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Figure 1: An example of style transfer with auxiliary pairing—an artist prepares a stylized version (source style) of a selected frame from
input video (source frame). Then a network is trained to transfer artist’s style to remaining video frames (target frame). During the training
phase a subset of input video frames as well as the source frame and its stylized counterpart are taken into account. Once the network
is trained, the entire sequence can be stylized in real-time (our approach). In contrast to current state-of-the-art in example-based video
stylzation (Jamriška et al. [JST∗19] and Texler et al. [TFK∗20]) our approach better preserves important visual characteristics of the style
exemplar even though the scene structure changed considerably (head rotation). Input video frames and source style c© Zuzana Studená,
used with permission.

Abstract

We present an approach to example-based stylization of images that uses a single pair of a source image and its stylized
counterpart. We demonstrate how to train an image translation network that can perform real-time semantically meaningful
style transfer to a set of target images with similar content as the source image. A key added value of our approach is that
it considers also consistency of target images during training. Although those have no stylized counterparts, we constrain the
translation to keep the statistics of neural responses compatible with those extracted from the stylized source. In contrast to
concurrent techniques that use a similar input, our approach better preserves important visual characteristics of the source
style and can deliver temporally stable results without the need to explicitly handle temporal consistency. We demonstrate its
practical utility on various applications including video stylization, style transfer to panoramas, faces, and 3D models.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering;

1. Introduction

In recent years, methods for performing automatic style transfer
from an exemplar image to a target image or a video have gained
significant popularity. Although state of the art in this field pro-
gresses quickly and produces ever more believable artistic images,
there are still aspects in which most methods tend to have funda-
mental shortcomings. One such crucial element is defining the se-
mantic intent while still preserving visual characteristics of the used
artistic media.

A seminal work in this direction was the Image Analogies frame-

work introduced by Hertzmann et al. [HJO∗01], which requires
the user to provide a set of guidance channels [BCK∗13, FJL∗16,
FJS∗17,JST∗19] that encourage the synthesis algorithm to transfer
smaller patches of the style exemplar onto desired spatial locations
in the target image. Those channels, however, need to be prepared
explicitly by the user or generated algorithmically for a limited tar-
get domain, e.g., 3D renders [FJL∗16], facial images [FJS∗17], or a
sequence of video frames close to the stylized keyframe [JST∗19].
Deriving consistent semantically meaningful guidance in the gen-
eral case remains an open problem.
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Neural approaches to style transfer [GEB16, LFY∗17, KSS19]
rely on the assumption that one can encode semantic similarity
using the correspondence of statistics of neural features extracted
from responses of the VGG network [SZ14]. Although such an as-
sumption holds in some cases, it is not easy to amend when it fails.
Moreover, in contrast to patch-based methods, neural techniques
tend to produce noticeable visual artifacts due to their statistical
nature. One can partially alleviate this drawback by applying patch-
based synthesis in the neural domain [LW16, LYY∗17]. However,
since in this scenario neural features are transferred explicitly, the
requirement of knowledge of accurate correspondences is still in-
evitable.

Another possibility of preserving semantically meaningful trans-
fer is using the image-to-image translation principle pioneered by
Isola et al. [IZZE17]. This approach can encode semantic intent and
retain high-quality output. However, it has a fundamental limitation
of requiring a relatively large dataset of image pairs (original image
plus its stylized counterpart), which is rarely easy to obtain when
considering artistic applications. Lastly, a group of unpaired image
translation algorithms could be used [ZPIE17, PEZZ20], however,
since it can be difficult to incorporate intent into these methods,
they are not as suitable for tasks where the artist needs greater con-
trol.

