
Example-Based Authoring of Expressive Space Curves

Jiří Minarčík
Independent Researcher, Praha, Czech Republic

Jakub Fišer
Adobe Research, 1 Old Street Yard, London, EC1Y 8AF, United Kingdom

Daniel Sýkora
Czech Technical University in Prague, Faculty of Electrical Engineering, Karlovo náměstí 13, Praha 2, 121 35, Czech

Republic

Abstract

In this paper we present a novel example-based stylization method for 3D space curves. Inspired by image-
based arbitrary style transfer (e.g., Gatys et al. [1]), we introduce a workflow that allows artists to transfer
the stylistic characteristics of a short exemplar curve to a longer target curve in 3D—a problem, to the best
of our knowledge, previously unexplored. Our approach involves extracting the underlying, unstyled form of
the exemplar curve using a novel smoothing flow. This unstyled representation is then aligned with the target
curve using a modified Fréchet distance. To achieve precise matching with reduced computational cost, we
employ a semi-discrete optimization scheme, which outperforms existing methods for similar curve alignment
problems. Furthermore, our formulation provides intuitive controls for adjusting stylization strength and
transfer temperature, enabling greater creative flexibility. Its versatility also allows for the simultaneous
stylization of additional attributes along the curve, which is particularly valuable in 3D applications where
curves may represent medial axes of complex structures. We demonstrate the effectiveness of our method
through a variety of expressive stylizations across different application contexts.

Keywords: Style Transfer, Curve Analogies, Space Curves, Ribbons
2020 MSC: 53A04, 65D17, 35K55, 49M41

Email addresses: jiri@minarcik.com (Jiří Minarčík),
fiser@adobe.com (Jakub Fišer), sykorad@fel.cvut.cz
(Daniel Sýkora)

URL: https://minarcik.com/ (Jiří Minarčík),
https://research.adobe.com/person/jakub-fiser/ (Jakub
Fišer), https://dcgi.fel.cvut.cz/home/sykorad (Daniel
Sýkora)

1. Introduction

Example-based style transfer to images has be-
come a prominent research area, largely driven by
advancements in deep neural networks [1]. These
techniques transfer the style of one image onto the
content of another, effectively recreating the content
image with the stylistic attributes of the style image
while preserving its underlying structure. While sig-
nificant progress has been made with raster images,
example-based style transfer for 3D vector curves re-

Preprint submitted to Computers & Graphics June 11, 2025

mains largely unexplored. A foundational work in
this area is Curve Analogies by Hertzmann et al. [2],
which extends the concept of Image Analogies [3] to
2D curves. Given a stylized curve and its unstyled
counterpart, this method can transfer the style to a
target curve. Despite its impressive 2D results, Curve
Analogies has not, to our knowledge, been extended
to 3D. While Hertzmann et al. suggest the poten-
tial for extending their approach to 3D surfaces (as
later demonstrated by Zelinka and Garland [4]), the
concept of 3D curve analogies has not been specif-
ically addressed. A key challenge in extending this
approach to 3D is the requirement of an unstyled
counterpart for each stylized curve. Even when such
a counterpart exists, establishing a robust correspon-
dence between the stylized and unstyled versions to
avoid transfer artifacts is a complex problem.

In this paper, we formulate an alternative ap-
proach to example-based stylization of 3D curves that
requires only the stylized and target curve as an
input—like in the domain of arbitrary style trans-
fer to raster images [1]. To avoid the need for an
unstyled version of the stylization exemplar, we in-
troduce a new smoothing flow specifically designed
for 3D curves. This flow uses smooth tangent redis-
tribution to enhance numerical stability, effectively
generating a suitable unstyled counterpart. To estab-
lish precise correspondence between the unstyled and
stylized curves, we develop a variant of the Fréchet
distance that better captures overall matching qual-
ity. We minimize this distance using a semi-discrete
optimization scheme that retains the style curve in
the continuous domain. This enables us to achieve
analytically precise matching and significantly reduce
the computational overhead compared to the discrete
method of Hertzmann et al. [2]. Our novel formu-
lation also introduces two new intuitive user con-
trols: (1) style strength, which scales the displace-
ment map to modulate the stylization effect, and
(2) transfer temperature, which influences the opti-
mization scheme, allowing the users to better express
their creative vision. Furthermore, our method can
be extended to incorporate additional metric-based
information, such as thickness, frame orientation, or
drawing speed. This capability is particularly rele-
vant in 3D applications, where curves can represent

medial axes of tubes or ribbons. The efficacy of the
proposed method is demonstrated through a range
of expressive stylizations applied within diverse con-
texts.

2. Related Work

While research specifically addressing the style
transfer to 3D curves remains limited, we leverage
the extensive literature on stylization of raster im-
ages, 2D curves, and meshes. We focus on the meth-
ods that are most relevant to our work, specifically
those that deal with example-based style transfer.

Image analogies, introduced by Hertzmann et al. in
their seminal work [3], offered a novel and intuitive
approach to image stylization. By using a single
pair of images called source and exemplar the user
can define a style transformation that can be sub-
sequently applied to a given target image. While
initially demonstrated on raster images, the concept
was later extended to 2D curves [2]. In this method
curves are modelled as polylines, representing style
through curve statistics sampled at regular intervals
along their length. However, extension to 3D was not
addressed. One of the reasons for this omission can be
the fact that specifying source and exemplar curves
in 3D can be challenging for users. Moreover, auto-
matic estimation of correspondences between source
and exemplar curves is a delicate process that is fur-
ther complicated by higher dimensionality. Inaccura-
cies in this step can introduce noticeable artifacts.

