
199 arcs lower the computational complexity of this operation. Note
200 that we do not join the two end-to-end-snapped paths. This can
201 cause unpleasant artifacts where they meet, but the effect of a
202 join can be mimicked by using round end caps on the strokes.

20 End Tangent Alignment If the path endpoint is snapped, we
20 measure the angle between its tangent and the tangent of the
205 point it is attached to.

206 Line Parallelism and Perpendicularity We compare the an-
207 gle between two line segment paths with the angle needed to
208 satisfy the parallelism or perpendicularity constraint. Addition-
200 ally, we also take the distance between the line segments into
210 account to slightly increase the priority of nearby paths. To
211 evaluate these properties on the input non-rectified paths, we
212 use their line segments approximations, i.e., line segments con-
213 necting their two endpoints.

21+ Line Length Equality We evaluate the ratio of length of both
215 tested line segments. As in previous case, we incorporate their
21s mutual distance in the final likelihood computation.

217 Arc and Circle Center Snapping Similar to endpoint snapping,
21s we evaluate the distance between the current arc center and po-
219 tential ones, in this case endpoints of other paths, other centers,
220 centers of rotations, and centers of regular polygons composed
221 from series of line segments. However, as arcs with small angu-
222 lar span are noticeably harder to draw without a guide (see Fig-
223 ure 6a), the center of the initial arc fit might be located too far
224 apart from the desired center point (Figure 6b) and therefore us-
225 ing fixed distance, when looking for potential center-snapping
226 points, might not be sufficient. To address this issue, we adap-
227 tively change this distance to max (D, 2r (1 — 8/2n)), where 60
228 1S the span of the tested arc, r is its radius and D is the stan-
229 dard search distance radius (D = 30 view-space pixels in our
implementation).

(

(a)

Figure 6: Adaptive arc/circle center-point-snap search distance refinement. Arc
segments with small angular span are often drawn very imprecisely (a). When
the engine fits an exact arc into such data, its center is often too far from the
desired center point, as the distance d between them is bigger than the limit D
under which the prospective center point positions are looked for (b). Adap-
tive expansion of the search radius D’ increases the likelihood that even the
imprecise input will give the user the expected (precise) output.

230

21 Path Identity To detect that two paths have similar shapes, we
222 align them and compute their discrete Fréchet distance. More
233 details are given in Section 3.4.

2 Transformation Adjustment For a tested path x and resolved
235 reference path y of the “same shape” (determined by successful
23 application of the path-identity rule) we perform a variety of
27 modifications to the transformation to create symmetries, align
28 paths, and equalize spacing. More details are given in Sec-
230 tion 3.5.

20 Path Offset Offset paths generalize line parallelism. To detect
21 them, we go along the tested path and measure its distance to
222 the reference path. More details are given in Section 3.6.

213 3.2. View-Space Distances

Testing paths for different geometric properties ultimately
2ss requires measuring lengths and distances. While many path at-
as6 tributes can be compared using relative values, absolute values
247 are still necessary, e.g., for snapping endpoints. Using abso-
2e8 lute values, however, leads to unexpected behavior when the
249 canvas is zoomed in and out. To eliminate this problem, we
250 compute all distances in view-space pixels, making all distance
251 tests magnification-independent.

4
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Figure 7: Path sample simplification. The original Bézier path (a) is equidis-
tantly sampled, giving a polyline (b). The Ramer—Douglas—Peucker algorithm
then recursively simplifies the polyline by omitting points closer than € (c) to
the current approximation, finally constructing simplified polyline (d).

252 3.3. Path Sampling

Working with cubic Bézier curves analytically is inconve-
25« nient and difficult. Many practical tasks, such as finding a path’s
255 length or the minimal distance between two paths, can only be
256 solved using numerical approaches. Therefore, we perform all
257 operations on sampled paths. Since the resolved paths do not
258 change, we can precompute and store the samples for resolved
250 paths, and sample only new paths. Furthermore, to reduce the
260 memory requirement and computational complexity of different
261 path comparisons, we simplify the sampling using the Ramer—
262 Douglas—Peucker algorithm [19, 20]. For a polyline p, this
263 finds a reduced version pr with fewer points within given tol-
264 €TANCE €, i.¢., all points of pr lie within the distance € of the
265 original path (see Figure 7). Our implementation uses € = 4
266 View-space pixels at the time the path was drawn.