In this paper, we present a novel approach to neural style trans-
fer that allows artists to stylize a set of images with arbitrary yet
similar content in a semantically meaningful way, while preserving
the target subjects’ critical structural features. In contrast to pre-
vious neural techniques, in our framework, the user explicitly en-
codes the semantic intent by specifying a stylized counterpart for
a selected image from the set that needs to be stylized. Using this
single style exemplar, we then train an image-to-image translation
network that stylizes the remaining images. Our approach bears a
resemblance to the recent keyframe-based video stylization frame-
work of Texler et al. [TFK∗20], where a similar workflow is used.
A key difference in our technique is that we consider other frames
from the input sequence during the training phase. This enables
us to ensure temporal stability without explicit guidance and bet-
ter preserve style when the remaining video frames deviate from
the original keyframe. Moreover, thanks to this increased robust-
ness, our framework goes beyond video stylization. One can use it
also in more challenging scenarios, including auto-completion of a
panorama painting, stylization of 3D renders, or different portraits
captured under similar illumination conditions.

2. Related Work

Despite the renewed interest and broader impact, image stylization
algorithms date back decades. Traditionally, they were based on
predefined, hand-designed transformations limited to a subset of
styles, and possibly target domains as well. One example of such
transformation approach was shown by Curtis et al. [CAS∗97], run-
ning a physical simulation to produce watercolor filter effect. Other
research directions focused on composing images from static or
procedurally generated brush strokes or pens [BLV∗10, BKTS06,
PHWF01, SWHS97]. These conventional algorithmic approaches
can create very appealing results, but they have the added difficulty
of requiring the style filters to be designed on an individual basis.

Therefore, the act of creating a new style or even slight modifica-
tions of existing styles tends to necessitate considerable amounts of
effort. These methods do not require a style exemplar, but instead
contain a prior given by the design of the filter.

The framework of Image Analogies proposed by Hertzmann
et al. [HJO∗01] trades designing elements of the output image
directly for designing a set of guidance channels which form a
loss function. Optimizing over pixel locations and directly copy-
ing patches of an exemplar image guarantees that features found
in the exemplar will be represented exactly in the resulting im-
age. This framework became the basis of numerous style transfer
methods [BCK∗13, FJL∗16, FJS∗17, DLKS18, JST∗19]. A key ad-
vantage over traditional algorithmic methods lies the fact that this
framework allows for transfer of arbitrary style.

However, creating the guidance channels is cumbersome, and in
some potential applications it might not be always clear how to de-
sign algorithms for obtaining them automatically, and still, the task
of preparing a framework that would work with arbitrary images
remains seemingly impossible. To sidestep this issue, methods of
general style transfer have been formulated. Frigo et al. [FSDH16]
attempts to re-imagine the problem of guiding channels by splitting
the image into partitions and matching these to their counterparts.
More commonly known, Gatys et al. [GEB16] uses responses of
a neural network to generate global style statistics which an opti-
mization process sees to reproduce in the result while incorporating
a content constraint to prevent the overall structure from diverg-
ing too far from the target image. Refining these ideas to a video
domain and employing a more sophisticated loss functions, oth-
ers [CLY∗17, LFY∗17, RDB18, KSS19] manage to produce results
which are coherent in time and more faithful to the style. While
they produce impressive results on some inputs, these methods gen-
erally take all the control out of the artists’ hands and are notori-
ously difficult to steer in different directions, as their mechanisms
are non-intuitive and unpredictable.

A different view of the problem is offered by the image-to-image
framework, which aims to translate images from one domain to an-
other, which is directly applicable to style transfer. While the origi-
nal image translation methods [IZZE17, JAFF16] require relatively
large dataset to work reliably, by their combination with generative
adversarial models [GPAM∗14, ZPIE17], this requirement can be
relaxed. Unlike techniques based on image analogies, these meth-
ods tend to require substantial amount of model training. And al-
though patch-based synthesis [FJS∗17] can be used to generate a
large number of image pairs on which one can train the image-to-
image translation network [FCC∗19], the problem of having mean-
ingful guidance remains.