The follow-up approach of Zelinka and Garland [4]
extends the original idea of curve analogies into 3D
to modify the geometry of meshes, however, still the
curve examples are mostly planar. Wu et al. [5] use
curve analogies for motion editing and transfer, op-
erating in a limited setting of space-time curves rep-
resenting motion trajectories. Lang and Alexa [6]
utilize a double chain Markov model [7] to stylize
curves in an online fashion, where the output curve
is generated by sampling from a distribution learned
on a pair of user-supplied input and output curves.
Their approach is still 2D, however, they allow for
line overshoots, gaps, overdrawing, and support fold-
ing avoidance.

2

Numerous approaches such as the one by Bhat et
al. [8] divert from curves and use filtered and unfil-
tered versions of meshes as source-exemplar pairs to
transfer geometric texture detail. Similarly, Liu and
Jacobson [9] use mesh surface normals to capture and
transfer geometric detail from one mesh to another,
and Berkiten et al. [10] use metric learning to find a
combination of geometric features predicting detail-
map similarities on the source mesh, and use their
combination to drive the detail transfer.

Ma et al. [11] uniformly sample the model surfaces
and find correspondences between the source and ex-
ample, then compute a set of dominant similarity
transformations between the source and the target,
and, finally, use multi-label optimization to compute
the best source-to-target analogies. This works well
for man-made or engineered shapes but is not well-
suited for more organic shapes.

Stylized curves can also be generated by segment-
ing the input curve and then rearranging the resulting
pieces. Each segment undergoes some preprocessing
before this rearrangement to create the desired styl-
ized effect. Merrell et al. [12] use a graph data struc-
ture to represent how the parts of the curve connect
and allows for branching, while Roveri et al. [13] rely
on point samples with attributes extracted from the
input structures, including curves. A particularly rel-
evant scenario in this context is iterative application
of a small texture sample along a curved path. Zhou
et al. [14] use dynamic programming to find a glob-
ally optimal solution that can preserve the geometric
continuity of structured patterns even in areas of high
curvature, albeit at the cost of occasional local diver-
gence from the prescribed curve geometry. Although
the above mentioned approaches can work with 3D
structures and do not require the specification of base
curves, they keep the exemplar parts unchanged and
just apply shape-preserving deformation on them.

Our approach draws inspiration from and shares
similarities with the 2D raster stroke synthesis tech-
nique of Lukáč et al. [15] that employs randomized
patch graph traversal and multi-level blending to gen-
erate seamless, non-repetitive textures. We demon-
strate how to adapt this concept to the domain of
example-based stylization of 3D vector curves, which
can eliminate the requirement to specify source-

exemplar pairs.

3. Preliminaries

In this work we consider open space curves Γ
parametrized by a function γ : I → R3 on a closed in-
terval I ⊂ R. We assume that the parameterization is
regular (i.e., ∥∂uϕ∥ is strictly positive) and the curve
has appropriate regularity (at least C2). When γ is
parametrized by its arclength, we denote the param-
eter s instead of u and use ∂s. We also define the
family of curve {Γt}t∈[0,tm] evolving on time inter-
val [0, tm] with tm > 0, which is defined by the joint
parametric function γ : I × [0, tm]→ R3. We use ∂tγ
to denote the partial derivative w.r.t. the time pa-
rameter t.

Moving Frames. The Frenet frame is denoted
by {t,n,b} with t, n and b standing for the tan-
gent, normal and binormal vectors, resp. Unlike
in the planar case, the Frenet normal vector n is
not always well-defined and it can discontinuously
change direction at inflection points where the cur-
vature vanishes [16]. In some parts of our method,
we thus adopt an alternative Rotation Minimising
Frame (RMF) {t,n′,b′} from [17].

Augmented Curves. We use the term augmented
curve to denote the tuple (Γ, ϕ), where Γ is a space
curve and ϕ : I → Ωϕ is a map defined on the same
domain I as the base curve Γ. The map ϕ returns val-
ues from an associated metric space Ωϕ with metric
denoted by ρϕ. For convenience, the notation of the
arclength parameter s and arc length derivative ∂s is
extended to ϕ, i.e., ∂sϕ = ∥∂uγ∥−1∂uϕ.

Style Analogies. We define a finite collection of
curves as a scene S = {Γi}ni=1. The core of our
method involves solving the problem of scene analo-
gies defined, in the spirit of image analogies [3], as:

Guide scene
↓
SG : SS

↑
Style scene

::

Target scene
↓
ST : SR

↑
Result scene

3

Figure 1: Results from our curve stylization pipeline (Alg. 1) applied to a large-scale scene using the Lorenz attractor as the
target curve ΓT . The guide curve ΓG, automatically generated from the style curve ΓS (Sec. 4.1), enables the stylized centerline
ΓR (center). The stylized ribbon Γ′

R (right) demonstrates an extension of our method as described in Sec. 5.

Domain Name Sec.
α (0, 1) length-preserving coeff. 4.1
β (0, 1) separation weight 4.2
p N patch size 4.4
σ R+ transfer magnitude 4.5.3
τ R+ temperature 4.4.1

Table 1: An overview of adjustable parameters from Sec. 4.

The style and target scenes must be provided by the
user, the guide scene is optional and otherwise com-
puted automatically.

4. Method

This section describes our solution to the prob-
lem of scene analogies with curves that can be aug-
mented by a general map ϕ. The core of our ap-
proach, sketched in the pseudocode below, is inspired
by Lukáč et al. [15], where patches of texture from
a stylized image are generated along a target curve
by finding the shortest path between the style image
patches using [18]. Instead of texture patches, our
method is synthesizing a new displacement geometry
along the target shape. To eliminate the need for a
guide scene, we propose several preprocessing steps
that rely solely on the style exemplar. These steps
can be carried out only once and reused for multiple
different targets, making the application of the style
suitable for interactive environments. To simplify the
notation we explain most parts of the algorithm for a

single curve Γ and invoke the notion of scenes S only
when necessary.

