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Abstract

This diploma thesis discuss the problem of applying color to the old
black and white cartoons produced by original step by step technology,
where each animation phase was exposed on the one frame of film nega-
tive. Thanks to possibility, which allows us to convert the original analogue
material to the sequence of digital images using resolution suitable for TV
broadcasting, we are able to solve our problem by methods of digital image
processing. We introduce several algorithms based on unsupervised image
segmentation and synthesis techniques, which exploit classical properties
of cartoons produced by paper or foil technology, where foreground parts
are represented by homogeneous surfaces with constant grey-scale intensity
enclosed by bold contours. These algorithms together with couple of predic-
tion techniques provide us to speed up whole inking process. An important
part of this thesis is also description of application, where purposed algo-
rithms are implemented. This implementation take into account also human
driven interaction which guarantee the final image quality. Described appli-
cation was practically used as a part of project focussed on restoration of
the old black and white cartoon: “O loupežńıku Rumcajsovi” (directed by
well known czech artist Radek Pilař). During this project we measured the
overall application efficiency which will be also discussed in this thesis.
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than light) who stays beyond the main idea and who gives me the chance to
take part in this pretty interesting project. Thanks flies as a matter of course
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Work on this thesis would not be possible without devoted support of
my great parents and also of my own family (Pavla, Mikuláš and Matýsek,
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1
Introduction

“A slow sort of country!” said the Queen. “Now, here, you see,
it takes all the running you can do, to keep in the same place. If you
want to get somewhere else, you must run at twice as fast as that!”

Lewis Carroll

Digital boom on the break of last decades of 20th century proved that consume lifestyle where quantity
precede quality and commercial profit knows no law is like everlasting run of Red Queen whom met Alice
beyond Looking Glass.

Everybody wants to be up-to-date. Everything new have to be consumed and recycled as soon as
possible. Production speed increases, technology is getting more and more complex but we are staying still
on the same place because the surrounding world runs with us. Sometimes we are going back. Especially on
the field that is one of the most important for our future. On the filed of animated fairy-tales for children.

What we serve to our children in the age where they are highly sensitive on creation of the value system,
that will return to us after they become adults. Recent worldwide cartoon production for children predeter-
mines, that our successors will be primitive consumers with either tyrannical evil or whimper sentimental
thrash life ideology thirsted for trivial polished stories about easy available comfortable lifestyle without true
artistic sense and self imagination.

If we take off from the running train and look backwards to our history we understand how huge is the
change that we go through. Especially in history of Czech and Slovak cartoon making production we could
found really valuable and artistically advanced works, which stay still in front of worldwide competition and
which are invaluable source of inspiration for children’s imaginative world.

Anyhow controversy was socialist history of Czechoslovakia we have to confess, that it provided nearly
ideal working conditions for talented cartoon making artists like Jǐŕı Trnka, Zdeněk Smetana, Karel Zeman,
Zdeněk Miler, Jǐŕı Šalamoun, Radek Pilař, et cetera. They proved rule that really valuable work could arise
only from artistic motivation and never from commercial profit that stands to usual motivation of market
oriented production.

Unfortunately these works are aged movies. They are stored in wet depositories on negative film material
under imminence of putrefaction. If we want to rescue them for our children we have to abort progressive
destruction. We have to clean them from mildew or other impurities and convert them to the digital form.
And more if we consider that aged movies are stored on black and white material due to former TV broadcast
facilities, we have also chance to enrich them by new color information. Children are much more sensitive
on color motley than adults. If we apply sensitively proper bright and dark colors in to the yet designed
artificial black and white world we are able to increase specific artistic impression which is well perceived by
children’s mind. In short we have big chance to add a new artistic value.

This is uneasy and expensive task. We need someone who is able to provide big investment to such
project without expectation of fast overheads recovery and also someone who is capable to make sensitive
transfer of colors to black and white material without losing original cartoon style, the best if it could be
directly the original author of such cartoon.

1



1.1 Motivation

1.1 Motivation

This diploma thesis is a part of bigger project that came out from co-operation of three subjects: Czech
TV (CTV), Universal Production Partners (UPP) and Digital Media Production (DMP). The main task was to
rescue great aged black and white cartoon “O loupežńıku Rumcajsovi” directed by unfortunately yet deceased
but still undead guru of czech cartoon school Radek Pilař.

