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Figure 1. Our method enables control over the diffuseness of light in arbitrary portrait images. We first extract specular/shadow maps from
the input image and then produce a fully diffuse image. Additionally, we show how to recover a uniformly lit image, i.e. tinted by the
average light color, from which we can estimate the untinted albedo. The bottom row illustrates the application of editing the input photo
by gradually increasing the amount of light diffusion.

Abstract

We introduce light diffusion, a novel method to im-
prove lighting in portraits, softening harsh shadows and
specular highlights while preserving overall scene illumi-
nation. Inspired by professional photographers’ diffusers
and scrims, our method softens lighting given only a single
portrait photo. Previous portrait relighting approaches fo-
cus on changing the entire lighting environment, removing
shadows (ignoring strong specular highlights), or removing
shading entirely. In contrast, we propose a learning based
method that allows us to control the amount of light diffu-
sion and apply it on in-the-wild portraits. Additionally, we
design a method to synthetically generate plausible external
shadows with sub-surface scattering effects while conform-
ing to the shape of the subject’s face. Finally, we show how
our approach can increase the robustness of higher level vi-
sion applications, such as albedo estimation, geometry es-
timation and semantic segmentation.

1. Introduction

High quality lighting of a subject is essential for cap-
turing beautiful portraits. Professional photographers go to
great lengths and cost to control lighting. Outside the stu-
dio, natural lighting can be particularly harsh due to direct
sunlight, resulting in strong shadows and pronounced spec-
ular effects across a subject’s face. While the effect can be
dramatic, it is usually not the desired look. Professional
photographers often address this problem with a scrim or
diffuser (Figure 2), mounted on a rig along the line of sight
from the sun to soften the shadows and specular highlights,
leading to much more pleasing portraits [9]. Casual photog-
raphers, however, generally lack the equipment, expertise,
or even the desire to spend time in the moment to perfect the
lighting in this way. We take inspiration from professional
photography and propose to diffuse the lighting on a sub-
ject in an image, i.e., directly estimating the appearance of
the person as though the lighting had been softer, enabling
anyone to improve the lighting in their photos after the shot



Figure 2. Using a bulky scrim (left), a photographer can reduce
strong shadows and specularities. Our proposed approach operates
directly on the original image to produce a similar softening effect.

is taken.
Deep learning approaches have led to great advances in

relighting portraits [12,21,23,26,27,29,33,35,37,38]. Our
goal is different: we want to improve the existing lighting
rather than replace it entirely. This goal has two advan-
tages: the resulting portrait has improved lighting that is
visually consistent with the existing background, and the
task is ultimately simpler, leading to a more robust solution
than completely relighting the subject under arbitrary illu-
mination. Indeed, one could estimate the lighting [14, 15],
diffuse (blur) it, and then relight the subject [12,23,33], but
lighting estimation and the full relighting task themselves
are open research questions. We instead go directly from
input image to diffused-lighting image without any illumi-
nation estimation.

Past works [11, 37] specifically focused on removing
shadows from a subject via CNNs. However, these meth-
ods do not address the unflattering specularities that remain
which our work tackles.

In the extreme, lighting can be diffused until it is com-
pletely uniform. The problem of “delighting,” recovering
the underlying texture (albedo) as though a subject has been
uniformly lit by white light1, has also been studied (most re-
cently in [30]). The resulting portrait is not suitable as an
end result – too flat, not visually consistent with the back-
ground – but the albedo map can be used as a step in portrait
relighting systems [23]. Delighting, however, has proved to
be a challenging task to do well, as the space of materials,
particularly clothing, can be too large to handle effectively.

In this paper, we propose light diffusion, a learning-based
approach to controllably adjust the levels of diffuse light-
ing on a portrait subject. The proposed method is able
to soften specularities, self shadows, and external shadows
while maintaining the color tones of the subject, leading
to a result that naturally blends into the original scene (see
Fig. 1). Our variable diffusion formulation allows us to go
from subtle shading adjustment all the way to removing the
shading on the subject entirely to obtain an albedo robust to
shadows and clothing variation.

Our overall contributions are the following:

1Technically, uniform lighting will leave ambient occlusion in the re-
covered albedo, often desirable for downstream rendering tasks.

• A novel, learning-based formulation for the light dif-
fusion problem, which enables controlling the strength
of shadows and specular highlights in portraits.

• A synthetic external shadow generation approach that
conforms to the shape of the subject and matches the
diffuseness of the illumination.