253

o7 3.4. Path Matching

268 A key part of our contribution involves resolving higher-
269 level geometric relations like path rotational and reflection sym-
270 metry. To identify these relations, we must first classify paths
271 that are the “same shape”—paths that are different instances of
272 the same “template”.
To evaluate the similarity between two sampled paths p,
and p,, we employ a discrete variant of Fréchet distance [18],
a well-established similarity measure. Formally, it is defined as
follows: Let (M, d) be a metric space and let the path be defined
as a continuous mapping f : [a,b] - M, wherea,b € R,a < b.
Given two paths f : [a,b] - M and g : [as,br] — M, their
Fréchet distance o is defined as
6r (f,8) = inf max d(f (a(®),g(B(), )
B 1€[0,1]
273 where « (resp. () is an arbitrary continuous non-decreasing
27« function from [0, 1] onto [a, b] (resp. [a/, br]). Intuitively, it is
275 usually described using a leash metaphor: a man walks from
276 the beginning to the end of one path while his dog on a leash
277 walks from the beginning to the end of the other. They can
278 vary their speeds but they cannot walk backwards. The Fréchet
270 distance is the length of the shortest leash that can allow them
250 to successfully traverse the paths.

(a)

Figure 8: Discrete Fréchet distance. The minimum length of the line connecting
ordered sets of point samples (a). Since we store the resolved paths in the
simplified form, we compute the Fréchet distance between an ordered set of
points and an ordered set of line segments (b) rather than between two point
sets.

281 As outlined by Eiter and Mannila, this can be computed for
22 two point sets using a dynamic programming approach. The
283 extension to point and line-segment sets (Figure 8b) is then
284 straightforward. However, the measure takes into account the
285 absolute positions of the sample points, while we are inter-
286 ested in relative difference. Therefore, we have to adjust the
27 alignment of the two tested paths. We then compute the dis-
2ss crete Fréchet distance between the aligned paths, divided by the
280 length of the new path to obtain the relative similarity measure.
An affine similarity transform is a composition of a rotation,
201 a uniform scale, and a translation. To align the paths, we find
202 the affine similarity matrix that transforms the reference path to
203 match the new path as closely as possible.

Assume the rotation angle is 6, the scale is s, and the trans-
205 lation is (tx, ty). Define scos = s * cos 6 and ssin = s * sin 6.
206 The matrix is then

290

294

scos —ssin 0
ssin  scos 0 3)
tx ty 1

We compute the affine similarity transformation matrix M
208 as follows. We first create two equal-length lists of points, each
290 consisting of N equally-spaced samples from the reference and
a0 new paths. If {P;} are the points from the reference path and {Q;}
so1 the points from the new path, we find the M that minimizes the
a2 sum of the squared distances

297

N
E="IIP;x M- Qi
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“

This is a quadratic function of scos, ssin, tx, and ty and can
ans be solved as a least-squares problem over these four variables.
Before computing the Fréchet distance, we multiply the ref-
aos erence path samples by M. If the Fréchet distance indicates that
a07 the paths are sufficiently similar, we create a suggestion consist-
as ing of the reference path transformed by this same M.

A path that is a transformed copy of another path is perma-
a0 nently annotated as such, thereby allowing us to optimize path
s matching by only testing against a single instance of the path.
a1z For later processing, we also annotate the path with the trans-
a3 formation matrix.

If the drawing already contains multiple instances of a path,
ais we consider it more likely that the user intended a new path
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ais to match. We therefore boost its score s by replacing it with
s71 — (1 — s)" where i is the number of existing instances.
Because the new path might be a reflected and/or reversed
a1e version of the reference path, we perform four tests between
a20 them to determine the correct match.