If we set apart fact that we need to convert aged negative film material to digital form and only focus
on inking process itself, we at first assume that only well experienced artist supported by expensive hi-
end post-production software running on the dedicated film editing hardware could satisfy needed artistic
quality. But considering the fact that such systems are not well equipped by tools for simplified transfer of
color information in to the grey-scale images, artist would be endow on lots of the featureless and repetitive
work which will disturb him from real artwork. Moreover we have to expect also huge outgoings, while film
editing system have usually really expensive machine time. It is clear that this technology is going to be
unacceptable, because we could not expect fast overhead recovery. We need to speed up whole process and
make it cheaper.

The main motivation of this thesis was to automatize routine work using fast semi-automatic computer
vision algorithms implemented inside PC application for cost effective computer workstations. This propri-
etary application allows us to perform parallelism of routine work by cheaper computers (see Figure 1.1 in
the red dashed rectangle). Main film editing hardware will be responsible only for necessary preprocessing
and postprocessing tasks and will distribute image sequences through fast network to these PC workstations.

We assume that proposed computer vision algorithms could not be obviously so powerful to prepare all
frames in clear form. There are usually lots of small visible errors which have to be corrected by human
driven intervention with no heavy artistic knowledge. Therefore we also need to lay down suitable, fast to
operate and easy to learn user interface which allows not so experienced operator to make correction work
effectively.

preprocessing postprocessing

RGBRGB

digital

YUV 4:2:2

digital

YUV 4:2:2

analog

film scanner

broadcast

�� �� �� ��

negative

Figure 1.1 : Work distribution using parallel working cost effective workstations.

While we take into account the human intervention, it is also reasonable to preserve interactive perfor-
mance of our application to avoid operators from idle time during correction work. Built-in algorithms must
not compute one frame longer than one second. It would be uneasy to reach this short processing time limit
using recent PC architectures because of expected TV broadcasting resolution of input images. Purposed
semi-automatic inking technology based on image segmentation in higher resolutions is time consuming.
We will see later that fast implementation of several algorithms should not be possible without couple of
advanced optimization techniques also described in this thesis.

Although purposed application was developed and employed only for cartoon “O loupežńıku Rumcajsovi”
and also all example images in this thesis came from this piece of Pilař’s work, purposed principles are general
hence they could be applied on cartoons with similar artistic properties. In other words, this thesis solve
general problem: We have sequence of grey-scale images with features like bold dark contours and intensity
homogeneous regions, and we want to apply proper color information as effectively as is possible.

2



2
Technology

First we summarize what kind of data we have on the input and which results are expected on the
output of our application. We will explain in particular several suitable inking technologies and required
post-processing and pre-processing phases. Also detailed description of main movie degradation artifacts
which increase difficulty of inking process will be included. This chapter would be alternative titled as:
What we have to do and discuss before we will be able to produce high-quality colored cartoons from
degraded grey-scale material.

2.1 Color conversion

Usual cartoon series consists of several episodes. Each episode is approximately 8 minutes long. Consid-
ering a constant frame rate of 25 frames per second, we expect approximate 12000 frames per one episode.
Each frame is usually scanned and stored as YCrCb image using 4:2:2 sampling scheme with PAL resolution
(720x576) (see [Pank98] for details). Although it would be much better to work with original 2K film
resolution (2200x1640) to avoid undersampling of details, the motivation was to move inking process from
the hi-end post-production hardware to the standard PC platform. On the PC platform, the PAL resolution is
acceptable for both amount of data storage and for enough processing speed. YCrCb image is finally exported
for PC purpose into the RGB bitmap stored in uncompressed 24-bit TIFF, which is more than 1.2MB of the
disk space.

Figure 2.1 : RGB to grey-scale conversion: source RGB
rectangle (left), red, green and blue average (middle),

correct weighted average (right).

The first stage of the pre-processing phase is the conversion from 24-bit true-color format to the 8-bit
grey-scale image, which will be stored in a lossless compressed grey-scale image (in PiNG format) afterwards.
This automatic process significantly decreases the size of input data (20% of the original size) without loss
of any important information.

A proper conversion is not trivial since the
color components of pixels, representing under-
sampled high-frequency details (e.g. thin con-
tours), are far from similar value of correspond-
ing luminance due to low bitrate of color com-
ponents in 4:2:2 YCrCb color. This is the first
sampling problem caused by PAL resolution and
ill posed color conversion. For detailed insight
into this problem see the magnified rectangles
taken from selected movie frame on Figure 2.1 .

We could not simply compute average of red, green and blue component. If we did so, we would have
destroyed the original contour’s anti-aliasing. Instead, we should use conversion equation that preserves
human eye perception capability of red, green and blue component of the final color:

I = 0.3R + 0.59G + 0.11B + 0.001 (2.1)

Conversion (2.1) produces image that is very similar to the direct conversion from YCrCb color without
intermediate RGB conversion. The same equation is used for general conversion of RGB color image to corre-
sponding grey-scale output. The reason why we emphasize this here was to show that we should take care
even in quasi trivial problem to keep maximum information about original analog image.

