
ChunkyGAN: Real Image Inversion
via Segments
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Abstract. We present ChunkyGAN—a novel paradigm for modeling
and editing images using generative adversarial networks. Unlike previ-
ous techniques seeking a global latent representation of the input image,
our approach subdivides the input image into a set of smaller components
(chunks) specified either manually or automatically using a pre-trained
segmentation network. For each chunk, the latent code of a generative
network is estimated locally with greater accuracy thanks to a smaller
number of constraints. Moreover, during the optimization of latent codes,
segmentation can further be refined to improve matching quality. This
process enables high-quality projection of the original image with spa-
tial disentanglement that previous methods would find challenging to
achieve. To demonstrate the advantage of our approach, we evaluated it
quantitatively and also qualitatively in various image editing scenarios
that benefit from the higher reconstruction quality and local nature of
the approach. Our method is flexible enough to manipulate even out-of-
domain images that would be hard to reconstruct using global techniques.
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1 Introduction

The increasing ability of GANs to generate images virtually indistinguishable
from real photographs [14,12], has created a new paradigm for image editing. In
this paradigm, one first estimates a latent code for the network that best recon-
structs the input image [13,23], and then manipulates this latent code in specific
ways to create particular variations of the input image. With a knowledge of
which directions in latent space of a particular generator encode which proper-
ties of the output image, it is possible to perform high-level semantic editing of
the appearance of the input photo while retaining the original visual features,
e.g., adding more hair to a bald person while retaining their identity [22,18].
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Fig. 1. Real image manipulation examples created interactively using our method. The
left-most images are the original photographs, the remaining columns show following
edits: changing gaze direction, opening mouth, growing a beard and aging. Source
images: Shutterstock

Due to the nature of adversarial training, a well-trained generator transforms
any latent code drawn from the trained distribution into a plausible output, but
mapping of an arbitrary in-domain image to a latent code might be difficult
or even not possible. Existing methods address this by instead projecting into
deeper spaces which makes accurate reconstruction easier, but weakens the orig-
inal guarantee that every code maps to a plausible output, meaning that ma-
nipulated results may be out of domain and visually appear broken. This means
there is an inherent trade-off between ease and accuracy of reconstruction, and
quality of edited outputs [22], and existing methods perform on the spectrum of
this trade-off. For example in StyleGAN2 [14], the original input code z ∈ R512

is transformed into a latent vectorW ∈ R512 which is easy to edit but difficult to
reconstruct, whereas Abdal et al. [1] useW+ ∈ R18×512 that has enough degrees
of freedom to provide good reconstruction, but is more difficult to manipulate.

This issue becomes much more apparent when we examine examples that are
in-domain, but far from typical. For example in the case of StyleGAN trained on a
dataset of faces, we may consider human faces with unique features or accessories
that do not appear in training datasets such as CelebA [15] or FFHQ [13], such
as bindis, unusual glasses, heavy occlusions, etc. In these cases even techniques
that have greater flexibility such as S-space [23] usually fail.

The source of much of these difficulties are two underlying assumptions: that
there exists a single latent code that exactly or almost exactly reconstructs the
target image, and that the manifold of representative images is nearly convex
with respect to finding such a latent code. But because the number of output
pixels is much higher than the number of degrees of freedom in the latent space,
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we may view the reconstruction problem as overdetermined, and although the
aggregated reconstruction loss has local minima that can be found, a minimum
for the entire image is not necessarily a minimum for all its regions. In practice,
this means that the code retrieval problem is difficult and the solutions we arrive
at are in effect suboptimal. In this paper we propose to resolve this difficulty
by relaxing exactly these assumptions. We search not for a single latent code to
represent the entire image, but rather a vector of latent codes, each corresponding
to a segment of the image, such that when assembled they resemble the original
image as closely as possible (see Fig. 2).