318

a1 3.5. Transformation Adjustment

322 If the test path is a transformed version of a reference path,
azs there are various tests we perform to adjust the transformation
a2+ matrix to make the result more pleasing. We first begin by sepa-
a2s rating the matrix in Equation 3 into separate rotation, scale, and

a26 translation components as follows:

rotation = atan2(ssin, scos)
scale = Vscos? + ssin? (5)
translation = (tx, tx)

a27 The transformation can be adjusted in various ways, often
a2s generating multiple suggestions. Although we optimized path
a0 matching to only compare against one instance of a path that
a0 has multiple copies in the drawing, we test the transformation
aa1 relative to each copy; see Figure 9a.

sz Rotation Snapping If the rotation component is close to an
s angle that is an integral divisor of 27, it is snapped to being that
au angle (e.g., to 45 degrees; see Figure 10b4).

a5 Scale Snapping If the scale component is close to an integer
ass or to 0.5, it is snapped to being that exact scale.

sz Translation Snapping Translation snapping takes several forms:

o If the transformation contains a rotation component, we
find the rotation center and compare it to existing points
in the drawing. If it is sufficiently close we adjust the
translation to place the center of rotation at that point.

338
339
340

341

342 If the test path is a reflected version of the resolved path,
we first compute the axis of reflection and reflect the re-
solved path across this axis. If the test path is sufficiently
close to this reflected path, we adjust the translation to

move it to that position.

343
344
345

346

7 In other cases, we snap the x and y components of the

348 translation to zero.

xs Step Transform Snapping Step transform snapping allows the
a0 user to create multiple, equally transformed copies of a path
a5t (see Figure 10b3). When we snap a path to an instance of a
a2 path, we store the relative transformation to that instance as the
ass step transform. The step transform is the relative transform of
as« the most highly-scoring suggestion. In Figure 9b, the exist-
a5 ing drawing contains three resolved paths that are all the same
ass shape. R was drawn first, and is the reference path. C is the
ss7 first copy, and its step transform is the transformation from R
ss to C. D is the second copy, and it was horizontally snapped
ase to C. Because the transformation from C scored more highly

a0 (containing a snap) than the transformation from R, the step
ss1 transform for D is the relative transform from C to D.

a2 Step transform snapping compares the transformation from a
aes path instance to the step transform for that instance. If the two
as+ transformations are similar, then a step-snapping suggestion is
ass generated. In Figure 9c, the newly drawn path T is compared
as to all three existing instances R, C and D. The transformation
a7 Mpr from D to T is similar to the step transform of D. This
s generates a step-snapping suggestion to place 7 in the position
aeo that exactly matches the step transform; see Figure 9d.
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Figure 10: Practical application of transformation adjustment of the imprecise
input (b) to obtain highly symmetrical output (a). We apply reflection axis (1),
step transform (2,3) and rotation (2,4) snapping. Also note that the whole draw-
ing is composed of strokes of the same shape.

a0 Although this example only includes translation in the step trans
a7 form, they are fully general, and can include rotation, scale, and
a2 reflection (see Figure 10b2).

ars Reflection Axis Snapping Users often want to reflect multiple
a7« paths against the same axis of reflection (for example, see the
a7s bear in Figure 1), or want to reflect a path across an existing
a7e line segment. To accommodate this, we collect all existing axes
ar7 of reflection and line segments. If the new path is reflected,
a7s We compare its axis of reflection to these potential axes, and if
are it 1s close, we generate a suggestion to reflect across this axis
a0 (see Figure 10b1). Further, we strengthen the likelihood for an
as1 axis that has already been used multiple times by replacing the
s2 score s with 1 — (1 — s)" where i is the number of times that
ass axis has been used.

sss 3.6. Offset Path Detection

385 Offset paths extend the concept of parallelism from line seg-
ass ments to paths. To detect them, we construct a normal line from
a7 each sample of the new path. If the line hits an existing refer-
ass ence path, we measure the distance between the sample point
ase and the closest point on the reference. Note that we do not use
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Figure 9: Transformation adjustment and transformation step snapping. The reference path R already has a copy C in the drawing, with Mgc being the transformation
from R to C. D is the test path with Mgp being the transformation from R to D. Transformation adjustment considers both Mgp and the derived relative matrix Mcp
that transforms C to D (a). The step transform for D is then M¢p, the relative transform from C (b). The relative transform for 7 relative to D is similar to the step
transform for D (c). Applying Mcp to D generates a well-spaced suggestion (d).