Few-shot learning techniques [LHM∗19, WLT∗19], as well as
approaches based on deformation transfer [SLT∗19b,SLT∗19a] re-
quire only a single style exemplar. However, they still need pre-
training on large dataset of specific target domains and thus are
not applicable in general case. Moreover, these techniques cap-
ture only the target subject’s coarse deformation characteristics; its
structure or identity is omitted. A similar drawback also holds for
approaches based on generative adversarial networks such as Style-
GAN v2 [KLA∗20]. In this approach, a massive collection of art-
works is used to train a network that can generate an artistic image
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for a given input latent vector. Those vectors can then be predicted
and fine-tuned to align the generated image with the target image’s
features. However, this process is inaccurate, leading to imprecise
alignment that hinders the network’s ability to preserve the target
subject’s structure or identity.

3. Our Approach

As input to our method, we take pairs of images K = (X ,Y ) called
keyframes. They represent a visual translation from a source vi-
sual domain of X into a target domain of Y . For instance X can
be a photo and Y its stylized counterpart prepared by an artist
(see Fig. 2). Note that our key assumption about K is that it should
be as small as possible, in practice even a single keyframe is usu-
ally sufficient. This is in line with our central motivation to reduce
the amount of manual work since the creation of keyframes is time
consuming and thus prohibitive. In addition to K, the user also pro-
vides a set of unpaired images Z, which they would like to stylize.
The images in Z can be arbitrary, but our method works best if their
domain is similar or same as X . For instance Z and X can be frames
from the same video sequence or photos from the same location,
etc. If there is a larger number of images in Z, it is beneficial to
prune it as smaller number of images in Z usually has a positive
effect on the resulting quality (see Fig. 8). Both keyframes K as
well as unpaired images Z are used during an optimization process
that produces a neural translation model F . Using F one can styl-
ize Z in a semantically meaningful way, i.e., produce a set of output
images O in which important visual features of artistic style Y are
reproduced at appropriate locations.

As F , we use the network architecture design of Futschik et
al. [FCC∗19] (see Fig. 3), a U-Net-type network, which is par-
ticularly suitable for style transfer tasks as it allows to reproduce
important high-frequency details that are crucial for generating be-
lievable artistic styles. In the original method of Futschik et al. F
was trained on a large dataset of K which is intractable in our sce-
nario. Texler et al. [TFK∗20] uses the network architecture of F as
well in a similar setting as ours, i.e., small number of keyframes K,
however, their method struggles with larger structural changes in
the target images Z.

To address this issue, we leverage the fact that the set of target
images Z is known beforehand and thus we can incorporate this
additional knowledge into the optimization process. To do that, we
introduce a different training strategy. The process is a combination
of two complementary objectives, illustrated in Fig. 2, which we
minimize as we train F :

• L1 loss on the original translation pairs K, ensuring that
keyframes are represented as closely as possible.
• VGG loss between the images from set Z and set Y , which acts

as a regularizer for the stylized images O.

Combining these two, we obtain the objective function we would
like to minimize:

∑
i
|F(Xi;θ)−Yi|+λ∑

j,k
∑
l
‖Gl(F(Z j;θ))−Gl(Yk)‖2 (1)

where θ is a set of weights of F which we would like to optimize,
Gl stands for Gram correlation matrix calculated at layer l ∈ L af-
ter extracting VGG network responses [SZ14] of the given image,

and λ is a weighting coefficient which we set to 100/(|Z||L|) for
all conducted experiments.

Contrary to previous techniques [GEB16, JAFF16] which com-
pute Gram matrix from a subset of layers we found that evaluating
the loss at every layer l ∈ L of VGG is beneficial in terms of mea-
suring the overall style quality. However, this is computationally
more expensive and thus our method generally requires an order
of magnitude more time to produce the final results. These previ-
ous methods use the term purely as a proxy for style transfer. In
our case we use it as regularizer to prevent the model from overfit-
ting to the keyframes. This effect is visible in Fig. 4, where if we
take away the VGG loss, the resulting F is unable to generalize
beyond K whereas using VGG loss only will negatively affect the
content.