Since each latent code is then estimated for a much lower dimensional target,
each of the regional subproblems become less overdetermined, which makes for
an easier optimization problem. This in turn means that we can achieve much
lower total error and thus more accurate reconstruction of the original. Besides
superior accuracy and greater ability to generalize to the out-of-domain features,
the segment-based nature of our method also allows for strictly localized edits,
either based on segmentation generated automatically as a by-product of our
method, or based on user-specified segments. Thanks to that property, visual
content in different segments remains intact and thus helps retain the fidelity
of the original photo. This leads to an interesting novel interactive scenario
where the user adaptively applies individual local modifications in sequence to
achieve a desired output that would normally be difficult to obtain using global
manipulation techniques (see examples in Fig. 1). We demonstrate the power of
our approach in various use cases that would be difficult to achieve using current
state of the art. Moreover, a great advantage of our approach is that it does not
replace previous methods but rather serves as a complementary part that, when
plugged in, enables even better results than those produced by the technique
applied in isolation.

2 Related Work

State-of-the-art approaches to finding suitable latent codes for the input image
can be broadly split into two major categories: direct optimization and encoder-
based techniques.

The first category takes into account the fact that the generator network
is differentiable function on its own and thus gradient descent can be used to
move from a real image into its latent code [17,10,11,24]. This typically leads
to an inversion which is close to the original, however, since constraining the
optimization to search across the manifold of naturally looking latent codes is
nontrivial, the resulting projection is usually difficult to manipulate.

The other category relies on training an encoder which predicts the specific
latent code given an image, using generated samples as training data [29,5].
Tov et al. [22] show that the encoder can learn to embed the real image into the
natural manifold much closer than optimization methods, it does, however, often
come at the cost of overall reconstruction quality, even considering multi-pass
iterative techniques [3] or a modulation of StyleGAN weights [4,7].
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Both of these approaches, therefore, are characterized by an important trade-
off between faithfulness to the original image and the ability to perform editing
operations on the projected latent code. Hybrid approach has also been proposed,
such as the one by Zhu et al. [28], in which the direct optimization method is
initialized by latent code proposed by a trained encoder, striking a better balance
on the trade-off chart, however, the final result is far from ideal in either axis.

The trade-off itself is also not one dimensional. As the representation of the
latent code turns into the final image via operations inside the generator network,
it becomes easier to invert images into intermediate representations, at the cost of
increased dimensionality, making editing more difficult. Recent work [30,25,11]
tries to exploit this knowledge by imposing constraints like segmentation on
relatively high-level, spatial representations, leading to solutions that can create
high-quality inversions at the cost of restricting the set of possible edits.

Ling et al. [16] presented EditGAN that enables to edit images by alter-
ing their segmentation masks. In contrast to our technique EditGAN can only
change shape and relative position of selected regions. There is no control over
the content generated inside the edited area, and it is also challenging to per-
form global edits. Moreover, EditGAN uses only a single latent code with lower
expressive power while relying on a pre-trained DatasetGAN model [27] that
jointly generates images and their corresponding semantic segmentations. In our
approach, each region have its own latent code, can be added on the fly at
arbitrary locations and subsequently edited.

In StyleFlow, Abdal et al. [2] use continuous normalizing flows in the latent
space that are conditioned by various attribute features. This enables edit dis-
entanglement comparable to our approach that is, however, redeemed by lower
reconstruction quality. Moreover, StyleFlow also requires pre-trained classifiers
to find the disentangled attributes along which the edits are performed.

Roich et al. [21] propose that it is possible to fine-tune the generator network
itself to improve the reconstruction quality while retaining the editability offered
by a natural latent code. While their technique provides a well-rounded solution
to both inversion accuracy and latent code editability, it requires fitting and
storing per-image generator network, making it more resource-intensive and less
suitable for downstream tasks.

In the earlier version of our method [9], segmentation-based inversion was
developed for user-assisted local editing. In this extended version, we introduce
joint optimization framework that enables automatic projection of the entire
image while refining the shape of individual segments.