a0 the distance between the sample point and the line-path inter-
ae1 section, since this would require the user to draw the approxi-
a2 mate offset path very precisely. We store the measured distance
ass along with its sign, i.e., on which side of the new path the hit
asa occurred. We then sort all the hit information according to the
ass distance, creating a cumulative distribution function, and pick
ass two values corresponding to (50 + n)-th percentiles (n being 25
a7 in our implementation). By comparing the sign and distance
ass values of these samples, we calculate the likelihood of the new
ase path being an offset path of the reference path (see Figure 11).
a00 If the likelihood is high, we replace the new path with an offset
s01 version of the reference.

Figure 11: Offset path detection. A line is constructed from each point on the
sampled path (blue circles) in the normal direction. If an existing reference
path is hit (red rays), the minimal distance from the sample to the reference
path is calculated (dashed lines) and used in offset-path-likelihood computation
(see 3.6).

w2 4. Multi-Segment Stroke Processing

403 The single stroke processing approach gives the user the
s04 Opportunity to immediately see the results of the input being
a0s beautified. However, in certain cases, like drawing simple trian-
w06 gles or squares, this workflow can be tedious and decrease the
407 overall fluency of the beautification pipeline. To this end, we
a0s introduce an additional step into our scheme that lets the eval-

a00 Uation engine process strokes with multiple segments. These

a0 segments are defined as parts of the unprocessed user input,
a1 split by corner features. Once divided, the evaluation engine
a1z can process the simple segments using the geometric rules in-
a13 troduced in Section 3.1.

44 4.1. Corner Detection

When the raw freehand input stroke is drawn by the user, it
a16 is converted to a sequence of cubic Bézier curves and passed to
17 the beautification pipeline. The first step is to test it for the pres-
a1s ence of corner points. Because the initial curve fitting is done by
19 the host application (e.g., Adobe Illustrator), we cannot simply
s20 rely on the assumption that corners can only occur at the junc-
s21 tion of two Bézier curves. For example, in Figure 12a, the ap-
s22 parent corner in the lower right is actually a small-radius curve.
s2s We initially sample the curves with a small step size (2 view-
s24 space pixels) and calculate the tangent vector at each sample
s2s point. Using a sliding window of three successive samples, we
a2s calculate the angular turn value at every sample position except
a27 the first and last. Local maxima in this turn sequence provide
a2s the places to break the original input sequence into segments.
426 To handle outliers like the unwanted “hooks™ at the ends, we
a0 discard segments whose length is small compared to the rest
sa1 of the segments (less than 15% of the length-wise closest other
a2 segment).

415

a3 4.2. Segment Processing

The segments of the complex user input can then be pro-
ass cessed one at the time using the same approach used for the sim-
s ple input described in Section 3. There are, however, important
a37 issues to address. Most notably, processing multi-segment in-
a8 put involves automatic selection of intermediate outputs, which
30 would otherwise be done by the user. As the number of po-
a0 tential outputs rises exponentially, we cannot explore the whole
a1 search space. Therefore, we perform two reduction steps to
a2 make the evaluation of complex inputs computationally feasible
a3 within real-time-to-interactive response time. First, we limit the
e number of unique suggestions for each segment to 3 (whereas
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Figure 12: Multi-segment stroke processing pipeline. When a complex stroke is drawn (a), it is tested for the presence of corner points. If no corner points are found,
the processing continues as described in Section 3. If one or more corner points are detected (see Section 4.1 for more details), the original stroke is split and broken
into segments (b). The segments are then processed sequentially. After each individual segment is added (c, from top to bottom), suggestions are generated (d)
using previous segments as well as old strokes. In particular, beginning with the second segment, the beginning endpoint is constrained to match the final endpoint
of the previous segment (c, red circles, see Section 4.3). After generating suggestions for a segment (d, from top to bottom), an optional set reduction can be done

(e) to keep the evaluation sufficiently fast (see Section 4.2).