−| |

VGG

L1

Xi YiOi

Z j O j Yk

F(Xi;θ)

F(Z j;θ)

Figure 2: An overview of our approach—we optimize weights θ of
a translation network F which accepts images from a source do-
main X or Z and produces output images O with a similar appear-
ance as those in the target domain Y . The high-frequency details
are preserved well, thanks to the L1 loss computed on the artist-
created style images Y which have the same structure as the input
images X, while the style consistency on other images Z is enforced
due to the VGG loss. Source style c© Graciela Bombalova-Bogra,
used with permission.
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Figure 3: A network architecture used for our model F: input
layer (green), one 7× 7 and two 3× 3 convolution blocks (blue),
nine 3 × 3 residual blocks (yellow), two 3 × 3 upsampling
blocks (red), and one additional block with 7 × 7 convolu-
tions (blue). Skip connections (black) are used to connect down-
sampling and upsampling layers.
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target photo only VGG loss only L1 loss VGG + L1 losssource photo source style

Figure 4: An ablation study demonstrating the importance of individual terms in our objective function (1)—a stylized pair (X1,Y1) (source
photo, source style) is used together with Z1 (target photo) to optimize weights of model F . When only VGG loss is used, the identity of a
person in the target photo deteriorates. On the other hand when only L1 loss is used during optimization source, style is not preserved well.
By combining L1 loss and VGG loss in (1) we get the result which produces a good balance between identity and style preservation. Source
style c© Graciela Bombalova-Bogra, used with permission.

By minimizing the objective (1) we produce a trained model F ,
which in turn is able to stylize the images from Z via a feed-
forward pass. An important aspect to notice is that unlike most
previous style transfer techniques, our approach does not enforce
any content loss explicitly. We find that content losses found in lit-
erature [GEB16, KSS19] tend to be detrimental to the quality of
style transfer, especially when higher frequencies are concerned. It
causes a particular washed-out look where important style details
are missing (see Fig. 5). An objection to our argument could be that
without explicit penalty on the content preservation, the model can
resort to memorizing the keyframes and return Y regardless the con-
tent in target images Z. This would eventually minimize both the L1
error as well as the VGG loss. The reason why the optimization
process does not end up using this trivial solution is twofold. We
argue that due to the limited receptive field of F , it has to learn an
effective encoding of the input; in addition, since the VGG loss is
relatively weak and serves only as a non-linear regularizer, it makes
the trivial solution difficult to find during the optimization process.
Moreover, by optimizing a one-to-one mapping between images of
perceptually similar semantic structure (X to Y ), we posit that this
acts as an implicit content preservation technique.

4. Results

We implemented our approach using PyTorch [PGM∗19]. For all
experiments, we use Adam optimizer with learning rate 10−4,
β1 = 0.9, β2 = 0.999. We found that higher rate does not work
well when performing many Gram matrix operations that are
prone to producing exploding gradients. For the network model F ,
we use 9 residual blocks, which is in line with previous ap-
proaches [FCC∗19, TFK∗20]. However, since in our optimization
batch size is equal to 1 we use instance normalization [UVL16] in-
stead of batch normalization. All layers used for Gram matrix com-
putation are post-activated with ReLU to better incorporate non-
linearity. In each experiment, we let the optimization process run
for approximately 100k iterations, which translates into roughly 3–
6 hours of wall time on a single NVIDIA V100 GPU, depending
on the target resolution. The resolutions we produce range from

target render low medium high

Figure 5: An illustration of a wash-out effect caused by adding an
explicit content loss term [KSS19] into our objective function (1).
Target render stylized using model F optimized on a stylized pair
from Fig. 9 with low, medium, and high content loss weight. Note
how style details deteriorate gradually with the increasing content
loss. Source style c© Štěpánka Sýkorová, used with permission.