3



2.2 Inking technology

2.2 Inking technology

After color conversion we have grey-scale frames ready for following inking process. Therefore it is
time to choose suitable inking technology. Transferring color to grey-scale image is heavy underconstrained
problem. There are several approaches which could be used for this task but none of them could be full
automatic. Human intervention is always necessary.

First we have to premise that probably lots of work has been done on unsupervised inking of aged black
and white movies. If we notify that world of classical handmade cartoons has many commercial aspects due to
expected profit based on high broadcast costs we could not hope in opened research projects focused on this
problem. So if we search for previous work on semi-automatic inking we will met with a big disappointment.
So we should unfortunately describe only two previous methods.

Figure 2.2 : Example of the output provided by luminance keys driven colorizing technology.

In well known Gonzalez’s digital image processing book [Gonzalez87] we could find basic inking tech-
nique that is also widely used in hi-end movie post-production software as generic method for transferring
color into grey-scale images. Selected luminance values are converted using user defined look-up table to
wanted hue, saturation and brightness. Smooth selections of input luminance values are known as luminance
keys. They could be used simultaneous on several regions with different luminance median and almost disjoint
deviation interval. Since the different luminance median introduces really hard constraint for most of cases
(e.g. background has nearly similar intensity as character skin, etc.) we could not use this method without
other additional tools (e.g. segmentation masks or animated shapes) which unfortunately provide significant
slowdown of inking process as was proved during testing phase on cartoon “O loupežńıku Rumcajsovi” (see
Figure 2.2 ).

Figure 2.3 : Example of scene where Welsh’s algorithm failed: (from left to right) target grey-scale image,
unsupervised color transfer, color transfer with user defined swatches and source color image as example.

Another approach due to Welsh et al. [Welsh02] take advantage of textural information. Color transfer
between already inked source and grey-scale target is based on local luminance distribution matching in lαβ
color space [Ruderman98] and [Reinhard01]. This technique is inspired by Hertzmann’s image analogies
framework [Hertzmann01]. Jitter sampling is used to select subset of representative pixels in color image.
It is also possible to choose these samples manually as rectangular swatches in both images to reach better
matching results. This technique is surprisingly successful in natural scenes (e.g. tree on meadow with sky on
horizon, deep forest with brown trunks and green leaves, etc.). But cartoons like “O loupežńıku Rumcajsovi”
have not enough textural information. Lots of frames only consist of almost plain regions vary above all in
global intensity and thus this simple process will fail (see Figure 2.3 ).

As we saw that existing methods are not suitable for our case. We should start from a scratch and
develop new usable inking framework. If we exploit the fact that whole cartoon was mainly done by foil
technique we could introduce main idea of our inking technology. We divide input frame to background and

4



2.2.1 Original background

foreground layer and apply ink on them separately. After this procedure we create final coloured composite
from both layers.

There are two possible inking approaches based on this main idea. They have very different properties
and thus we have to compare their fiscal and temporal aspects to decide which technology is more suitable
for our purpose.

Figure 2.4 : Comparison of two different background inking technologies: natural foreground composite with
original background (left), synthetic foreground composite with restored background (right).

Both methods used the same approach for applying color on the foreground parts and vary only in
background inking. Foreground inking process will be described in detail later. In short it consists of con-
tour detection, area segmentation, color indexation with prediction and final composition with the restored
or original background. Exclusion of two words restored and original from last sentence introduces main
difference of presented methods.

2.2.1 Original background

The original background approach preserves the unchanged background in every animation frame. It
uses only the color information from the restored background and then applies it on a grey-scale frame. The
foreground elements and the original background bitmap are merged in an ingenuous image. As described,
the method seems to be simple, however it proves very efficient (see Figure 2.4 ). Nevertheless there are
several circumstances which introduce drawbacks of this technique. Reducing the inking process only to
adding hue and saturation on existing brightness could restrict the artist’s freedom of color selection. If we
allow to change the brightness we introduce some intensity aliasing problem on area boundaries. Moreover we
have to perform exact motion tracking at sub-pixel level in order to hide visible differences between original
and restored background (see Figure 2.5 ), and also to ensure frame-by-frame removal of the degradation
artifacts of aged movie.

Figure 2.5 : Draw backs of original background inking technology: hue and saturation plane extracted from
restored background (left), grey-scale image inked by hue and saturation (right).