• A robust albedo predictor, able to deal with color am-
biguities in clothing with widely varying materials and
colors.

• Extensive experiments and comparisons with state-of-
art approaches, as well as results on downstream appli-
cations showing how light diffusion can improve the
performance of a variety of computer visions tasks.

2. Related Work
Controlling the illumination in captured photos has been

exhaustively studied in the context of portrait relighting [12,
21, 23, 26, 27, 29, 33, 35, 37, 38], which tries to address this
problem for consumer photography using deep learning.
Generative models and inverse rendering [1, 7, 17, 22, 28]
have also been proposed to enable face editing and synthe-
sis of portraits under any desired illumination.

The method of Sun et al. [27], was the first to propose a
self-supervised architecture to infer the current lighting con-
dition and replace it with any desired illumination to obtain
newly relit images. This was the first deep learning method
applied to this specific topic, overcoming issues of previous
approaches such as [26].

However, this approach does not explicitly perform any
image decomposition, relying on a full end-to-end method,
which makes its explainability harder. More recent meth-
ods [12, 21, 23, 29] decompose the relighting problem into
multiple stages. These approaches usually rely on a ge-
ometry network to predict surface normals of the subject,
and an albedo predictor generates a de-lit image of the por-
trait, that is close to the actual albedo (i.e. if the person
was illuminated by a white diffuse light from any direction).
A final neural renderer module combines geometry, albedo
and target illumination to generate the relit image. Differ-
ently from previous work, Pandey et al. [23] showed the
importance of a per-pixel aligned lighting representation to
better exploit U-Net architectures [25], showing state-of-art
results for relighting and compositing.

Other methods specifically focus on the problem of im-
age decomposition [2, 3, 13, 18, 19, 24, 30–32], attempt-
ing to decompose the image into albedo, geometry and re-
flectance components. Early methods rely on model fitting
and parametric techniques [2–4, 18], which are limited in
capturing high frequency details not captured by these mod-
els, whereas more recent approaches employ learned based
strategies [13, 19, 24, 31].



In particular, the method of Weir et al. [30] explicitly
tackles the problem of portrait de-lighting. This approach
relies on novel loss functions specifically targeting shad-
ows and specular highlights. The final inferred result is
an albedo image, which resembles the portrait as if it was
lit from diffuse uniform illumination. Similarly, Yang et
al. [32] propose an architecture to remove facial make-up,
generating albedo images.

These methods, however completely remove the light-
ing from the current scene, whereas in photography appli-
cations one may simply want to control the effect of the
current illumination, perhaps softening shadows and spec-
ular highlights. Along these lines the methods of Zhang et
al. [37] and Inouei and Yamasaki [11] propose novel ap-
proaches to generate synthetic shadows that can be applied
to in-the-wild images. Given these synthetically generated
datasets, they propose a CNN based architecture to learn to
remove shadows. The final systems are capable of remov-
ing harsh shadows while softening the overall look. Despite
their impressive results, these approaches are designed to
deal with shadow removal, and, although some softening
effect can be obtained as byproduct of the method, their
formulations ignore high order light transport effects such
as specular highlights.

In contrast, we propose a novel learning based formu-
lation to control the amount of light diffusion in portraits,
without changing the overall scene illumination while soft-
ening or removing shadow and specular highlights.

3. A Framework for Light Diffusion
In this section, we formulate the light diffusion problem,

and then propose a learning based solution for in-the-wild
portraits. Finally we show how our model can be applied to
infer a more robust albedo from images, improving down-
stream applications such as relighting, face part segmenta-
tion, and normal estimation.

3.1. Problem Formulation

We model formation of image I of a subject P in terms
of illumination from a HDR environment map E(θ, φ):

I = R[P,E(θ, φ)] (1)

where R[·] renders the subject under the given HDR envi-
ronment map. We can then model light diffusion as ren-
dering the subject under a smoothed version of the HDR
environment map. Concretely, a light-diffused image Id is
formed as:

Id = R

[
P,E(θ, φ) ∗

cosn+(θ)∑H,W
i,j cosn+(θi,j)

]
(2)

where ∗ represents spherical convolution, and the incident
HDR environment map is smoothed with normalized ker-
nel cosn+(θ) ≡ max(0, cosn(θ)), effectively pre-smoothing

Figure 3. Illumination convolution. Shown are the original en-
vironment and relit image, followed by convolution with cosn+ θ
with varying exponent n, and the resulting Gini coefficient G for
each diffused environment. Note the gradual reduction in light
harshness while still maintaining the overall lighting tone.

the HDR environment map with the Phong specular term.
The exponent n controls the amount of blur or diffusion of
the lighting. Setting n to 1 leads to a diffusely lit image,
and higher specular exponents result in sharper shadows and
specular effects, as seen in Figure 3.