Algorithm 1 Scene Analogies

In: Style and target scene SS and ST . (Guide
scene SG optional.)

Out: Result scene SR. (Optionally guide scene SG
as a byproduct.)

▽ Preprocessing (target-independent)
1: if SG not provided then
2: SG ← CreateGuide(SS) ▷Sec. 4.1
3: end if
4: SG ← MatchGuide(SG,SS) ▷Sec. 4.2
5: Sδ ← ComputeDisplacement(SG,SS) ▷Sec. 4.3
6: G ← PreparePatchGraph(SS ,Sδ) ▷Sec. 4.4

△ End of preprocessing
7: SR ← ApplyStyle(ST ,G,Sδ) ▷Sec. 4.5
8: return SR, (SG)

4.1. Automatic Guide Creation
A key added value of our method in contrast to the

approach of Hertzmann et al. [2] is that we can auto-
matically generate the guide curve ΓG from the style
curve ΓS and thus move beyond the analogy-based
framework to one more akin to style transfer [1]. This
capability is particularly beneficial in the context of
3D curve modeling where supplying the guide curve
manually can be notably more complicated than in
2D. When generating ΓG we assume that shape style
information is encapsulated in higher-frequency com-
ponents. We thus smooth out the original curve to

4

obtain its sort of medial axis and then find an ap-
propriate matching between the two curves. This
step has to be executed carefully since inaccuracies in
the guide shape can compromise the following steps.
We specifically need to avoid discretization degrada-
tion, unnecessary shrinking, and other artifacts. Ba-
sic smoothing algorithms such as FFT-based low-pass
filter tend to create spurious oscillations and artifacts
at the curve endpoints. An alternative could be to
use a Gaussian smoothing filter or a curve shortening
flow (CSF) given by ∂tγ = κn = ∂2

sγ. Nonetheless,
for a strong enough smoothing both methods tend
to introduce undesired artifacts caused by excessive
shrinking. To alleviate this drawback, we formulate a
novel variant of length-preserving curvature flow [19]
for curves in R3.

Length-Preserving Flow. The original length-
preserving curvature flow defined by Ma and
Zhu [19] reads ∂tγ = (κ − F)n where the forcing
term F preventing unwanted shrinking is given by

F =

(∫
Γt

κds

)−1 ∫
Γt

κ2ds. (1)

A key complication here is that for curves in R3, F is
not defined at the inflection points where κ = 0 and n
does not exist. Note, that the original CSF ∂tγ = κn
is well-defined because when κ = 0, the direction n is
not needed and the velocity term κn can be contin-
uously extended. We use this observation and pro-
pose ∂tγ = κ(1− κF ′)n with force

F ′ =

(∫
Γt

κ3ds

)−1 ∫
Γt

κ2ds.

We further modify the flow by adding a coeffi-
cient α ∈ (0, 1) that controls the extent to which is
the curve allowed to shrink. To show that this motion
law indeed preserves length L(Γt) when α = 1, we
use the general evolution of local quantities from [20].
Specifically, using the formula for the local commu-
tator [∂s, ∂t] = ∂t∂s − ∂s∂t = κ2(1 − ακF ′) we can

differentiate the length in time:

d

dt

∫
Γt

ds = −
∫
Γt

κ2ds + αF ′
∫
Γt

κ3ds

= (α− 1)

∫
Γt

κ2ds. (2)

Tangential Redistribution. To prevent accumulation
of points at high-curvature regions and avoid as-
sociated numerical instabilities, we also add a tan-
gential component ϑtt to the velocity, i.e., we con-
sider ∂tγ = κ(1 − ακF ′)n + ϑtt =: ϑnn + ϑtt. This
term does not affect the shape but leads to the redis-
tribution of points along the curve. We use the same
principle as in, e.g., [21, 22] but adapt it to our flow
by setting the tangential velocity ϑt to

ϑt(s) = ϑt(0) +

∫ s

0

ϑnds
′ + s(1− α)−

∫
Γt

κ2ds′, (3)

where ϑt(0) is set by
∫
Γt

ϑtds = 0, as

ϑt(0) = −
∫
Γt

(∫ s

0

κϑnds
′ + s(1− α)F

)
ds,

and −
∫
Γt

indicates the curve integral normalized by
the length L(Γt).

Proposition 1. The modified flow with tangential
velocity ϑt from Eq. 3 preserves the relative local
length L(Γt)

−1∥∂uγ∥.

Proof. With ϑt, the parametrization rate evolves as

∂t∥∂uγ∥ = (−κ2(1− ακF ′) + ∂sϑt)∥∂uγ∥.

Using a similar calculation as in Eq. 2, we derive

d

dt

∥∂uγ∥
L(Γt)

=
∥∂uγ∥
L(Γt)

[
−κϑn + ∂sϑt − (1− α)−

∫
Γt

κ2ds

]
.

Substitution of ∂sϑt from Eq. 3 indeed shows that the
right-hand side is zero and the relative local length is
constant.

As a consequence of Prop. 1, when the initial
curve Γ0 = ΓS is equidistantly discretized, the points
will tend to be equidistantly spaced along Γt at each

5

time step t. Altogether we arrive at the following
initial value problem for the parametrization γ:

∂tγ = κ(1− ακF ′)n+ ϑtt on S1 × [0, tm], (4)

γ|t=0 = γS in S1.

In summary, we propose three key modifications to
the original CSF: (1) a well-defined forcing term that
preserves length, (2) an α parameter that controls
the rate at which the length decreases, and (3) an
optimal tangential velocity ϑt adapted for our flow.

Numerical Integration. To numerically integrate the
flow, we use the Euler method with finite difference
approximation of the right-hand side. The integrals
from F and ϑt are approximated using the discrete
curvature based on Steiner formula with line segment
corner expansion from [23]. For examples showcased
in our results, we use α = 0.5.