5



2.2.2 Background restoration

2.2.2 Background restoration

Figure 2.6 : Restored and inked background.

Technology based on background restoration
replaces the original background by its new pol-
ished and inked version. The original foreground
will form synthetic composition with the new back-
ground. This technique is also known as natu-
ral digital matting and in most cases it could not
be solved exactly, especially in grey-scale case (see
[Chuang02]). Therefore we sometimes observe the
synthetic look of contour’s outer edges (for compar-
ison see Figure 2.4 ). But this main disadvantage is
lessened by the following advantages: artist, who is
responsible for background restoration, is less con-
strained for he/she has full creative freedom, the new background could contain completely different texture
details, we need only motion tracker with pixel precision (available on PC platform) and because of the
restored background is almost new drawing then the side effect of this inking technique is that all aged
motion picture degradations which resides in background area on original source material are fairly removed.

If we want to preserve exactly the same cartoon appearance including all motion picture degrada-
tions, we use the original background technique. On the other hand, if we prefer less expensive and not so
time-demanding solutions without a strict requirement on the original cartoon style, we choose background
restoration method. According the basic motivation of this thesis, we conclude to select this approach as a
proper inking technology.

2.3 Foreground and background

For our inking process, it is really important to discuss which parts of the input image will be understood
as background and foreground respectively. We exploit the significant features of typical Radek Pilař’s
cartoon style. Foreground parts are defined as shapes with luminance homogeneous area enclosed by bold
contour that changes its shape, size and position (see exception that proves the rule on Figure 2.7 ). Rest
of the static areas without bold contours are defined as background. This assumption also means that some
foreground parts could be occluded by background area layer.

Figure 2.7 : Foreground area (tree)
without contour.

Figure 2.8 : Example of automatic background move-
ment tracking from the set of frames in the sequence
where camera shifts horizontally. Vertical black lines in-

dicate relative position of the viewport rectangle.

This division is very important because of the different inking techniques applied on the background
and foreground parts of the image. The background is manually reconstructed from selected frames by ex-
perienced artist using a standard image manipulation software on PC platform. Usually this reconstruction
is performed with exploitation of one or more frames from the whole sequence that covers as much back-
ground area as possible (see Figure 2.8 ). This reconstructed plane will be manually polished and colored by
experienced artist (see Figure 2.6 ) and used as the input background layer for foreground semi-automatic
inking process.
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2.4 Degradation of aged movies

The background is usually static (relative to camera view on the scene) but sometimes the camera
changes its position and scale. In this case we should track the whole sequence to extract all visible parts
of the background. We also need an information about the camera motion, since we have to know which
rectangular part from the whole background plane will appear in the corresponding animation frame. This
process could be done almost automatically on PC using existing film post-production software with sub-
pixel accuracy (see Figure 2.8 ). However sometimes, a human intervention is necessary because of possible
texture-free background, non-linear image distortion due to film degradation, or in such cases, when the
static foreground part of the image is very large and automatic tracking will completely fail or produce
unacceptable errors.

2.4 Degradation of aged movies
Our source material is aged handmade movie, therefore there are some unwanted degradation artifacts

that we have to be able to identify and then remove. We are not going to make detailed description of all
the possible degradations in aged image sequences and their removal techniques. Better resource for further
study would be for example the great Kokaram’s book [Kokaram98] or dissertation [Kokaram93].

First, we have to identify the originator of the the artifacts and then we decide, how to remove the
artifacts without loss of the original artistic impression. Particularly, it is very difficult to decide whether
the artifact is or is not unwanted. This is not an easy task and it depends on the human artistic sense and
preferences.

The example of such problem is the position and scale stability of the static views. Small frame-by-frame
shifts of background and unwanted shifts of foreground relative to static background have to be stabilized.
The first case is caused by an inexact camera focus and position stabilizer combined with the film position
instability during scanning process, so we may consider it as a removable artifact. However, the second
case (generally much more visible) is human inaccuracy in positioning moving foreground parts on the static
background. Here we must decide whether or not we want to remove this feature.

One approach is to preserve the low technical quality of movie and only to colorize the raw grey-scales
without any polishing or reconstruction (suitable for original background technology). This opinion is more
artistically driven than another approach, which prefers high-quality output comparable with latest Walt
Disney’s computer aided cartoons. An optimal point of this trade-off is to be found.