Our goal then is to construct a function f that takes I
and the amount of diffusion controlled by exponent n and
predicts the resulting light-diffused image Id = f(I, n). In
practice, as described in section 3.2.1, we replace n with
a parameter t that proved to be easier for the networks to
learn; this new parameter is based on a novel application
of the Gini coefficient [8] to measure environment map dif-
fuseness.

3.2. Learning-based Light Diffusion

We perform the light diffusion task in a deep learning
framework. We can represent the mapping f as a deep net-
work fβ :

Id = fβ(I, t) (3)

where β represents the parameters of the network. To super-
vise training, we capture subjects in a light stage and, using
the OLAT images [6], synthetically render each subject un-
der an HDRI environment E(θ, φ) and a diffused version of
that environment E(θ, φ) ∗ cosn+(θ), providing training pair
I and Id.

In practice, we obtain better results with a sequence of
two networks. The first network estimates a specular map
S, which represents image brightening, and a shadow map
D, which represents image darkening, both relative to a
fully diffusely lit (n = 1) image. Concretely, we generate
the fully diffused image Idiffuse as described in Equation 2
with n = 1 and then define the shadow D and specular S
maps as:

S = max(min(1− Idiffuse/I, 1), 0) (4)
D = max(min(1− I/Idiffuse, 1), 0) (5)



Figure 4. Architecture for parametric diffusion. Taking a portrait image with an alpha matte, the first stage predicts specular and shadow
maps. The second stage uses these maps and the source image to produce an image with light diffused according to an input diffusion
parameter. The result is composited over the input image to replace the foreground subject with the newly lit version.

Given the light stage data, it is easy to additionally synthe-
size Idiffuse and compute S and D for a given HDR envi-
ronment map E to supervise training of a shadow-specular
network gβs

:
{S,D} = gβs(I) (6)

The light diffusion network then maps the input image
along with the specular and shadow maps to the final result:

Id = hβd
(I, S,D, t) (7)

Note that, as we are not seeking to modify lighting of the
background, we focus all the computation on the subject in
the portrait. We thus estimate a matte for the foreground
subject and feed it into the networks as well; I then is rep-
resented as the union of the original image and its portrait
matte. The overall framework is shown in Figure 4.

In addition, we can extend our framework to infer a more
robust albedo than prior work, through a process of repeated
light diffusion. We now detail each of the individual compo-
nents of the light diffusion and albedo estimation networks.

3.2.1 Network details

Specular+Shadow Network The specular+shadow net-
work gβs

is a single network that takes in the source im-
age I along with a pre-computed alpha matte [23], as a
1024 × 768 × 4 dimensional tensor. We used a U-Net
[25] with 7 encoder-decoder layers and skip connections.
Each layer used a 3 × 3 convolution followed by a Leaky
ReLU activation. The number of filters for each layer is
24, 32, 64, 64, 64, 92, 128 for the encoder, 128 for the bot-
tleneck, and 128, 92, 64, 64, 64, 32, 24 for the decoder. We
used blur-pooling [36] layers for down-sampling and bilin-
ear resizing followed by a 3×3 convolution for upsampling.
The final output - two single channel maps - is generated by
a 3× 3 convolution with two filters.

Parametric Diffusion Net The diffusion network hβd

takes the source image, alpha matte, specular map, shadow
map, and the diffusion parameter t (as a constant channel)
into the Diffusion Net as a 1024× 768× 7 tensor. The Dif-
fusion Net is a U-Net similar to the previous U-Net, with
48, 92, 128, 256, 256, 384, 512 encoder filters, 512 bottle-
neck filters, and 384, 384, 256, 256, 128, 92, 48 decoder fil-
ters. The larger filter count accounts for the additional dif-
ficulty of the diffusion task.

Diffusion parameter choice The diffusion parameter t
indicates the amount of diffusion. While one can naively
rely on specular exponents as a control parameter, we ob-
served that directly using them led to poor and inconsis-
tent results, as the perceptual change for the same specular
convolution can be very varied for different HDR environ-
ments, for instance, a map with evenly distributed lighting
will hardly change, whereas a map with a point light would
change greatly. We hypothesize the non-linear nature of this
operation is difficult for the model to learn, and so we quan-
tified a different parameter based on a measure of ‘absolute’
diffuseness.