512px to 768px as longer side of the image, with the shorter side
scaled appropriately to preserve correct aspect ratio given by the
input images.

We evaluated our approach in five different use cases to demon-
strate its wider range of applicability: (1) keyframe-based video
stylization, (2) style transfer to 3D models, (3) autopainting
panorama images, (4) example-based stylization of portraits, and
(5) real-time stylization of video calls.

Video stylization results together with a side-by-side comparison
of the output from previous techniques [JST∗19, TFK∗20] is pre-
sented in Figures 1 and 6 as well as in our supplementary video. In
each experiment, we selected a keyframe X from the input video se-
quence V which was stylized by an artist to produce Y . Then a 10%
of video frames from V were sampled uniformly to get the set Z.
Using this input, the weights θ of the network F were optimized
and used to stylize the entire sequence V . In Fig. 7 we compare the
scenario where multiple keyframes K are used to stylize V . We also

c© 2021 The Author(s)
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source stylesource frame target frame Jamriška et al. Texler et al.our approach

Figure 6: Video stylization results—in each video sequence (rows) a selected frame (source frame) is stylized using different artistic me-
dia (source style). The network is then trained using this stylized pair and a subset of frames from the entire video sequence (target frame).
The results of our method (our approach) are compared with the output of concurrent techniques: Jamriška et al. [JST∗19] and Texler et
al. [TFK∗20]. Note how our method better preserves important style details and visual features of the target frames. Previous style trans-
fer techniques tend to produce wash out artifacts due to significant structural changes with respect to the source frame. Video frames and
style (top row) c© Zuzana Studená, and (bottom row) c© Štěpánka Sýkorová, used with permission.

(a) (b) (c) (d) (e) (f)

Figure 8: A different sampling strategy for a selection of frames
in Z—a source frame from a sequence V (a) and its stylized coun-
terpart (b) are used as K. Then weights of F are optimized with K
and Z, where Z contains all frames from V (d), 10% of uniformly
sampled frames from V (e), and 10% of adaptively sampled frames
from V (f). Note how dense sampling tends to produce distortion ar-
tifacts on a rare hand pose (c) due to overfitting on a different pose
that is more frequent in the sequence V (a) whereas sparse sam-
pling generalizes better. Source video frames (a, c) and style (b)
c© Štěpánka Sýkorová, used with permission.

considered an option that all frames from V are used as Z, or instead
of using uniform sampling we selected 10% of frames that repre-
sent the most signficant changes in the scene. We found that sparse
uniform sampling has usually the best performace (see Fig. 8).

As visible from the results and comparisons, our approach can
better preserve style details during a longer time frame even if the
scene structure changes considerably with respect to X . Also, note

how the resulting stylized sequence has better temporal stability
implicitly without performing any additional treatment, which con-
trasts with previous techniques [JST∗19,TFK∗20] that need to han-
dle temporal consistency explicitly.

Style transfer to 3D models resembles video stylization use case,
however, there are specific features worth separate discussion. In
this scenario we let the user select a camera viewpoint from which
a 3D model is rendered to get image X . As the network F is sen-
sitive to local variations in X , it is important to avoid larger flat
regions which can make the translation ambiguous. Due to this rea-
son we add a noisy texture to the 3D model to alleviate the ambigu-
ity (see source render in Fig. 9). An artist then prepares the stylized
counterpart Y and the model is rendered again from a few different
viewpoints to produce Z. Using those inputs, weights θ of the net-
work F are optimized and the translation network can then be used
in an interactive scenario where the user changes the camera view-
point, the 3D model is rendered on the fly, and immediately styl-
ized using F . See Figures 9 and 10 and our supplementary video
for results in this scenario. As in the video stylization case when
compared to other techniques [GEB16, KSS19, JST∗19, TFK∗20]
our approach better preserves the style exemplar (c.f. Fig. 9) and
implicitly maintains temporal consistency.