A usual reasonable decision is to preserve as much of the original look as possible and remove only
physically caused artifacts raised by the natural or mechanic film deterioration, including the errors imported
into source material during scanning phase. At this point, we list some of these artifacts with suggestion
how to deal with them (background restoration technique is considered):

2.4.1 Sequences of the same frames

Figure 2.9 : Differences between doubled frames.

The sequences of the same frames are not real
artifacts but is necessary to decide whether to re-
place them by one colored frame or to apply ink
on the each frame separately. The most frequent
case is the dubbing of frames with the same anima-
tion phase. This production time saving technique
is used to reach constant frame-rate 25 fps with-
out inserting smoother animation phases. Although
doubled frames are “macroscopically” same, they
are slightly different if we take care about details.
Main differences are caused by previously discussed
position instability, luminance fluctuation and dy-

namic noise of area texture (see Figure 2.9 ). Especially different noise texture in each frame is visually
perceived as warm flavour of the real-world computer unassisted animation. If we want to preserve this fea-
ture, we have to apply ink on the each frame separately. In our case, this is relevant only for the foreground
part of output frame. Unfortunately the selected background restoration technique do not preserve this fea-
ture on the background layer, so we should simulate it by automatic noise superposition during finalization
phase on hi-end post-production platform. We exploit foreground masks to avoid adding this synthetic noise
to regions where original foreground is located.
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2.4.2 Position instability

The position instability was already discussed in the introduction of this section. It is reasonable
to stabilize only the global shifts of each frame and the local foreground. (And to leave the background
movement alone.) If we consider that visible shifts are present even on the sub-pixel resolution, then the
stabilization task moves to the nontrivial problem. It could be partially solved by one of two known motion
estimation techniques: the first, based on block matching [Liu93] with higher computational costs, and
the second, much faster but not as exact, gradient based approach [Martinez86] or [Driessen91]. Both
methods are already implemented in hi-end post-production tools but they are not precise enough for our
needs. We exploit this motion tracking inaccuracy in phase when we are generating frames from restored
background. Since the motion tracking process is not exact, the unwanted sub-pixel shifts will be destroyed
by a smooth approximation of motion curve. Disadvantage of this perfect stabilization is the increasing
foreground instability.

2.4.3 Luminance fluctuation

Figure 2.10 : The scene where
luminance fluctuation statistics

were measured.

Luminance fluctuation or flashing is visually very important ar-
tifact. Human eye is very sensitive to small luminance fluctuations,
especially if they are only local. Let’s compare four temporal graphs
on Figure 2.11 where the median fluctuation of the selected homoge-
neous areas is apparent. Standard deviation is not bigger than 1% of
intensity domain, however the human eye still can observe the lumi-
nance fluctuation of even lower deviations. We could also find out the
correlation between graphs which indicates the global intensity shifts.
To understand why the global luminance is not constant, we have to
know that the production of cartoons is a time consuming process and
the lamps used for the illumination of the animator’s board do not have
constant temporal luminance over their short lifetime. Also, we have to
consider the possible charge drops or inexact objective blind setup and
other similar influences. See Figure 2.12 for example of really significant
luminance fluctuation.
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Figure 2.11 : Temporal graphs which demonstrate median fluctuation of the selected homogeneous areas:
cobbler’s skin (upper left), table with boots (upper right), stool under cobbler (bottom left), cobbler’s apron

(bottom right). See also Figure 2.10 to locate these areas.

This artifact is very important because it makes difficult to apply trivial semi-automatic inking process
based on intensity keys (as we discuss in Section 2.2 ). Unsupervised removal of global luminance fluctuation
is not trivial task and was partially solved in [Hrbek02] while the accuracy of Hrbek’s method depends
upon correct motion estimation.
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Figure 2.12 : Strong impulsive luminance fluctuation: temporal history of selected rectangle on
static background entitled by frame numbers.

But removal of this articaft (for background case) is trivial when we use background restoration inking
technology (presented in Section 2.2.2 ). Constant luminance of the foreground areas is assured by couple
of stabilization techniques that we describe in detail in Section 4.1.2 . They preserve temporally constant
user defined luminance median (see Figure 2.13 on the left side) for (medium and large sized) homogeneous
areas without losing original area features (i.e. natural texture noise, edge sharpness, etc.).

Figure 2.13 : User defined luminance median (left) and luminance fluctuation effect (right).

Unfortunately there are also couple of sequences where we could find special effect based on local or
global luminance increasing or decreasing, for example cuts with global fade-in/outs and local effects like
shame skin or stomach nausea (see Figure 2.13 on th right side). Because of minority of these effects they
are solved manually during final post-production phase on hi-end platform.