3 Our Approach

Our method accepts a real image I and reconstructs it as a vector of segmentation
masks S = {Si}ni=1, where pixel values range continuously from 0 to represent
fully outside and 1 fully inside, and a vector of corresponding per-segment latent
codes XI = {XI

i }ni=1. The masks are constrained so that they per-pixel sum
up to 1. These latent codes are interpreted as images using a shared image



ChunkyGAN 5

generator GI and the output image is obtained by pixelwise linear blending,
visualised in Fig. 2:

O(XI , S) =

n∑
i=1

GI(XI
i ) · Si. (1)
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Fig. 2. ChunkyGAN flowchart—the output image O computed as a weighted combina-
tion of n images generated by a network GI given a set of n latent codes XI . Weights
are specified by a set of n segmentation masks S that can be specified manually or gen-
erated automatically by a segmentation network GS using a latent code XS . Source
image: Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

This expression is trivially differentiable with respect to both S and X, and
is optimized with respect to some dissimilarity measure between I and the com-
posite O just like in a single-segment reconstruction scenario. Unless otherwise
specified, in this paper we optimise with respect to the perceptual loss LLPIPS

of Zhang et al. [26].

Because the semantic segmentation is not universal and can vary dramat-
ically between individual faces, it is necessary to optimize the masks as well.
Optimizing them on a per-pixel basis would be memory intensive and would not
take advantage of the domain knowledge we have for the problem. Therefore,
we use a mask generator GS to generate them from a segment latent code XS ,
i.e., Si = GS(XS)i. In this work, we use a segment generator network based on
DatasetGAN [27]. It consists of StyleGAN2 generator and a mapping network
trained on a modest dataset (a few tens of images) of randomly generated Style-
GAN2 images annotated by example based synthesis [8], using a single manually
annotated image as exemplar.

To this end, the canonical form of our optimization problem is as follows:

min
XS ,XI

LLPIPS

(
I,

n∑
i=1

GI(XI
i ) ·GS(XS)i

)
+ λreg

n∑
i=1

‖XI
i −XI

µ‖22, (2)

https://commons.wikimedia.org/wiki/File:Besuch_Bundeskanzlerin_Angela_Merkel_im_Rathaus_Köln-09916.jpg
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where the first term measures reconstruction loss and the second term penalizes
dispersion among the latent codes, measured as sum of squared deviations from
the mean code XI

µ. Such regularization helps avoid mutually distant latent codes
that do not produce realistic images. This is not typically a problem in the pro-
jection step, but during manipulation distant codes may diverge in appearance
more quickly. This is caused by limitations in visual coherence in the pre-trained
editing directions.

Our approach is orthogonal to the choice of the latent space of the X codes. In
general it can be any combination of common latent spaces that allows compact
encoding of the input image. In the case of StyleGAN [13,14], we consider W,
W+ [1], and S-space [23], however, any previously published, potentially newly
developed or a mixture of methods can be used. In fact, our method is a com-
plementary extension that could help achieve better results regardless of the
selected projection method.

In Fig. 3, we show an example of the optimization (per Equation 2) progres-
sion, starting from mean latent codes until convergence. Note that the segments
tend to align with semantic facial features.

The processing speed of the optimization process relies on the number of
segments and the number of optimization steps. When a joint multi-segment
optimization with the DatasetGAN is performed the projection can take several
minutes. However, during the interactive editing (as seen in our supplementary
video), where segments are specified by the user one-by-one, the method runs at
interactive rates on the GPU (a few seconds).

Fig. 3. Progression of the optimization. Images and color-coded segmentation maps
for iterations 1, 5, 9, 15, 23, 37, 500. Source image: Adobe Stock

4 Evaluation

To validate our approach we performed two quantitatively and qualitatively
evaluated experiments. In the first experiment we validate whether the projec-
tions produced by our method can reproduce target photos with greater fidelity
when compared to standard projection techniques. In the second experiment
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we demonstrate the ability of our approach to edit projected images by ma-
nipulating estimated latent codes and compare the fidelity of the resulting ed-
its with standard techniques. Finally, we compare our approach with current
optimization-based and encoder-based projection techniques.

4.1 Fidelity of projected images

To quantitatively evaluate fidelity of projected images we took the first 100
images from CelebA dataset [15] excluding blurred images and those with people
wearing additional props such as hats or glasses. We then projected all those
images globally into W, W+, S-space, and also locally using our method. When
using W+, we show both cases, with (λreg = 1) and without (λreg = 0) the
regularization. For all projections we measured the LPIPS, identity (measured
as cosine distance between ArcFace descriptors [6]), and L2 loss with respect to
the original target photos.