4.2. Guide Curve Matching
Robust and precise guide matching is another cru-

cial step behind the success of our method. We for-
mulate the energy inspired by Fréchet distance but
more tailored to our problem. To minimize this en-
ergy we developed a semi-discrete approach where the
style curve is continuous. This leads to both more
precise matching and notably lower computational
overhead.

Continuous Formulation. Given ΓG and ΓS we
aim to construct an optimal increasing bijec-
tion δ : [0, LG]→ [0, LS] with fixed endpoints δ(0) =
0 and δ(LG) = L(γS). The optimal matching δ is ob-
tained by minimizing the following energy functional:

E [δ] = βEs[δ] + (1− β)Ed[δ],

where β ∈ (0, 1) is a prescribed coefficient. The sep-
aration energy Es[δ] and the distortion energy Ed[δ]
are defined as

Es[δ] =
∫
ΓG

∥γδ(s)∥2ds,

Ed[δ] =
∫
ΓG

(
δ(s)− LS

LG
s
)2

ds,

where γδ = γS ◦ δ − γG.

Discrete Matching. One way to solve the optimiza-
tion problem δ = argminδE [δ] is to use the connection
with the problem of computing the discrete Fréchet
distance between two curves given by

ρF (γG, γS) = inf
δ
max

s
∥γδ(s)∥.

This can be done by modifying the dynamic pro-
gramming approach of Alt and Godau [24], adjust-
ing their energy function to remember the best path
and ensure strictly increasing sequences to obtain a
bijection. To achieve a precise match, one could first
redistribute points along ΓS to a fine mesh and then
apply the algorithm with a fixed discretization of ΓG.

Semi-Discrete Matching. For
curves with ΓS and ΓG with N
and M points, respectively,
both the computational and
space complexity of the dy-
namic programming approach
is O(NM) due to the compu-
tation of the energy matrix. As
our use case requires large N to obtain a precise
match, we propose an alternative optimization-based
approach that lets the matching points on ΓS move
freely along its smooth interpolation. This way, we
both increase the precision (measured by the final
achieved energy E) as well as make the algorithm
much faster and more memory efficient.

We consider discretization of the guide curve Γ′
G =

{Γ′
G,i}Ni=1 ⊂ R3 and its length L′

G and define the
semi-discrete displacement map as δ′ : N≤N 7→ [0, L′

S]
with fixed endpoints δ′1 = 0 and δ′N = L′

S where δ′i
denotes δ′(i) for convenience. The assumption here
is that Γ′

G is discretized equidistantly and ΓS is a
smooth interpolation of the discretized Γ′

S . Then a
semi-discrete version of the energy E [δ] can be defined
as E ′[δ′] = βE ′s[δ′] + (1− β)E ′d[δ′] where

E ′s[δ′] =
N−1∑
i=2

∥γ′
G,i − γS(δ

′
i)∥2,

E ′d[δ′] =
N−1∑
i=2

(
δ′i − LS

L′
G
i
)2

.

6

We can compute the gradients w.r.t. δ′(i) as

[∇E ′s]i = −2
〈
γ′
G,i − γS(δ

′
i), tS(δ

′
i)
〉
,

[∇E ′d]i = 2
(
δ′i − LS

L′
G
i
)
,

where tS is the tangent vector of ΓS . The gradient of
the full energy is then obtained from chain rule∇E ′ =
β∇E ′s+(1−β)∇E ′d and the Hessian for the full energy
reads HE ′ = HE ′s = HE ′d = 2I.

Optimization. To ensure valid one-to-one mapping
between the guide curves Γ′

G and ΓS during optimiza-
tion, we implement constrained gradient descent. For
each update of δ′ we compute the upper and lower
bounds of each point to ensure that the neighbor-
ing points cannot reverse their order. Any excessive
changes are then clipped to keep δ non-decreasing.

4.3. Transform Displacement Vectors
To reproduce the local geometric features of ΓS , we

consider the displacement map γδ = γS ◦ δ−γG. The
use of displacement vectors is crucial as it enables
variable length of the curves as well as non-trivial
topology changes like loops. We make the transfer
of geometric details rotation invariant by using the
following displacement map

R#γδ(u) =

⟨γδ(u), tG(u)⟩⟨γδ(u),n′
G(u)⟩

⟨γδ(u),b′
G(u)⟩


where R := {tG,n′

G,b
′
G} is the local basis for ΓG.

4.4. Patch Distance Matrix & Graph
To enable the use of the algorithm of Lukáč et

al. [15] we compute the matrix M with distances be-
tween patches of the Frenet displacements as well as
the associated graph G (see Figures 2 and 3). The
former is given by Mi,j = ρp(i, j − 1) where 2p+ 1 is
the patch size and

ρ2p(i, j) =

p∑
k=−p

∥γ′
δ,i+k − γ′

δ,j+k∥2 (5)

for i, j ∈ [p,N−p]. Otherwise ρp(i, j) = +∞ for i ̸= j
and ρp(i, j) = 0 for i = j. One can also multiply the

Figure 2: Patch graph visualized using Gephi’s force-directed
layout [25]. Nodes represent points along the curve, with edge
size and opacity determined by patch similarity. The visual-
ization places strongly connected (consecutive) nodes close to-
gether, forming prominent edges, while weaker edges between
structurally similar but non-adjacent patches create the intri-
cate, crinkled structure. This structure highlights the algo-
rithm’s preference for consecutive patches but also its flexibil-
ity to occasionally jump to similar, distant patches.

patchsize

Figure 3: Patch matrix from a scene consisting of four curves
with patch size of 5 (left), 10 (center) and 20 (right). Gray
regions correspond to value +∞.

summands by a bump function centered around k = 0
to emphasize the center of the patch. However, the
changes to the results are usually insignificant. The
patch graph G = (V,E) is a weighted graph with
nodes V = N≤N and edges E ⊂ V × V × R+ con-
structed from the patch matrix as

E = {(i, j,Mi,j) : i, j ∈ V ; Mi,j < +∞}.