To measure the absolute diffusivity of an image, we ob-
served that the degree of diffusion is related to how evenly
distributed the lighting environment is, which strongly de-
pends on the specific scene; e.g., if all the lighting comes
from a single, bright source, we will tend to have harsh
shadows and strong specular effects, but if the environment
has many large area lights, the image will have soft shadows
and subdued specular effects. In other words, the diffusiv-
ity is related to the inequality of the lighting environment.
Thus, we propose to quantify the amount of diffusion by
using the Gini coefficient [8] of the lighting environment,
which is designed to measure inequality. Empirically, we
found that the Gini coefficient gives a normalized measure-
ment of the distribution of the light in an HDR map, as seen
in Figure 5, and thus we use it to control the amount of dif-



Figure 5. Gini coefficients G of some HDR maps and their relit
images. Similar Gini coefficients approximately yield a similar
quality of lighting, allowing a consistent measure of diffusion.

fusion.
Mathematically, for a finite multiset X ⊂ R+, where

|X| = k, the Gini coefficient, G ∈ [0, 1], is computed as

G =

∑
xi,xj∈X |xi − xj |
2k

∑
xi∈X xi

. (8)

For a discrete HDR environment map, we compute the Gini
coefficient by setting each xi ∈ X to be the luminance
from the ith sample of the HDR environment map. For
instance, on a discrete equirectangular projection E(θ, φ)
where (θ, φ) ∈ [0, π]× [0, 2π), the ith sample’s light contri-
bution is given by E(θi, φi) sin(θi), where sin(θi) compen-
sates for higher sampling density at the poles. If we indicate
the ith sample of E by Ei, the coefficient is then given by

G =

∑
i

∑
j |Ei sin(θi)− Ej sin(θj)|
2k

∑
iEi sin(θi)

(9)

where i, j range over all samples of the equirectangular map
and k is the total number of samples in the map.

Finally, as an input parameter, we re-scaled this abso-
lute measure based on each training example: t = (Gt −
Gd)/(Gs−Gd), whereGt is the Gini coefficient for the tar-
get image, Gd is the Gini coefficient for the fully diffused
image (diffused with specular exponent 1), and Gs is the
Gini coefficient for the source image. Parameter t ranges
from 0 to 1, where 0 corresponds to maximally diffuse
(Gt = Gd) and 1 corresponds to no diffusion (Gt = Gs).

3.2.2 Albedo Estimation

We observed that the primary source of errors in albedo es-
timation in state-of-the-art approaches like [23] arises from
color and material ambiguities in clothing and is exacer-
bated by shadows. The albedo estimation stage tends to
be the quality bottleneck in image relighting, as errors are
propagated forward in such multistage pipelines. Motivated
by this observation, we propose to adapt our light diffusion
approach to albedo estimation (Figure 6).

While the fully diffuse image (diffused with n = 1) re-
moves most shading effects, the approach can be pushed

further to estimate an image only lit by the average color of
the HDRI map, i.e., a tinted albedo. Since the diffuse con-
volution operation preserves the average illumination of the
HDR environment map and acts as a strong smoothing op-
eration, repeated convolution converges to the average color
of the HDR environment map. We found that iterating our
diffusion network just three times (along with end-to-end
training of the iteration based network) yielded good results.
An alternative formulation of this problem is to pass the
fully diffuse image into a separate network which estimates
this tinted albedo, and we show a comparison between these
two in the supplementary material.

To remove the color tint, we crop the face – which resides
in the more constrained space of skin tone priors – and train
a CNN to estimate the RGB tint of the environment, again
supervised by light stage data. We then divide out this tint
to recover the untinted albedo for the foreground.

3.3. Data Generation and Training Details

To train the proposed model, we require supervised pairs
of input portraits I and output diffused images Id. Follow-
ing previous work [23], we rely on a light stage [10, 20]
to capture the full reflectance field of multiple subjects as
well as their geometry. Our data generation stage consists
of generation of images with varying levels of diffusion as
well as the tinted and true albedo maps, to use as ground
truth to train our model.