Projection LPIPS Identity L2

W 0.4190 ± 0.0363 0.1745 ± 0.1328 0.0725 ± 0.0699
Ours in W 0.3697 ± 0.0396 0.1384 ± 0.1117 0.0481 ± 0.0289

W+ 0.3675 ± 0.0387 0.1195 ± 0.1047 0.0436 ± 0.0623
Ours in W+ 0.3194 ± 0.0365 0.0937 ± 0.0855 0.0207 ± 0.0151
Ours in W+ reg. 0.3330 ± 0.0350 0.0894 ± 0.074 0.0217 ± 0.0130

S 0.3577 ± 0.0397 0.1070 ± 0.0965 0.0328 ± 0.0188
Ours in S 0.3572 ± 0.0401 0.1053 ± 0.0928 0.0319 ± 0.0187

Table 1. Projection fidelity. Losses were measured between the projected and the
original image for each of the projection methods. Each cell reports the loss averaged
over the CelebA subset along with the standard deviation. Our method significantly
outperforms the baseline methods in all latent spaces for all losses.

The resulting numbers are shown in Table 1 which shows losses averaged over
all 100 images with corresponding standard deviations. Those confirm that on
average our method outperforms global projection methods significantly. This
fact is visually apparent from scatter plots shown in Fig. 4 where each point
corresponds to an image and its coordinates encode the LPIPS losses for the
global and the segmented projection respectively. Red line depicts the margin
where losses for both projection methods are equal.

Since the best projection is achieved by our method in W+, we select W+

as the default space for our method. The regularization slightly decreases the
projection fidelity in terms of LPIPS, but improves the identity and editability,
which is discussed in Sec. 4.2.

Because differences between the evaluated methods are difficult to observe in
a typical case, we have for the purposes of qualitative evaluation of projection
fidelity deliberately pre-selected a subset of hard-to-project images. Specifically,
these were images that contain features uncommon in the standard datasets, e.g.
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bindis, face masks, asymmetric glasses, or occluded faces. For those examples all
compared methods were initialized equally (using mean latent vector) and the
corresponding projection results are presented in Figure 5. It is apparent that
thanks to greater flexibility of our approach, more realistic projections can be
achieved when compared to standard techniques. Moreover, a workable inversion
can be obtained even on out-of-domain images as shown in Fig. 5 (two bottom
rows).
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Global optimisation in W
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Fig. 4. Projection fidelity – scatter plots. Our method is compared with global projec-
tions (W,W+,S-space). X and Y axis represent the LPIPS loss between the original
image and the image projected globally and projected by our method in W+ respec-
tively. Each point corresponds to one image from the CelebA subset, in blue and in
orange with and without the regularization respectively. The red line delineates the
equal LPIPS losses. Our method improves projection for all images in all tested latent
spaces. The regularization slightly decreases the projection fidelity, but remains still
better than global methods.

4.2 Editability of projected images

Quantitative evaluation of editability was performed on the same set of CelebA
images used for evaluation of projection fidelity. We pre-selected 4 semantic
directions (gender, smile, age, and beard), changed all latent codes X in the
same direction with the same magnitude, and finally measured the effect of the
edits on identity.

Since the effect of unit strength manipulation along a pre-trained semantic
direction can differ among latent spaces and the use of global/local projection,
we calibrate the changes to make sure the effect on the manipulated image is
equal. To do that we use an image classifier for each semantic direction. For
each space and method, we measure image classifier responses while spanning
the latent edit strength along a semantic direction for the entire dataset. We use
linear regression to find the rate of change of the classifier response to the edit
strength, and adjust the edit strength to be equal for all tested methods.

Table 2 shows a quantitative evaluation of the identity loss between the
projected and edited images. It is apparent that the identity losses are the best for
our method with the regularization engaged since regularization pushes the codes
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Real Image
Ours in W+

with reg
W W+ S

Fig. 5. Qualitative assessment of projection fidelity on hard examples. All images were
projected with regularization. For more examples refer to the supplementary material.
Source images: Adobe Stock
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(a) (b)
gender smile age beard gender smile age beard

W 0.169 0.022 0.07 0.279 0.249 0.18 0.191 0.328
W+ 0.209 0.02 0.095 0.296 0.256 0.128 0.171 0.325
Ours in W+ 0.298 0.049 0.151 0.312 0.325 0.125 0.203 0.333
Ours in W+ reg. 0.126 0.018 0.069 0.091 0.169 0.099 0.129 0.144

Table 2. Identity preservation during editing. Identity loss was computed between the
projected and the edited images (a), and between the original and the edited images
(b). Our method with regularization outperforms all other methods.

of all segment images towards latent areas where the linear latent manipulation
works better. The results confirm that our method keeps the identity consistent
during editing.