Even if the scene S contains multiple curves, only one
patch matrix and graph are constructed (see Fig. 3).

4.4.1. Temperature
Because the elements Mi,i+1 = ρp(i, i) are zero,

the reconstruction tends to exactly copy parts of the
exemplar displacement. This is typically desired as it
leads to the method’s robust performance. However,

7

fixed endpointsfree endpointstarget scene

Figure 4: Style ΓS applied to the target scene ST (left), a
spherical tiling based on the truncated icosahedron. Shown
with (right) and without (center) the endpoint fix.

to increase the variation of the outputs we can set
these values to a constant Mi,i+1 = τ . This new
parameter τ acts like a temperature enabling the user
to adjust the extent to which the applied style can
deviate from the original exemplar.

4.5. Displacement Reconstruction
All previous steps were independent of the tar-

get curve ΓT and can be precomputed, cached, and
reused for any future target scene. The Frenet dis-
placement map Γ∆ for ΓT is constructed by selecting
random nodes and using Dijkstra’s algorithm [18] to
find shortest paths as in [15]. The resulting ΓR is then
obtained by adding the displacement to ΓT , i.e.,

γR(u) = γT (u) +R#γ∆(u),

where R denotes the local frame associated with the
target ΓT . To prevent a cul-de-sac, where the Di-
jkstra’s algorithm would get stuck, the random des-
tinations are sampled between p-th and (N − p)-th
point along the curve.

4.5.1. Closed Curves
One of the issues of the pro-

posed approach is that there
is no control over the exact lo-
cation of the last point of the
generated curve. Thus creat-
ing closed curves is not sup-
ported by default. However,
since the displacement magnitude of a given style is
bounded, one can enforce the closure by setting

γR(s) = γR(s) +
s

LR
[γR(0)− γR(LR)] ,

which ensures that γR(LR) = γR(0). For a large
enough scene, the introduced distortion to the style
and shape of ΓR is negligible (see a closed “knotted
fractal” example in the inset).

4.5.2. Filament Networks
To stylize the curved filament networks with pre-

scribed connections, the positions of endpoints for all
connected curves must be enforced (see Fig. 4).

γR(s) =γR(s) +
LR − s

LR
[γT (0)− γR(0)]+

+
s

LR
[γT (LT)− γR(LR)] .

This ensures both that γR(0) = γT (0) and γR(LR) =
γT (LT). It is crucial for stylizing complex scenes like
wireframe architectural or design models.

4.5.3. Magnitude & Scale
Our method allows the user to set arbitrary mag-

nitude and scale of the transfer. Different scales can
be achieved by rescaling the style, and the magnitude
can be changed by setting

γR(u) = γT (u) + σR#γ∆(u),

where σ ∈ R+ dictates the magnitude of displacement
(see Fig. 8).

4.5.4. Multiresolution
To simultaneously transfer details on several scales,

one can simply sum the similarity matrices for several
patch sizes p. Alternatively, the sum may be weighted
to boost the impact of a particular scale.

4.5.5. Multistroke
Given a closed target

curve, the style can be
applied multiple times to
achieve a multistroke artis-
tic effect. For instance, this
can be used for creating vi-
sually interesting vine root
arrangements or braided effect, as shown in the in-
set. This example also shows how the method can
be used for larger scale changes, not just for adding

8

Figure 5: The temperature parameter τ ∈ R+ enables the user to specify the extent to which the method should precisely copy
parts of the precomputed style displacement, i.e., how “creative” or “chaotic” should the transfer be. The scatter plots under
figures show the results of Dijkstra’s path finding algorithm, with the x-axis representing points along the target curve ΓT and
the y-axis representing the indexes of chosen style patches. Long diagonal lines, such as those found on the plot with the lowest
setting τ = 0, represent exact displacement map copies.

high-frequency details, while still following the target
shape. Note that our approach does not guarantee
that the generated curves or tubes do not intersect.

5. Extensions

The algorithm presented in Sec. 4 can be gen-
eralized for use cases beyond the stylization of in-
finitesimal curve shape by incorporating additional
attributes along the curve. This is achieved by in-
troducing a function ϕ that maps each point to a
value in a metric space Ωϕ, enabling applications
such as tubular structures (where ϕ represents the
radius), ribbons (where ϕ encodes an orientation), or
other augmented trajectories. To integrate these at-
tributes, we define a metric ρϕ on Ωϕ and extend the
patch distance ρp from Eq. (5) as follows:

ρp,ϕ(i, j) = ρp(i, j) + ρϕ(ϕ(δ
′
i), ϕ(δ

′
j)).

Here, ρϕ quantifies the difference in ϕ values along
the curve, up to a scaling factor that serves as a tun-
able parameter and allows the user to steer the path
generation to emphasize either stroke shape or the
values of the augmented map. Our approach enables
this by following the displacement patches along the
curve instead of tracking the neighborhood or using
rasterized images.

5.1. Tubular Neighborhoods
We first consider a tube rep-

resented as an augmented curve
with a variable thickness hi =
ϕ(δ′i) ∈ R+. The inset figure
shows an example result (ΓR, ϕ)
with simultaneous transfer of
centerline displacement and the
tube thickness. In this case, the
metric space Ωϕ is R+ equipped
with the Euclidean metric ρ.

Thus the right-hand-side of Eq. (5) is modified by∑
k

ρ2ϕ(ϕ(δ
′
i+k), ϕ(δ

′
j+k)) =

∑
k

|hi+k − hj+k|2.