Importantly, we also propose a synthetic shadow aug-
mentation strategy to add external shadow with subsurface
scattering effects that are not easily modeled in relit images
generated in the light stage. We extend the method pro-
posed by [37] to follow the 3D geometry of the scene, by
placing a virtual cylinder around the subject with a silhou-
ette mapped to the surface. We then project the silhouette
over the 3D surface of the subject – reconstructed from the
light stage dataset – from the strongest light in the scene
followed by blurring and opacity adjustment of the result-
ing projected shadow map, guided by the Gini coefficient
of the environment (smaller Ginis have more blur and lower
shadow opacity). The resulting shadow map is used to blend
between the original image and the image after removing
the brightest light direction contribution. This shadow aug-
mentation step is key to effective light diffusion and albedo
estimation.

We also augmented with subsurface scattering effects,
since the light stage dataset does not include hard shadows
cast by foreign objects. We implemented a heuristic ap-
proach which uses the shadow map and a skin segmentation
map to inpaint a red tint around shadow edges inside de-
tected skin regions.

For more details on our training dataset, our approach for
shadow augmentation, and specifics of model training and
loss functions, please refer to our supplementary material.



Figure 6. Architecture of our proposed extension of light diffusion to albedo prediction. We recurrently apply diffusion network N times
to an image, yielding an albedo map tinted by the average color of scene light. We train a model to estimate this tint, then divide it out to
produce an untinted albedo image. In this case, a warmer albedo color arises after removing the blue tint introduced by the sky illumination.

4. Experiments
In this section we experimentally verify the design

choices of our architecture with qualitative and quantitative
comparisons, and also show the effect of light diffusion on
inputs for tasks like geometry estimation, semantic segmen-
tation and portrait relighting.

4.1. Evaluation Datasets

We created two evaluation datasets, one from light stage
images, where ground truth is available, and the other from
a selection of in the wild images with harsh lighting condi-
tions. Despite having no ground truth, qualitative results on
the in-the-wild set are critical in evaluating the generaliza-
tion ability of our model.

The light stage dataset consists of six subjects with di-
verse skin tones and genders lit by ten challenging light-
ing environments. The subjects as well as the HDRI maps
are withheld from training and used to compute quantitative
metrics against the ground truth.

The in-the-wild dataset consists of 282 diverse portrait
images in various realistic lighting conditions that highlight
the usefulness of the proposed Light Diffusion. We use this
set to show qualitative results for ablation studies and com-
parison against the state-of-the-art.

4.2. Full Diffusion Results

First, we trained models that predicted fully diffuse re-
sults – the most difficult case – to compare various de-
sign choices of the proposed algorithm. Figure 7 shows a
comparison among three architectures. From left to right
these are, (1) A model trained to predict a fully diffuse im-
age on data without any of our proposed external shadow
augmentation techniques, (2) A large model with twice as
many filters but without the shadow/specular maps predic-
tion network, and (3) Our proposed architecture. Note that
the model trained without shadow augmentation does sig-
nificantly worse with shadow removal, and even a larger
model trained on this data struggles with shadow edges, de-
spite having a comparable number of parameters to our pro-

Figure 7. Fully diffuse ablation study. Left to right: source image,
model with no shadow augmentation, model with twice as many
filters but no shadow or specular map, proposed model.

posed approach. Table 1 shows quantitative metrics com-
puted on the light stage data. The large U-Net (with no
shadow/specular maps) does marginally better on average
metrics, however, as shown in Figure 7, this does not hold
on qualitative results on in-the-wild data, suggesting the in-
creased parameter count caused overfitting to light stage im-
ages.

4.3. In-the-Wild Applications

In this section, we show the results of our approach on a
variety of applications. As byproduct, the proposed frame-
work can be used for multiple computational photography
experiences as well as to improve downstream computer vi-
sion tasks.



Model MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓
Proposed 0.0098 0.0006 0.9692 0.0340
No shadow aug. 0.0123 0.0009 0.9563 0.0503
Large model 0.0094 0.0005 0.9749 0.0304

Table 1. Quantitative metrics for fully diffuse prediction ablation
study. Although the large model with no shadow/specular maps
seems to do slightly better on average, results on in-the-wild data
(Figure 7) suggests that it substantially overfits to the light stage
data.

Figure 8. Comparison with [37]. Note how our method better
softens portraits, removing shadows and specular highlights.

Shadow Removal. In Figure 8 we compare our fully dif-
fuse output with that of the shadow removal approach pro-
posed in [37]. Note that our model not only diffuses hard
shadow edges better, but can also reduce harsh specular ef-
fects on the skin.