In the panorama auto-painting scenario we consider a set of pho-
tos P taken from the same location by rotating the camera around
its center of projection. We compute a set of homographies H be-
tween photos in P using the method of Brown et al. [BL07]. Then
we let the artist pick one photo from P as X and produce its styl-
ized counterpart Y . Remaining photos in P are used as Z. After the
optimization one can use F to stylize all photos in P, stitch them

c© 2021 The Author(s)
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K1 = (X1, ·) K1 = (·,Y1) Z1 O1 (with K1) O1 (with K1 & K2)

K2 = (X2, ·) K2 = (·,Y2) Z2 O2 (with K1) O2 (with K1 & K2)

Figure 7: Example of video stylization with multiple keyframes—two keyframes K1 = (X1,Y1) and K2 = (X2,Y2) were created by painting
over the input video frames X1 & X2 to get their stylized counterparts Y1 & Y2. First, our networkF was trained using only single keyframe K1
and applied to stylize input video frames Z1 & Z2 to produce O1 & O2 (with K1). Note, how closed mouth in Z2 was not stylized properly
in O2 (with K1). By adding K2 to the list of keyframes used during training phase, open and closed mouth is stylized better, see O1 & O2
(with K1 & K2). Frames X1, X2, Y1, Y2, Z1 & Z2 c© Muchalogy, used with permission.

source style stylized panorama

Figure 12: Panorama stylization results (cont.)—two additional
artistic styles (source style) used to stylize the panorama shown
in Fig. 11. Note how our approach (stylized panorama) handles
also a higher level of abstraction (first row). Source style (top row)
c© Jolana Sýkorová, used with permission.

together using H, and either produce a cylindrical unwrap or al-
ternatively use an interactive scenario where the user changes the
relative camera rotation from which a pinhole projection can be

computed and stylized in real-time using F . As visible in Fig. 11
and 12 from the comparisons with [LYY∗17,KSS19] our approach
better preserves the original style details as well as semantic con-
text.

In the example-based portrait stylization use case a set of por-
traits U is assumed to be taken under similar lighting conditions.
One portrait from U is used as X and stylized to get Y . The rest
of portraits in U is used in Z. Resulting model F can then be
used to stylize all portraits in U . In Fig. 13 stylization results
for two different style exemplars are presented. It is apparent that
our approach produces a reasonable compromise between iden-
tity and style preservation whereas previous neural methods such
as [GEB16, KSS19] tend to preserve identity better, but lose style
details. On the other hand, patch-based technique [FJS∗17] repro-
duces style better, nevertheless, has difficulties retaining identity.

In real-time stylization of video calls we let the user record a
short video sequence V which captures her face during a regu-
lar video meet. A most representative frame is selected from V
and used as X . An artist then produces its stylized counterpart Y
and 10% of other frames in V are used as Z. A model F is op-
timized using those inputs. Then, during the next video call F is
used to stylize captured video frames in real-time. See Fig. 14 and

c© 2021 The Author(s)
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source render source style Jamriška et al. Texler et al. Gatys et al.target render Kolkin et al.our approach

Figure 9: Stylization of 3D renders—a colored 3D model enhanced with an artificial noisy texture to avoid large flat regions (source render)
is stylized at a selected viewpoint by an artist (source style). The network is then trained using the stylized pair and a set of additional renders
of the same model viewed from a different direction (target render). The trained network can then be used to stylize the rendered 3D model
from a different user-specified position in real-time (our approach). When compared to other concurrent style transfer techniques (Jam-
riška et al. [JST∗19], Texler et al. [TFK∗20], Gatys et al. [GEB16], and Kolkin et al. [KSS19]) our approach better preserves important
high-frequency details of the original style exemplar while being able to adopt to a new pose in a semantically meaningful way. Source
style c© Štěpánka Sýkorová, used with permission.

source frame

stylized frame

target frame our approach Texler et al.