Tubes with a more complicated cross-section can be
considered by modifying Ωϕ. For example, the shape
of a tube with an elliptical profile can be captured
by Ωϕ = R+ × R+. The orientation of the ellipse
can be further modulated by considering Ωϕ = R+×
R+ × S1, where S1 = R/2πZ is the unit circle.

5.2. Ribbon Curves
In many applications such as the stylization of

camera trajectories or modeling of a stylized roller
coaster, it is useful to not only apply the style of the
curve centerline but also the curve orientation. This

9

Figure 6: This example showcases stylization SS of an embed-
ded tree graph structure ST representing several iterations of
a 3D L-system. The stylization is enabled by our use of RMF,
as the target scene ST consists of straight lines with undefined
Frenet vectors. To achieve the expected connectivity in SS ,
we used the locking mechanism described in Sec. 4.5.2.

can be enabled in two different modes; either as a two-
sided ribbon with Ωϕ = S1 (see Fig. 7) or a one-sided
ribbon with Ωϕ = RP1, which denotes the real pro-
jective line. In both cases, the associated metric ρϕ is
given by the length of the shortest arc length between
two points. Stylized ribbons with variable thickness
are also possible with Ωϕ = S1×R+ or RP1×R+ for
the one-sided version.

6. Applications

Our approach has numerous potential applications
in interactive environments, including virtual reality
drawing (e.g., Tilt Brush [26]) or centerline styliza-
tion for swept volumes (e.g., Adobe Medium [27, 28]).
Other possible applications include styling strands of
hair or fur (see Fig. 8), organic structures such as
stems or branches (see Fig. 6), confetti (see Fig. 1),

5x

Figure 7: Thomas attractor stylized as two-sided ribbons. The
unstyled target curve is shown in Fig. 12. This extension is
made using the associated metric space Ωϕ = S1. The at-
tractor has approximately 369,400 points and the stylization
process takes 51.25 seconds, demonstrating the capability of
our method for large scene stylization.

wicker (see inset in Sec. 4.5.5), or architectural de-
sign (see Fig. 9). Our method can also be utilized to
stylize the trajectories of moving objects by adding
displacement to their animation curves and changing
the local velocity, e.g., for character motion styliza-
tion, converting a laminar flow into a turbulent field
(see Fig. 10), or preparation of animated construction
of line drawings [29]. In addition, existing trajecto-
ries could also be extended with an associated sound
encoded as a spectrogram (e.g., pencil handwriting).

7. Results and Evaluation

We provide several comparisons and explore differ-
ent settings and properties of the proposed method.

Comparison with Curve Analogies. The most rel-
evant comparison to our method is Curve Analo-
gies [2], originally designed for planar curves. To
enable a fair evaluation, we extended it to 3D, but
this naive generalization exposed significant limita-
tions. Its neighborhood alignment is sensitive to tor-
sion and inflection points, leading to severe artifacts

10

Figure 8: Unlike [2], our method allows the user to adjust the
transfer magnitude via parameter σ. This enables a contin-
uous transition from unstyled to stylized and can be used to
precisely adjust artistic intent. The figure also demonstrates a
potential application for hair stylization and the stylization of
large scenes with many curves, here 2000 hair strands.

(Fig. 11). In contrast, our approach explicitly in-
corporates the local frame of ΓT , ensuring more sta-
ble and expressive style transfer, including 2D-to-3D
stylization (Fig. 16).

Efficiency is another key advantage. Curve Analo-
gies relies on costly per-point neighborhood sam-
pling and comparisons, making it impractical for
large curves—such as the Thomas attractor (Fig. 7)
with 369,400 points. Our method overcomes this by
precomputing a reusable patch graph, enabling fast
shortest-path queries via Dijkstra’s algorithm. When
applying the same style curve to different targets, the
graph can be cached and reused for further speedup.
For a fair comparison, we used the predefined guide
curve from Fig. 11 and measured only stylization
times (excluding guide curve creation). Curve Analo-
gies required 7.52 seconds, while our method com-
pleted in 1.98 seconds. With a precomputed patch
graph, the runtime dropped further to 0.51 seconds.
Additionally, our approach offers tunable temperature
and magnitude parameters for finer artistic control,
along with natural extensions such as ribbons and
variable thickness.

Figure 9: Application of our method to an architectural wire-
frame. The target curves are progressively stylized by increas-
ing the magnitude parameter σ from left to right, resulting in
a sketch-like, expressive style. This approach can be used for
visualization of architectural drafts or for generating organic,
hand-crafted assets in games and animation.

Framing Experiments. The method is flexible and
can apply style in any local frame, with RMF used
by default. Using the Frenet frame caused arti-
facts near inflection points (Fig. 12), so switching
to RMF improved consistency in the style transfer.
RMF also enabled stylizing straight-line segments
in the L-system from Fig. 6, where Frenet vectors
were undefined. Additionally, the ability to apply
2D styles to 3D targets (Fig. 16 and our supple-
mentary video) shows our versatility compared to
neighborhood-matching methods like [2].

Tunable Parameters. Our approach offers additional
tunable parameters, listed in Tab. 1, providing
greater flexibility compared to [2]. The style trans-
fer magnitude σ parameter, described in Sec. 4.5.3
and showcased in Fig. 8, allows continuous interpo-
lation between unstyled and styled versions of the
curve. The temperature parameter τ , introduced in
Sec. 4.4.1, has a similar effect as in autoregressive lan-
guage models. Fig. 5 and our supplementary video
show how increasing its value can lead to results rang-
ing from predictable to more creative style transfer.