Albedo Prediction. In Figure 9 we compare our approach
to state-of-the-art delighting approaches [23, 30, 34]. Note
that all previous approaches suffer from artifacts on cloth-
ing due to color ambiguities or harsh shadows, whereas
our proposed algorithm correctly removes shadows and pro-
duces accurate skin tones, with no artifacts on clothing. We
also provide an ablation on albedo prediction architecture
choices in our supplementary text.

Parametric Diffusion. In Figure 10 we also show the
range of outputs our parametric diffusion model can pro-
duce. This is a critical feature of our proposed application,

Figure 9. Albedo prediction comparisons against state of the art.
Our approach has markedly better color stability, shadow removal,
and skin tone preservation across subjects. From left to right:
source, Total Relighting [23], Deep Portrait Delighting [30], Lu-
mos [34], our model.

Figure 10. Parametric diffusion results. The model is able to
gradually remove harsh shadows and specular effects, across skin
tones, complex and deep shadows, and highly saturated images.
Shown is the source image, followed by our model output at the
shown diffusion parameters.

since the fully diffuse output may appear too “flat” for com-
positing back into the original scene. With such control
scheme, a user can choose the level of diffusion accord-
ing to the level of contrast / drama they might be going for
in the portrait. Note that our model can produce an aes-
thetically pleasing range of diffusion levels, with speculars
being gradually reduced and harsh shadow edges being re-
alistically blurred. A naive interpolation approach between



the source and fully diffuse output would leave behind un-
natural shadow edges.

Figure 11. Example of replacing albedo prediction within Total
Relighting [23] with our albedo. From left to right: input im-
age, albedo estimated by Total Relighting, albedo estimated by our
method, image relit by Total Relighting using original albedo and
image relit by Total Relighting using our albedo. Our approach
is notably better at dealing with external shadows (top row) and
clothing discoloration (bottom row), resulting in more realistic re-
lighting results.

Portrait Relighting. As mentioned in the previous sec-
tions, the albedo estimation stage tends to be the bottleneck
in quality for state-of-the-art portrait relighting approaches
like [23]. In Figure 9 we show that our albedo estimation
approach is significantly more robust to artifacts that arise
from color ambiguities and harsh shadows. In Figure 11 we
show the effect of using our estimated albedo and feeding
it into the relighting module of [23]. Note that the relit re-
sult quality greatly benefits from our albedo, and no longer
shows artifacts on clothing or harsh shadow regions.

Other Applications. While controlling the amount of
light diffusion in a portrait is a crucial feature itself for
computational photography, it can also be used as pre-
processing step to simplify other computer vision tasks. The
importance of relighting as a data augmentation strategy has
been demonstrated in various contexts [5, 28], and here we
show that reducing the amount of unwanted shadows and
specular highlights has a similar beneficial effect to down-
stream applications. In Figure 12 we show the effect of
using a diffuse image instead of the original for an off-the-
shelf normal map estimator [23] and semantic segmenter for
face parsing [16]. In both cases, artifacts due to the external
shadow are removed by using the fully diffuse input.

5. Discussion
We proposed a complete system for light diffusion, a

novel method to control the lighting in portrait photogra-
phy by reducing harsh shadows and specular effects. Our
approach can be used directly to improve photographs and
can aid numerous downstream tasks. In particular, we have

Figure 12. Light diffusion (bottom left) can improve results
of state-of-the-art image processing methods, such as face pars-
ing [16] (middle, improvement in green boxes) or normal map es-
timation (right, removal of shadow embossing).

shown that light diffusion generalizes well to albedo predic-
tion, greatly improving on the state of the art. We have also
shown that geometry estimation and semantic segmentation
is improved, and we expect that the process should improve
many other downstream portrait-based vision tasks.

Figure 13. Limitations of our approach. After full diffusion, the
model can sometimes lighten facial hair. The model also has trou-
ble with dark sunglasses, tending to inpaint them with skin shades.

Limitations. Despite vastly increasing the domain of ma-
terials that can have lighting adjustments, our model has
some limitations, as shown in Figure 13. In particular, we
notice that dark facial hair tends to be lightened, perhaps
due to its resemblance to a shadow region. In addition, our
model has trouble with dark sunglasses, tending to add skin
tones to them. Other limitations include over-blurring ex-
cessively diffused images where fine details should be syn-
thesized instead, failure to remove very strong specularities
and occasional confusion of objects for shadows.

Fairness. Our results have shown that our proposed ap-
proach works well across a variety of skin tones. To validate
this, we also ran a detailed fairness study to analyze results
across different Fitzpatrick skin tones. Please refer to our
supplementary material for details.
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