2.4.4 Dust spots

Dust spots, sometimes called blotches or dirt and sparkle are well known impulsive distortions of aged
movies. They have strong edges and their average luminance tends to clean black or white. They could be
found at the specific position on one frame only. Black dust spots and short hairs reside on the original
negative surface and after exposure process they are reprojected to the spots with white luminance. In our
case the negative copy of the cartoon was passed through film scanner and after that digitally converted to
the positive without exposure process. So white spots have higher frequency than black spots because black
spots reside above all on the positive material. To see various types of impulsive distortions see Figure 2.14 .

Figure 2.14 : Various types of impulsive distortions. In the middle we could see
rare example of the black spot.

Lots of work has been done on impulsive distortion suppression. One-shot detection and removal meth-
ods based on global multilevel median filtering [Nieminen87] or standalone detection using model of local
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interaction of neighbour pixels [Kokaram93] or grey-scale morphological filters [Joyeux01] followed by re-
construction of degraded area with B-spline interpolation [Lee83], Markov random fields [Li96], auto
regressive model [Kalra97], Fourier transformation [Joyeux01] or with advanced hole fitting algorithm
using fast texture synthesis by patch-based sampling [Liang01] were presented. But inking process based
on background reconstruction provides straightforward removal of these artifacts in background case (see
Section 2.2.2 ). Foreground case is solved by simple and effective black or white distortions removal algorithm
that exploits area homogeneity feature (see Section 4.1.3 ).

2.4.5 Band scratches

Band scratches are very similar to impulsive distortions and have same photometric characteristics but
they are much more aggressive and produce large image degradation. Frames with the band scratches are
rare because they are mostly located at sticking frames where cuts of original film was glued together by
transparent sticky tape. They could be located and removed manually in pre-processing phase (see Figure
2.15 ).

Figure 2.15 : Several examples of band scratches.

Another common type of deterioration are vertical line scratches raised by repetitive positive film rubbing
through mechanical parts of film projector. If we have original negative material of the cartoon movie which
have never met film projector then the scanned material is also void of this type of scratches. Anyway
this is also well studied problem. Example of the efficient solution should consist of detection by line
tracking algorithm using Kalman filter on vertically sub-sampled images of frames and Fourier series removal
preserving high-frequency information as was presented in [Joyeux01].

Figure 2.16 : Examples of manually painted effects: bee’s cluster (left), motion
blur (middle) and smoke (right).

Another artistic effects similar to what we see in luminance fluctuation section are manually painted
motion blurs or smoking effects (see Figure 2.16 ). They symbolize very fast movement or foggy atmosphere
of the scene. Because of similarity with band scratches they are classified as movie degradation artifacts and
should be reconstructed by experienced artist in final post-production phase.

2.4.6 Vignetation.

Vignetation. Camera objective is a system of disperse and joint lenses which transform perpendicular
rays from animator’s board to confluent rays and produce smaller copy of the projected scene on the negative
film frame. But this conversion is not perfect due to known lens defects so we observe the vignetation artifact
on the boundary of enlightened area (see Figure 2.17 ). Boundaries are relative brighter or darker than spare
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inner area of the frame. This problem is finally in practice very similar to luminance fluctuation because of
same inconveniences connected with intensity keys pseudocoloring process.

It is easy to remove vignetation when we could perform camera calibration. We can simply measure
vignetation effect by shooting plain solid plane with known intensity. Digital picture of this plane could be
used as multiplicative correction mask for vignetation artifact (see [Hlaváč94]). Unfortunately this is not
our case. But we could remove it in the same way as luminance fluctuation artifact by inking technology based
on background restoration and by user defined foreground area luminance median stabilization algorithm.

Figure 2.17 : Vignetation visualized by
color quantization.

Figure 2.18 : Bright sun needs original
contour brightness.

2.4.7 Contours with low contrast

Contours with low contrast are mostly produced in three independent cases. First case is artist’s purpose
(see Figure 2.18 ). Bright contour visually propagates higher luminance of the enclosed area. Second case is
due to vignetation artifact. Foreground contours near the boundary of the frame are brighter than contours
which are more inside the frame. Last case comes on when all contours have histogram peak in intensity
band where non-contour parts of the image usually reside (see histogram on Figure 2.19 ). This happened
due to scanning process and sometimes due to film overlighting during cartoon shooting. Experimental
setup of conversion curve which projects high-resolution multispectral intensity to 8-bit range during the
film scanning process is usually done one-time and during the whole part remains static. This non-adaptive
framework do not respect temporal global luminance fluctuations thus several cuts may be overlighted. We
can see that low-contrasted contours problem is subset of previous mentioned luminance artifacts.