Figure 14: Real-time stylization of video calls—a frame from a
training sequence (source frame) is stylized by an artist (source
style). The network weights are then optimized using this stylized
pair and remaining frames from the training sequence. The final
image translation model can be used for real-time stylization of a
new video conference call that contains the same person and have
similar lightihg conditions (target frames). Note that in contrast
to the method of Texler et al. [TFK∗20] our approach better pre-
serves style details and keeps the stylization more consistent in time
(see also our supplementary video). Video frames and source style
c© Zuzana Studená, used with permission.

our supplementary video for an example of such interactive styl-
ized video call. From the comparison with the method of Texler et
al. [TFK∗20] it is visible that our approach not only better preserves
the overall style quality but also retains temporal stability which is
difficult to accomplish by the method of Texler et al. in this kind of
interactive scenario.

4.1. Perceptual study

In order to qualitatively evaluate our approach, we performed a per-
ception study comparing the outputs of our method with the out-
puts of three state-of-the-art techniques (Jamriška et al. [JST∗19],

Kolkin et al. [KSS19], and Texler et al. [TFF∗20] (green points)).
In our experiment we wanted to evaluate how well our method re-
produces the given artistic style and how well it preserves the con-
tent of the target image. To perform the evaluation, we collected
data via an online survey, where we presented 170 participants with
a randomized set of comparisons (2AFC) asking to choose which
anonymized stylization reproduces style or preserves content better.
In total each participant responded to 28 questions. In each ques-
tion, an output from a different method was paired with the output
from our technique using the same input data.

The measured preference scores of our method compared to
other techniques can be seen in Fig. 15. We set out a null hypoth-
esis that "there is no statistically significant difference in the con-
tent preservation or style reproduction between the results of our
method and the other methods." Then we discussed the probability
of rejection of the null hypothesis using the data we collected via
Student’s t-test. In the style reproduction category, we were able to
reject the null hypothesis with more then 99% probability in com-
parison to all tested methods in favor of our method. In the content
preservation category, we were able to reject the null hypothesis
with more than 99% probability, but only the comparison with the
method of Jamriška et al. was in favor of our method while the
other two were not.

5. Limitations and Future Work

While our approach improves on current state-of-the-art in
example-based stylization, we have observed some limitations in
how it can be applied.

The most important limitation as compared to related approaches
is notably longer time frame required to finish the optimization,
which might be prohibitive for artist’s exploration. To alleviate this
drawback we envision a combination of fast patch-based training
strategy of Texler et al. [TFK∗20] with the computation of VGG
loss which needs to be performed in a full-frame setting.

c© 2021 The Author(s)
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source render source renderstyle #1 style #2 style #3 style #4 style #5

target render target renderoutput #1 output #2 output #3 output #4 output #5

Figure 10: Stylization of 3D renders (cont.)—a colored 3D model enhanced by a noisy texture (source render) is stylized by hand using
various artistic media (style #1–#5). The resulting image translation network F is then used to stylize the same 3D model (output #1–#5)
rendered from a different viewpoint (target render) in real-time. Source styles (#1–#5) c© Štěpánka Sýkorová, used with permission.

Due to the usage of relatively computationally expensive neural
network model, the maximum resolution is limited. While we are
able to generate output images with resolutions greater than method
of Texler et al. (e.g. 768×768 vs. 512×512), it is still significantly
lower than what patch-based methods [JST∗19] are capable of. As
a future work we envision to alleviate this drawback by combining
our neural approach with patch-based technique of [TFF∗20].

In our proposed workflow an artist is responsible for keyframe
selection. While some rules of thumb can be applied, such as se-
lecting a frame that contains all features that are descriptive for
most other frames, a mechanism which would select the keyframe
automatically would improve ease of use.