ass the single-segment input can produce up to 10 suggestions).
«s This might seem to be a very severe restriction, but the split seg-
a7 ments are typically simple paths with very little ambiguity. Sec-
«s ond, we process the individual segments in a breadth-first man-
e ner that lets us execute another reduction once all the parallel
as0 states reach the same depth (i.e., they all have the same number
ss1 of processed segments; see individual rows in Figure 12d). For
ss2 this step, we assign each intermediate state a value calculated
453 as the arithmetic mean of the scores of the processed segments.
s« Then, only Njg intermediate states are kept and evaluated fur-
ass ther while the rest are discarded (Figure 12e). The performance
sss of multi-segment input processing is determined by the num-
ss7 ber of segments K and the intermediate stack size N;g, with
sss Njg = 1 being performance-wise equal to sequential process-
a0 ing of individual segments. In our implementation, N;g = 10
a0 and strokes constituted of up to 10 segments can be processed
a1 Without noticeable lagging.

w2 4.3. Internal Segment Restrictions

463 As the individual segments are pieces of one original input
44 curve, we must ensure that the beautified segments are consec-
sss utively joined. Thus, we constrain the position of the first end-
ass point of each segment after the first (rows 2,3 in Figure 12c).
a7 Additionally, if the input stroke is closed, we also constrain the
sss last segment’s final endpoint (row 3 in Figure 12¢). As a side
ae0 effect, this also helps to decrease the ambiguity.

a0 4.4. Segment Joining And Further Behavior
ant Once all the segments have been processed, we create the

a7z final output stroke by joining them together. This way, the com-
473 bined beautified input stroke can be used by rules such as curve

a7s identity. Internally, the beautification engine keeps also tracks
475 the individual segments so that they behave as if they were
476 drawn one after each other. This lets the geometric rules show
477 the expected behavior, e.g., the corners of a complex stroke can
478 be used as snapping points.

a7 5. Implementation Details

w0 While using an existing API requires us to conform to its
ss1 design rules, it also eliminates the need to handle many tasks
ss2 unrelated to the research project, such as tracking the input de-
s83 vice, fitting paths to the samples, and managing the undo/redo
sss stack. It also benefits the users, as they are not forced to learn
a5 yet another user interface, and can instead take advantage of
sss built-in tools of the existing program. Therefore, we decided to
sg7 integrate our system into Adobe Illustrator as a plugin using its
s C++ SDK.

As described previously, our method is based on evaluat-
a0 ing different geometric rules on a new path using the previously
s91 drawn and resolved paths. Thus, we need to be able to detect
sz When a new path is created or an old one is modified or deleted.
se3 To this end, we serialize all the path data and store a copy in the
s« document. Illustrator activates our system whenever the user
sss modifies the document. We deserialize the data and compare
ass the paths to the actual paths in the document to detect changes.
a7 If we find a new path, we process the new path and update the
a0 serialized data. Similarly, when a path is modified, it is treated
a0 as new one and reprocessed. Deleting paths does not affect the
so0 remaining ones. To support undo and redo, we store the se-
so1 rialized data into a part of document that is managed by the
se2 undo/redo system.

489
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Figure 13: Examples of multi-segment stroke processing. The input strokes (blue) are broken into individual segment that are sequentially processed using the
single-segment evaluation engine (Section 3) and merged after the processing is finished (see Section 4 for details).

503 The presentation of the suggestions is deliberately kept as
so« simple as possible and only one suggestion is shown at the time.
sos The user switches among the suggestions using an additional I1-
so6 lustrator tool panel. The last suggestion in the list is always the
so7 original input path and is thus easily accessible. Currently, the
sos list of inferred constraints is shown in textual form in the order
so0 in Which they were traversed in the search space tree (see Fig-
sio ure 18c). The user selects the current suggestion by drawing a
st new path or changing the selection. To provide additional as-
stz sistance for the user, we also present a simple visualization of
s1a the applied rules together with rectified path. This visual an-
s14 notation provides immediate feedback about the imposed con-
s15 straints and relations of the user input (see Figure 15).