0 96 128 160 192 224 25620 60

Figure 2.19 : Low-contrasted contours (left, red histogram), histograms with marked contour’s peaks
(middle), Well-contrasted contours reconstructed by local gamma correction (right, blue histogram).

First case was solved by algorithm based on smooth directional interpolation between background and
foreground colors exploiting ideas based on distant field technique (see Section 4.2.3 ). Other types of
contours with low contrast are slid off to the black by local histogram equalization smoothly applied only
at contour location with user defined gamma correction (see Section 4.2.2 for details). Local equalization
is destructive process that imports new gaussian smoothing to the original image (see in Figure 2.19 on
the right side). If we want to preserve original cartoon look without adding any pixel polishing it will be
reasonable to use this algorithm only for really badly scanned or overlighted sequences.
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2.5 Input and output

In this section we summarize input and output of application that provide semi-automatic foreground
inking process (we call it COL). This will also contain rough list of pre-processing and post-processing oper-
ations which have to be done by external applications on hi-end and low-end platforms.

First we have to find real movie cuts that should be separated into stand-alone sequences of frames.
They will pass through inking process separately. This pre-processing phase is human driven. Hi-end film
post-production system operator who is responsible for exporting these cuts for low-end platform gathers
also lots of additional information about each sequence that will be used during inking process:

• Frames for background restoration. This will help experienced artist in background restoration
phase. He perform background reconstruction only from these selected frames. This information is not
necessary if we perform semi-automatic extraction of whole background plane by camera movement tracking.

• Type of background movement: static, zooming, panning, inter-fading, fade-in/out. This will
decide if we generate only one static frame of background or perform camera movement tracking additionally
connected with alpha-blending of two background planes.

• First, last and start frame containing foreground parts. These will decide on which frame
interval of current movie cut we apply foreground inking and where we should start with this process. Start
frame could be same as fist frame but in scenes where due to camera movement all foreground parts are not
visible on first frame is seasonable to start in frame where all foreground parts are visible. This save lots of
correction work during foreground inking phase as we will see in Section 5.3 .

• Frames for foreground color sample. Needed for preparation of demonstration frame with inked
foreground parts which will be used as sample layer for proper color picking in COL application. This frame
will be done by experienced artist during background restoration phase.

Figure 2.20 : Helpful background mask.

• Frames where special effects are located. As we saw in Section 2.4 there are several visual
effects (i.e. handmade motion blur, local intensity fluctuation of selected area, etc.) which could not be
inked by COL application so it is necessary to handle them as
post-production task.

• Optional background masks. There are several
scenes, where foreground parts are occluded by background
parts (see Figure 2.18 where foreground sun is occluded by
background forest). Between foreground area and front back-
ground layer does not exist real bold contour as is usual in
case of foreground area on truly background. Due to this cir-
cumstance contour detection algorithm will fail (see Section
3.2.2 ) and COL operator should make complicated virtual con-
tours which is not easy task if we consider that he is endowed
only on COL’s user interface not suitable for real painting. We
should solve this problem by preparation of background masks
during background restoration phase using image manipula-
tion software (see Figure 2.20 ).

Now if we have all information about input we explore the data flow diagram of whole inking process
(see Figure 2.21 ). We will start on hi-end post-production hardware (left blue big-tower station) where
we prepare true-color image sequences and export them to uncompressed 24-bit TIFF images. Conversion
to grey-scale PiNG format (see Section 2.1 ) and background restoration phase on PC platform using image
manipulation software (gray mini-tower computer) follows. Also sample image with inked foreground as long
as optional foreground masks will be prepared. When the colorized background plane is ready we perform
motion estimation using camera tracking software on PC platform (blue desktop computer) to produce
sequence of colored background frames. Sequence of colored backgrounds, original grey-scale frames with
foreground parts, example image and optional background mask are input of COL application (in bold red
circle). Sequence of full color frames with background and foreground composite and grey-scale foreground
alpha-masks both in uncompressed 24-bit TIFF format are expected as output of the COL application. Both
sequences will be imported back to hi-end post-production hardware for post-processing tasks.