Closed Curves and Curve Networks. In several ex-
periments, we addressed the closing and connecting
curve endpoints, and showed how the method is able
to transfer style while preserving topological consis-
tency. For closed curves, we enforced closure by ad-
justing the displacement magnitude, as detailed in

11

Figure 10: Stylization of laminar trajectories ST (left) into
turbulent-like flows SR (right) by modulating the magnitude
parameter σ ∈ [0, 1]. The method introduces spatially varying
detail and complexity without physical simulation, enabling
controllable flow-line aesthetics for animation, visual effects,
and interactive design.

Ours

Figure 11: Comparison with Curve Analogies [2]. When gen-
eralized to 3D, their method fails in regions with high torsion
and near inflection points, leading to instability in the result-
ing curve ΓR. In contrast, our approach explicitly handles
local frames, ensuring stable style transfer and greater artistic
control. We ensured a fair comparison by using the same pre-
defined guide curve, ΓG, for both methods.

Sec. 4.5.1, and demonstrated with the "knotted frac-
tal" inset. For curve networks, we ensured endpoint
connections using the method described in Sec. 4.5.2.
We applied this technique to a branching L-System
(Fig. 6) and a truncated icosahedron (Fig. 4).

C
SF

E
q.

 4

Length-Preserving Flow. Our
modified length-preserving flow
avoids the artifacts introduced

Frenet

RMF

Figure 12: Using the Frenet frame during displacement re-
construction leads to undesired artifacts near inflection points
of the target curve (see the resulting curve ΓR). The exam-
ple shows how changing the framing to RMF in Γ′

R changes
the style transfer with the same style curve ΓS and target
curve ΓT .

initialization no redistribution with redistribution

Figure 13: Without tangential redistribution, the flow is un-
stable due to point accumulation in high-curvature regions.

by excessive curve shrinking.
The CSF displacement map
(inset top) and the displace-
ment map in the Frenet frame
show unwanted distortions. In contrast, the length-
preserving flow (inset bottom) generates a smooth
and accurate guide curve.

Tangential Redistribution. We added a tangential
component to the velocity to prevent point accu-
mulation in high-curvature regions, as described in
Prop. 1. This adjustment leads to a more uniform
point distribution and thus enhances numerical sta-

12

Figure 14: Comparison of semi-discrete and discrete guide
curve matching. Left: Visualization of optimal matching δ′

between discretized guide curve Γ′
G (green) and continuously

interpolated style curve ΓS (blue). Right (top): Evolution of
matching points along curve lengths s during optimization.
Right (bottom): Energy E ′ of the semi-discrete method versus
discrete matching at resolutions N = 300 and N = 600. The
semi-discrete approach not only achieves significantly lower
total energy E ′ but also drastically outperforms the discrete
method in computational efficiency (semi-discrete: 0.0241s af-
ter 15 steps; discrete: 0.629s for N = 300, 1.23s for N = 600).

bility, as shown in Fig. 13.

Guide Matching Comparison. We evaluated our
semi-discrete guide matching method against the dis-
crete approach (Sec. 4.2). Fig. 14 demonstrates that
even for relatively small curves (100 points), the semi-
discrete scheme significantly outperforms the discrete
scheme in terms of both final achieved energy and
computational efficiency.

Ablation Experiments. We conducted ablation ex-
periments to evaluate the contribution of each com-
ponent in our method, with the following execution
times for the full pipeline: guide creation (0.0097
seconds), guide matching (0.0502 seconds), patch
matrix and graph creation (5.4556 seconds), and
transfer application (1.4943 seconds). Fig. 15 illus-
trates the impact of removing individual components-
tangential redistribution, length-preserving flow, and
guide matching-on the resulting curve. Omitting
these components introduces artifacts, such as point
clumping, curve shortening, and shape deformation.

no redistribution no guide matchingno length preservation

Figure 15: Ablation study of our method. Top row: Target
curve ΓT , style curve ΓS , generated guide curve ΓG, and result
curve ΓR using the full algorithm. Bottom row: Results with
ablated components. Γ′

R (no tangential redistribution, causing
point clumping near high-curvature regions and incorrect dis-
placements around spikes), Γ′′

R (no length-preserving flow with
α = 0, leading to curve shortening and staggered displacement
artifacts), and Γ′′′

R (no guide matching, using trivial equidis-
tant matching, resulting in spike shape deformation).

8. Limitations and Future Work

The curve style transfer parameters depend highly
on the scale of the style scene. Our method does
not natively support all stroke topologies like dashed
lines, although we can achieve a similar effect by us-
ing an additional case-specific metric such as signed
distance to the nearest stroke-hole boundary. The
transfer may alter topological properties, potentially
causing self-intersections; however, this can be con-
trolled by adjusting the σ value and style scale. Fu-
ture work may include applying style transfer to full
tubular meshes, stylizing Gaussian splat neighbor-
hoods along the curve, and adding texture to tubular
meshes.

9. Conclusions

We have proposed a novel method for curve
stylization that enables example-based style trans-
fer between 3D vector curves without requiring a

13

target Frenet (principal normal) Frenet (binormal) RMF composition

2x 2x 2x 2x

Figure 16: Our approach can also process 2D style ΓS and apply it to a 3D target ΓT . The style displacement can be applied
with respect to any local basis R of the target curve ΓT . This choice gives the user a flexibility, that is not possible with methods
based on neigbourhood matching such as [2]. The composition of all three different normal directions (right) demonstrates the
potential for generating intricate, knitted, art-like patterns. While our approach allows for rich geometric detail, preventing
self-intersections remains a challenge.

pre-defined unstyled version of the style exemplar.
We achieve this by formulating a new smoothing
flow that infers the unstyled curve and a modified
Fréchet distance to guarantee precise correspondence
between stylized and unstyled forms. Our semi-
discrete optimization scheme significantly improves
efficiency compared to existing methods, reducing
computational cost while maintaining analytical ac-
curacy. Furthermore, adjustable stylization strength
and style transfer temperature offer the user en-
hanced creative control. The versatility of our ap-
proach allows also for the incorporation of additional
information and associated metrics, making it appli-
cable to the stylization of complex 3D structures like
tubes, ribbons, and motion curves, where informa-
tion such as velocity can be incorporated. Given the
prevalence of 3D curves across diverse applications,
we anticipate this work will stimulate further research
in this area.