Regarding the reconstruction-editability trade-off [22], latent code regular-
ization is essential in order to perform realistic edits. While our method without
regularization achieves better results in projection fidelity it performs poorly
during editing. By adding the regularization term, projection fidelity slightly de-
teriorates, but the identity preservation during edits improves by a large margin.
The editability can be observed during the classifier-based calibration; methods
without regularization need much stronger edits in order to achieve the same
editing effect.

For the qualitative evaluation we pre-selected images and directions (age
and yaw) that would cause difficulties to standard techniques, i.e., the identity
is not well preserved during editing. During the yaw manipulation using our
method the segmentation masks were edited as well (the segmentation latent
code was manipulated automatically in the same way as the images) to adjust
the segments geometrically. Results are presented in Fig. 6 and 7. It is clearly
visible that our method keeps the identity better. Fig. 7, a man wearing a mask
is especially challenging. The global techniques are unable to project the image
properly. Our method projects the image faithfully and moreover, the global
edits still work. Note that these results were achieved fully automatically, neither
manual adjustment of the segmentation partitioning nor any post-processing
were applied for images in Fig. 6 and 7.

4.3 Comparison with current state-of-the-art

To demonstrate how our approach compares to current state-of-the-art in the
optimization-based and encoder-based techniques we performed various quali-
tative experiments seen in Figures 7 and 8. When compared to current best
approaches based on optimization (Pivotal Tuning [21] and StyleFlow [2]), our
method achieves better or comparable projection quality while still being able
to deliver compelling edits (c.f. Fig. 7). Our method also outperforms encoder-
based techniques (HyperStyle [4], ReStyle [3], pSp [20], and e4e [22]) with respect
to the projection fidelity namely thanks to its ability to reproduce small details
that are usually omitted by encoders (c.f. Fig. 8).
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Fig. 6. Global edits with the same effective strength. For our methods the latent codes
of all segments were manipulated equally. Source images: Mingle Media TV (Kate
Winslet), Neil Grabowsky / Montclair Film (Ethan Hawke)

5 Applications

Aside from the fully automatic solution proposed in Section 3 our framework
can also be extended to allow for interactive step-by-step manipulation in a few
different ways. To facilitate this, we define the notion of a static mask SX which
defines an area of the image which is not changed during the optimisation. In
terms of our objective function, this creates a mixed composite:

O(XI , S, SX , I) = SX · I + (1− SX) ·
n∑
i=1

GI(XI
i ) · Si (3)

In practice, for edits with small spatial extent it is often sufficient to reduce
the number of segments being optimized to one, in which case there is no need
to optimize Si.

Using this static mask, instead of generating segment masks automatically,
we allow the user to manually specify the region of interest. The user then runs
the projection, edits the latent code, and produces an intermediate composite O
which can then become a new I for next iteration. This user-driven iterative
scheme is shown in Fig. 9. Such a workflow is intuitive for users as they can
specify what they want to change, overview the resulting composition, and then
possibly go back and revise their requirements by making additional changes in
different regions.

https://www.flickr.com/photos/minglemediatv/13274194543
https://www.flickr.com/photos/montclairfilmfest/41955975762/
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Fig. 7. Challenging global edits. The first row depicts the original and the projected
images using our approach with and without regularization, Pivotal Tuning [21], Style-
Flow [2], W and W+ [1]. The remaining two rows show resulting global edits of age.
Source image: BlochWorld

When making the composite O from edited image, even when edits of X are
consistent, continuity around boundaries may no longer be guaranteed. Small
discrepancies are suppressed automatically thanks to blending with soft masks.
When the edit produces more notable global color shift we use Poisson image
editing [19] to alleviate them. In most challenging scenario segment boundaries
may start to interfere with newly synthesized salient features. In this case con-
tinuity can be enforced using a slightly modified version of our segmentation-
based approach that will act as semantically meaningful hole-filling as illustrated
in Fig. 10.