A key advantage of our approach over current state-of-the-art in
example-based video stylization [JST∗19, TFK∗20] is greater ro-
bustness to structural discrepancies in the target frames. Even a
relatively significant change such as head rotation is handled rel-
atively well (see Fig. 1). In this case the network can successfully
reproduce newly appearing content while still being able to pre-
serve the notion of important planar structures of the original artis-
tic media. On the other hand, some specific localized features such
as eyes, may remain unchanged (see Fig. 16). A similar issue is
known from visual attribute transfer approaches such as Deep Im-
age Analogy [LYY∗17]. As compared to them our method is able
to adopt to structural changes better (see Fig. 17).

Most significantly, the method does not seem to generalise very
well for completely generic use cases, for example in Fig. 18, where
input images are sampled from different underlying distributions.
Thus the set of potential applications is limited to groups of images
of visually similar settings created under comparable conditions.

6. Conclusion

We presented an approach of semantically meaningful style transfer
that can leverage a limited number of paired exemplars to stylize a
broader set of target images having similar content to the examples.
We optimize weights of an existing image-to-image translation net-
work by minimizing a novel kind of objective function that consid-
ers the consistency among the provided stylized pairs as well as
discrepancy between VGG features of style exemplars and a subset
of stylized target images.

Thanks to this combination, our approach can better preserve
style details even when the target images’ content differs signifi-
cantly from the style exemplar. Moreover, our method implicitly
maintains temporal consistency in the video stylization scenario,
which needs to be treated explicitly in previous techniques. We
demonstrated the benefits of our approach in numerous practical
use cases, including style transfer to videos and faces, auto-painting
of panorama images, and real-time stylization of 3D models and
video calls.

c© 2021 The Author(s)
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source photo target panorama Liao et al.

source style our approach Kolkin et al.

Figure 11: Panorama stylization results—a photo (source photo) is selected from a set of shots taken around the same location by rotating a
camera (target panorama) and stylized using different artistic media (source style). The network is then trained using the stylized pair and
a subset of photos of the panoramic image (target panorama). Finally, the network is used to stylize each shot, and the entire panorama is
stitched together (our approach). In contrast to previous techniques (Liao et al. [LYY∗17] and Kolkin et al. [KSS19]) our approach better
preserves essential artistic features and transfers them into appropriate semantically meaningful locations. See also results with additional
styles in Fig. 12. Source style c© Štěpánka Sýkorová, used with permission.

source photo source style target photo our appproach Gatys et al. Kolkin et al. Fišer et al.

Figure 13: Stylization of portraits—a portrait photo (source photo) taken from a set of portraits captured under similar lighting conditions
is stylized by an artist (source style). The network is then trained on the stylized pair and other portraits from the original set (target photo).
Once trained the network can be used to stylize the other portraits (our approach). Even in this more challenging scenario our method pro-
duces a reasonable compromise between style and identity preservation whereas concurrent techniques suffer either from loosing important
high-frequency details (Gatys et al. [GEB16] and Kolkin et al. [KSS19]) or have difficulties to retain identity (Fišer et al. [FJS∗17]). Source
style (top row) c© Graciela Bombalova-Bogra and style (bottom row) c© Adrian Morgan, used with permission.
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Ours vs. Kolkin et al.
Ours vs. Texler et al.

Content preservation

St
yl

e
pr

es
er

va
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Results of perceptual study—each point represents ag-
gregated votes over a group of 10 participants. On the x axis we
depict the percentage of answers in favor of content preservation of
our method while on the y axis we show the style reproduction per-
centage. Comparisons were performed with the method of Jamriška
et al. [JST∗19] (red points), Kolkin et al. [KSS19] (blue points),
and Texler et al. [TFF∗20] (green points). From the graph it is vis-
ible that our method is observed to reproduce style notably better
than previous works. It also outperforms the method of Jamriška et
al. w.r.t. the content preservation, however, Kolkin et al. as well as
Texler et al. are better in content preservation.
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