To further exploit the built-in tools, we support the “Trans-
si7 form Again” feature for rotational symmetry. If the resolved
sis path is a rotated copy of an existing path, it is noted as such
st S0 that a new, properly-rotated copy will be created if the user
s20 invokes the “Transform Again” command. The user only needs
s21 to draw two rotated instances of a path and then can create ad-
s22 ditional properly-rotated paths without drawing them (see Fig-
s2s ure 18d). Recall that the rotation angle is adjusted to the nearest
s24 integer quotient of 2, so additional paths can form full n-fold
s2s rotational symmetry.

526 The constraints imposed by ShipShape can easily be avoided
s27 for certain paths by placing them in layers that are not being
s2s rectified. In our implementation, ShipShaperuns only on the
sz default layer.

516

s30 6. Results

51 To evaluate the effectiveness of our method, we conducted
se2 a preliminary study. We created a plugin for Adobe Illustra-
sas tor that was installed on a PC with a 23in LCD monitor and a
s consumer computer mouse as the input device. Six people par-
sss ticipated in this study. All of them worked with Illustrator on
s a daily to weekly basis, but in all cases, their primary work-
se7 related tool was a CAD program. First, the users were given a
sss brief introduction and demonstration of our system’s concept,
se0 capabilities and limitations, with a few practical examples. The
se0 participants could adjust Illustrator settings and the mouse sen-
se1 sitivity according to their needs, and then spent 1 to 3 minutes
sz in free drawing, to get briefly accustomed to the system and the
se3 workflow.

Figure 14: Evaluation study drawings. The users were asked to recreate these
drawings using our ShipShape prototype: Task drawing (left, black), represen-
tative raw input (right, gray).

The users were then shown three simple illustrations (see Fig-
sss ure 14) and presented with the task of drawing each of them
ss6 anew, using both native Illustrator tools and our prototype, while
se7 we measured their drawing times. First, the participants were
s asked to recreate the figures using any suitable tools and ap-
se9 proaches, i.e., they could use all the available tools and modes,
ss0 such as copying or reflecting. Rather than creating the exact
ss1 copies of the reference drawings, we directed them to focus on
ss2 preserving the geometric relations. Interestingly, despite the
sss users’ relatively equal level of experience, they often took very
s dissimilar ways to recreate the task’s drawing.

In the second part of the test, the participants were only
s allowed to use the pencil tool with the ShipShape prototype
ss7 turned on. The only additional allowed operation was undo.
sss Similarly to the first part of each drawing, the users took a dif-
sso ferent approaches to complete the goal, however, with a sin-
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Figure 15: Visual annotation hints. Overlaid visual annotations show which
rules have been applied, e.g., line perpendicularity and endpoint snapping (a),
line parallelism and single coordinate snapping (b) or path identity (c).

se0 gle exception, they were all able to finish all three designated
set drawings from Figure 14. The initial measurements (Figure 16)
se2 suggest that drawing beautification is more suited for simpler
sss drawings and tasks. For example, copying a large part of the
ss« bottom-left drawing in Figure 14 was always faster than redraw-
se5 ing it.

566 The main interest of this study was to identify the weak
se7 points and bottlenecks of our approach and to test how success-
ses ful our prototype was in generating correct suggestions. The
seo overall feedback from the participants was positive. They found
s70 the tool useful and easy to use. Most of the participants, how-
s71 ever, considered the limitation of using a single tool only too
s2 restrictive, and suggested incorporating parts of our approach
s73 (smart snapping, automatic tangent adjustments, etc.) into the
s74 relevant built-in tools. All the participants liked the idea of vi-
s7s sual annotations (Figure 15) and found it helpful. Several users
s76 did not like the way the alternative suggestions were presented
s77 and explored (see the small gray box in canvas in Figure 18)
s7 and preferred to undo and redraw the particular strokes.
Additional results are shown in Figure 17. Note that an im-
seo portant part of the drawing workflow was relying on Illustra-
se1 tor’s built-in support for curve smoothing when creating origi-
se2 nal paths—those that are not copies of other paths. These are
sss shown in blue in Figure 17, and they function as “template”
ssa paths for the beautification. Other strokes drawn afterwards can
ses be much more imprecise (see Figure 1 and Figure 17¢c-g).