Suppose we have a photo of a person (Fig. 10a) and the aim is to add glasses.
We select a loose region S1 around eyes (Fig. 10b) and run the local projection to
get latent code X1 that reproduces the original image within S1 (Fig. 10b). Then
we manipulate X1 to add glasses, however, as visible in Fig. 10c the shape of S1 is
insufficient to encompass newly added content. To fix this discrepancy we let the
user specify correction mask S2 with two connected components (Fig. 10d) and
refine X1 to obtain a new code X2 that will match the content within S2 (green
region). From the image generated by X2 we then use the dark part that lies
inside S2 to make the final composite (Fig. 10e). The X2 code in fact generates
a semantically meaningful hole-filling that completes the missing part of glasses.

6 Limitations

While the multi-segment reconstruction is remarkably robust, and segmented
editing produces superior results for spatially limited edits, we can experience
incoherence between segments for global edits (e.g. age, yaw) with high strength.

https://uk.blochworld.com/products/bloch-b-safe-adult-face-mask-black
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original our approach HyperStyle ReStyle pSp e4e

Fig. 8. Projection fidelity of our method with respect to the current state-of-the-art
in encoder-based techniques: HyperStyle [4], ReStyle [3], pSp [20], and e4e [22]. Source
images: Ayush Kejriwal (bindi), BlochWorld (face mask)

(a) (b) (c) (d)

Fig. 9. Examples of local layered edits applied subsequently on a real photograph (a):
changing gaze direction (b), adding smile (c), changing haircut and nose shape (d).

The reason for this is that the editing directions are local linear approximations
of the property of interest on the latent manifold, and for higher edit strength
this linearity assumption no longer applies. This issue is present also in single-
code editing, where it may cause loss of identity which may be in some scenarios
more tolerable. With multiple segments however, this is highlighted as a greater
change resulting in individual segments to lose identity in different ways and
therefore gives rise to incoherence. It only occurs in editing and not in recon-
struction because in reconstruction the input image provides effective supervision
to maintain coherence between segments.

The incoherence does not usually occur for easy-to-invert images and mod-
erate edits, as seen in Fig. 6, but can be spotted in harder examples with a
challenging global edit, as e.g., in Fig. 7 in Age+ of our method with regular-
ization. Nevertheless, the small artifact on the mask shape, can be interactively
removed by the hole-filling method demonstrated in Fig. 10.

As another option, this issue could be addressed by formulating and imposing
an explicit segment coherence measure during editing, which can be done either

https://www.instagram.com/designerayushkejriwal/
https://uk.blochworld.com/products/bloch-b-safe-adult-face-mask-black
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(a) (b) (c) (d) (e)

S1 S2

Fig. 10. Enforcing continuity of inconsistent edits—a photo of a person to which we
would like to add glasses (a), user-specified segmentation mask S1 with a projection X1

matching the original image (b), manipulating X1 generates glasses that do not fit the
shape of S1 (c), a new mask S2 is marked encompassing two discontinuous parts (d), a
composite with a projected region S2 where the new latent code X2 is refined from X1

to produce the dark region inside S2 (e).

locally, by measuring agreement between segments in their regions of overlap, or
globally by e.g. an adversarial loss. Alternatively, instead of linear directions, one
might train a separate model to explicitly encode a higher-order approximation of
identity-preserving edit direction, which has the potential to also benefit vanilla
methods under high edit strength.

7 Conclusion

We presented a new technique for image reconstruction and editing based on
generative adversarial networks that subdivides the input image into a set of
segments for which the corresponding latent vectors are retrieved separately. By
so decomposing the problem, we facilitate more accurate reconstructions that
better preserve the identity and visual appearance of facial images, especially
in more challenging cases that are difficult to handle using state-of-the-art tech-
niques.

We demonstrated the utility of this technique for both the base project-and-
edit scenario as well as novel interactive sequential editing applications. As our
approach provides measurable improvements while being easily combined with
other techniques, we anticipate it will find a place in modern image editing tools.
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