References

[1] L. A. Gatys, A. S. Ecker, M. Bethge, Image style
transfer using convolutional neural networks, in:
Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2414–
2423.

[2] A. Hertzmann, N. Oliver, B. Curless, S. M. Seitz,
Curve analogies, in: Proceedings of Eurograph-
ics Workshop on Rendering, 2002, pp. 233—-
246.

[3] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Cur-
less, D. H. Salesin, Image analogies, in: SIG-
GRAPH Conference Proceedings, 2001, pp. 327–
340.

[4] S. Zelinka, M. Garland, Mesh modelling with
curve analogies, in: Proceedings of Pacific Con-
ference on Computer Graphics and Applications,
2004, pp. 94–98.

[5] Y. Wu, H. Zhang, C.-Y. Song, H. Bao, Space-
time curve analogies for motion editing, in: Pro-
ceedings of Geometric Modeling and Processing
Conference, 2008, pp. 437—-449.

[6] K. Lang, M. Alexa, The Markov pen: Online
synthesis of free-hand drawing styles, in: Pro-
ceedings of International Symposium on Non-
Photorealistic Animation and Rendering, 2015,
pp. 203–215.

[7] A. Berchtold, The double chain markov model,
Communications in Statistics - Theory and
Methods 28 (11) (1999) 2569–2589.

14

[8] P. Bhat, S. Ingram, G. Turk, Geometric texture
synthesis by example, in: Proceedings of Euro-
graphics/ACM SIGGRAPH Symposium on Ge-
ometry Processing, 2004, pp. 41–44.

[9] H.-T. D. Liu, A. Jacobson, Normal-driven spher-
ical shape analogies, Computer Graphics Forum
40 (5) (2021) 45–55.

[10] S. Berkiten, M. Halber, J. Solomon, C. Ma,
H. Li, S. Rusinkiewicz, Learning detail transfer
based on geometric features, Computer Graph-
ics Forum 36 (2) (2017) 361–373.

[11] C. Ma, H. Huang, A. Sheffer, E. Kalogerakis,
R. Wang, Analogy-driven 3D style transfer,
Computer Graphics Forum 33 (2) (2014) 175–
184.

[12] P. C. Merrell, D. Manocha, Example-based
curve synthesis, Computers & Graphics 34
(2010) 304–311.

[13] R. Roveri, A. C. Öztireli, S. Martin, B. So-
lenthaler, M. Gross, Example based repetitive
structure synthesis, Computer Graphics Forum
34 (5) (2015) 39–52.

[14] S. Zhou, C. Jiang, S. Lefebvre, Topology-
constrained synthesis of vector patterns, ACM
Trans. Gr. 33 (6) (2014) 215.

[15] M. Lukáč, J. Fišer, J.-C. Bazin, O. Jamriška,
A. Sorkine-Hornung, D. Sýkora, Painting by
Feature: Texture boundaries for example-based
image creation, ACM Trans. Gr. 32 (4) (2013)
116.

[16] R. Bishop, There is more than one way to frame
a curve, American Mathematical Monthly 82
(1975) 246–251.

[17] W. Wang, B. Jüttler, D. Zheng, Y. Liu, Com-
putation of rotation minimizing frames, ACM
Trans. Gr. 27 (1) (2008) 2.

[18] E. W. Dijkstra, A note on two problems in con-
nexion with graphs, Numerische Mathematik 1
(1959) 269–271.

[19] L. Ma, A. Zhu, On a length preserving curve
flow, Monatshefte für Mathematik 165 (2008)
57–78.

[20] M. Beneš, M. Kolář, D. Ševčovič, Qualitative
and numerical aspects of a motion of a family
of interacting curves in space, SIAM Journal on
Applied Mathematics 82 (2) (2022) 549–575.

[21] T. Y. Hou, J. S. Lowengrub, M. J. Shelley,
Removing the stiffness from interfacial flows
with surface tension, Journal of Computational
Physics 114 (2) (1994) 312–338.

[22] M. Kimura, Numerical analysis of moving
boundary problems using the boundary track-
ing method, Japan Journal of Industrial and Ap-
plied Mathematics 14 (1997) 373–398.

[23] K. Crane, M. Wardetzky, A glimpse into discrete
diff erential geometry, Notices of the American
Mathematical Society 64 (2017) 1153–1159.

[24] H. Alt, M. Godau, Computing the fréchet dis-
tance between two polygonal curves, Interna-
tional Journal of Computational Geometry &
Applications 5 (1 & 2) (1995) 75–91.

[25] M. Bastian, S. Heymann, M. Jacomy, Gephi: An
open source software for exploring and manipu-
lating networks, Proceedings of the International
AAAI Conference on Web and Social Media 3 (1)
(2009) 361–362.

[26] A. Doronichev, Tilt brush: Painting from a
new perspective, online; accessed 28-Jan-2025
(2016).

[27] S. Sellán, N. Aigerman, A. Jacobson, Swept
volumes via spacetime numerical continuation,
ACM Trans. Gr. 40 (4) (2021) 55.

[28] Z. Marschner, S. Sellán, H.-T. D. Liu, A. Ja-
cobson, Constructive solid geometry on neural
signed distance fields, in: SIGGRAPH Asia 2023
Conference Papers, 2023, p. 121.

[29] H. Fu, S. Zhou, L. Liu, N. J. Mitra, Animated
construction of line drawings, ACM Trans. Gr.
30 (6) (2011) 133.

15