579

ss6 7. Limitations and Future Work

587 A common problem of drawing beautification techniques is
ses the quick growth of the number of possible suggestions as the
ss0 drawing becomes more complex and many satisfiable geomet-
s ric constraints emerge. Our approach addresses this by com-
so1 bining best-first search with a limited suggestion set size, but
se2 additional heuristic-based pruning of the search space, possibly
ses based on empirical measurements, could improve the sugges-
se4 tion set.

Currently, when the user changes an already-resolved path,
se6 1t 1S treated as a new one. In some cases, however, it would be
se7 beneficial to not only reprocess the modified path but also all
see other paths being in relationship with it, for example changing
see any reflected or rotated versions of the path.

595

Figure 18: Exploiting the “Transform Again” feature. Illustrator allows the user
to repeat the last transformation. When a new path is added (b) to the canvas (a),
it is processed and output suggestions are generated. If the user chooses a sug-
gestion that is a rotation (c) we enable the “Transform Again” feature. The user
can then easily complete the 8-fold rotational symmetry drawing (d). See Sec-
tion 5

e0 8. Conclusion

In this paper, we presented an efficient method for beautifi-
e02 cation of freehand sketches. Since the user input is often impre-
e0s cise and thus ambiguous, multiple output suggestions must be
e« generated. To this end, we formulated this problem as search
e0s in a rooted tree graph where nodes contain transformed input
e0s stroke, edges represent applications of geometric rules and suit-
eo7 able suggestions correspond to different paths from root node
e0s to some leaf nodes. To avoid the computational complexity of
e00 traversal through the whole graph, we utilized a best-first search
s10 approach where the order of visiting tree nodes is directed by
et the likelihood of application of the particular geometric rules.
On top of this framework, we developed a system of self-
e13 contained rules representing different geometric transformations,
s1« which can be easily extended. We implemented various rules
e1s that can work not only with simple primitives like line segments
ets and circular arcs, but also with general Bézier curves, for which
¢17 we showed how to detect previously unsupported relations such
e1s as curve identity or rotational and reflection symmetry.

We demonstrated the usability and potential of our method
620 Oon various complex drawings. Thanks to the ability to process
21 general curves, our system extends the range of applicability
e22 of freehand sketching, which was limited previously to draw-
e23 ings in specialized, highly-structured applications like forms or
e24 technical diagrams. We believe that this advantage will become
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Figure 16: Comparison of drawing performance. The participants were asked to recreate the drawings from Figure 14 using either native tools of Adobe Illustrator
(red) or ShipShape prototype (blue line). For simpler drawing, such as the spiral or the clock, ShipShape typically outperformed Illustrator. However, with more

complex drawings (table), the utilization of different tools is faster.

es even more apparent with the widespread adoption of touch-
e2s centric devices, which rely much less on classical beautification
e27 techniques that are based upon menu commands and multiple
628 tOOIS.
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e Appendix A. Rules Evaluation

640 The rules are evaluated using a piecewise-linear ramp func-
s41 tions, both continuous and discontinuous. These functions trans-
ez form the input values, such as angular differences or view-space
e3 distances, to likelihood values from the interval [0, 1] used to di-
e4a Tect the tree expansion and final suggestion sorting described in
ess the paper. For each rule listed in section 3.1 in the main paper,
s We show the exact scoring function we used in our implemen-
e47 tation.

s Appendix A.1. Line Detection

649
eo ness D = |1 — |l .|/|lj|l, where |l | is length of sampled Bézier
es1 curve and |/| length of line segment between its endpoints. If D
es2 1S lower than the threshold 0.05, we set the likelihood £;p of
esa the curve being a line segment to 1 — D.

es¢ Appendix A.2. Arc Detection

655 The arc is described by three parameters — center, radius
ess and angular span. We initially sample the input path and obtain
es7 the circle fit center location and radius value using least-squares
ess approach. We then project the samples onto the optimal circle,

Asin QuickDraw [10], we calculate the deviation from straight-

eso using the circle center as the center of the projection, to deter-
e0 mine the span value. Having these three values, we construct
est the arc suggestion and compute its similarity with the input us-
es2 ing discrete Fréchet distance between the original samples and
ess the suggested arc’s samples. This distance is then used to cal-
es¢ culate the final output likelihood L4p (Figure A.19). If the de-
ess tected span is higher than 27 — /13 or the input path is closed,
the output span is set to 2 to suggest full circle output.

0.5

Likelihood

L L L L L L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Relative Fréchet Distance

Figure A.19: Relative discrete Fréchet distance evaluation in Arc Detection
rule.
666

o7 Appendix A.3. Endpoint Snapping

668 We measure the distances between the endpoint and the
e points of interest (other endpoints, arc centers, etc.) in view-
e70 space pixels and transform them to final likelihoods Lgs (Fig-
71 ure A.20). As the users can end strokes relatively precisely even
e72 wWith devices such as mouse or touchpad, there is no tolerance
e73 Zone in the scoring function.

Likelihood

15

30 35

I I
20 25

L
10
View-Space Distance [view—space pixels]

Figure A.20: View-space distance evaluation in Endpoint Snapping rule.

o4 Appendix A.4. End Tangent Alignment

ers  The angular difference between the curve endpoint and the
e76 endpoint it is connected to is directly transformed to final like-
e77 lihood Ler4 (Figure A.21).
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Figure A.21: Angular difference evaluation in End Tangent Alignment rule.

e1s Appendix A.5. Line Parallelism and Perpendicularity

679 We measure the angular difference between the direction
ss0 vectors of two line segments to obtain the likelihood L ¢ (Fig-
1 ure A.22 top). To increase the final likelihood of nearby line
es2 sSegments, we also score the view-space distance between tested
ess line segments — Ly, (Figure A.22 bottom). The output sugges-

sss tion with likelihood L;p = Ly7rLyy is produced, if L;p > 0.7.

Likelihood

6
Angular Difference [degrees]

Likelihood

0 100

200 300 400
View-Space Distance [view-space pixels]

500 600

Figure A.22: Angular difference evaluation (top) and view-space distance eval-
uation (bottom) in Line Parallelism and Line Perpendicularity rules.

Appendix A.6. Line Length Equality

68!

a

We measure the line length difference relative to a tested
line segment to get the likelihood L;s (Figure A.23 top) and
also the likelihood Ly, (Figure A.23 bottom) based on rela-
tive distances of existing line segments to the tested one. Sim-
ilarly to line parallelism rule, the final likelihood is computed
st a8 Lip = LyrrLag and an output suggestion is produced, if
692 LLLE > 0.7.

686

687

68
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69
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sss Appendix A.7. Arc and Circle Center Snapping

Based on the arc’s span 6 and radius r, we first determine the
o5 search distance D’ = max (D, 2r (1 — 8/2r)), where the default
eos distance D = 30 (view-space pixels) is equal to the one used in
es7 endpoint snapping and also the final likelihood Lsccs is then
ess computed using the same ramp function (Figure A.20).

694

90 Appendix A.8. Path Identity

700 We compute the discrete Fréchet distance between the tested
701 path and the existing one, as described in Section 3.4. The abso-
702 lute distance Or is then made relative to the length of the tested

703 path and used to compute the likelihood Lp; (Figure A.24).
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Relative Length Difference

Likelihood

L
0.8 1
Relative Distance

0 0.2 0.4 0.6 12 1.4 16 18

Figure A.23: Relative length difference evaluation (top) and relative distance
evaluation (bottom) in Line Length Equality rule.
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Relative Fréchet Distance

0.1

Il
0.11
Figure A.24: Relative discrete Fréchet distance evaluation in Path Identity rule.

704 Appendix A.9. Path Transformation Adjustment

7s  We compute four separate likelihoods for the angular dif-
706 ference L, the scale difference L, the x offset L., and the y
707 offset £, and perform only those with non-zero values. The
708 final likelihood is Lra = 1 — (1 - L,)(1 - L)1 - L)(1 - L)).
700 Note that the maximum likelihood is relatively small compared
710 to other rules; if they were larger, this would usually overwhelm

711 the likelihoods of other suggestions.

7z Appendix A.10. Path Offset

The process to obtain samples along the tested path together
712 with their signed distances to the existing path is described
ns in Section 3.6. To compute the likelihood Lpp we evaluate
76 the relative distance difference between 25th and 75th quantile
77 from the sorted hit data (Figure A.26).
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