Although data flow diagram on Figure 2.21 was used in practice we developed much more efficient
innovation (see Figure 2.22 ) that replaces external professional camera motion tracking application with

12



2.5 Input and output

our proprietary semi-automatic motion tracker also for PC platform based on ideas presented in [Hrbek02]
that has got lots of additional features. During tracking process it automatically extracts background
plane without foreground parts (areas that are never visible are marked with black pixels) and it preserves
information about rectangular area of current frame on the big background plane. After this extraction it
is much easier to apply ink on this plane using image manipulation software on PC platform and more we
do not have to create image sequence of background frames (this will save lots of disk space if we consider
that only one frame in compressed 24-bit PiNG format consume in average about 500kB), we only pass the
big plane with restored background as input of the COL application while we exploit numerical information
about rectangles for each corresponding frame in grey-scale sequence to extract correct rescaled background.
This information also helps COL application to predict motion of foreground parts and saves lots of work
connected with manual shifting of prediction masks as we will see in Section 5.3 .
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Figure 2.21 : Generic data flow diagram of inking process.
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Figure 2.22 : Optimized data flow diagram of inking process.
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In this chapter we will present a short overview of the recent image segmentation techniques and several
practical results based on experiments with different methods which are suitable for our case, including multi-
level thresholding, watersheds and edge detection to show main disadvantages that lead us to the development
of a novel, robust, almost unsupervised segmentation technique that is able to produce the requested fine
detail segmentation with very low computational costs.

It is clear that the segmentation is one of the main tasks in a cartoon inking process. Our problem
is very similar to the reverse engineering because we know that in the input grey-scale frames there are
scenes created artificially using a composition of planar objects. We need to extract them to acquire original
standalone layers. That allows us to simplify the following inking process.

Moreover if we know that our input image is a picture of the artificial composition of several foreground
and background layers and even if foreground parts are bounded with bold contours then our task is going
to be much more easier compared with general image segmentation techniques focused on the natural photos
or CT and MR images.

Because the artist’s and his viewer’s imagination deals with simple homogenous surfaces marked out with
well defined boundaries, the best information which we could earn from the input image is the vector based
description of the scene, which consists of curves and filled areas. This type of description will simplify the
following manipulation. It is clear that the vectorised information is much more valuable for computerised
image understanding than the original single resolution intensity matrix.

For our purpose it is not necessary to compute a complete image vectorisation. It could be finally
understood as a disadvantage because of e.g. curve approximation which does not exactly follow original
shapes created by artist. We only need to localize and identify each important region in the input grey-scale
image using its original fixed resolution. More technically, we convert it into the indexed bitmap where each
region has a unique index.

Figure 3.1 : Different precision of segmentation: (from left to right) grey-scale image, nearly ideal segmentation,
contour based segmentation, real regions with different color index.

To make a better understanding see Figure 3.1 . It demonstrates which results are expected as an
output of our segmentation process. Some regions are classified as foreground and other as background but
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3.1 Previous work

only foreground parts will continue to the next stages of the colorizing process so background parts should
be merged together with one region index. Last but not least important type of area is a contour which
represents the visible boundary between foreground and background parts.

On Figure 3.1 we could also see an omitted inner foreground region without bold contour (cobbler’s
cheek). If it represents only local intensity changes that do not influence color selection process and only
modulate final color brightness then it could be omitted. But that is not the case. Cobbler’s cheek should
be more rosy than his skin. As we stated in Section 2.4 this effect is out of our responsibility because it will
be solved during the post-production phase. On the other hand similar properties have also inner contours.
They could be also treated as unimportant (cobbler’s eye, ear, fingers, etc.) but if we want to e.g. locally
enhance the contour contrast or exactly compute intensity statistics of proper region we have to know where
they are located.

3.1 Previous work

Now when we know what degree of the source image segmentation precision we want, we should try to
find out a proper segmentation method which is supposed to be robust, mostly unsupervised and fast. We
will analyze and prove several classical and widely used segmentation techniques and decide which of them
are suitable for our needs.

3.1.1 Thresholding

First, easy to implement and fast method is the simple image thresholding on an intensity domain. This
technique has a distant connection with the analysis of the input image histogram. Frequency peaks in the
intensity histogram usually represent average intensities of the significant regions in the original image.

0 32 64 96 128 160 192 224 256

Figure 3.2 : Segmentation via multi-level thresholding.

Segmentation via multi-level thresholding is done by peak finding algorithm which finds significant peaks
in the image histogram and divides the original intensity domain to several sub-intervals. Bounds of each
sub-interval are localized near the lowest frequency value of the valley between two detected peaks. Pixels
from the original grey-scale image with intensities inside these intervals could be converted to a proper
sub-interval index. With this straightforward process we could easily produce final image segmentation
represented as indexed bitmap with the same resolution as original image.

3.1.2 Homogeneity

Thresholding approach could be generalized with histogram on homogeneity domain as was shown
in [Cheng00], where homogeneity is understood as normalized product of two local statistics: standard
deviation (using window 5x5) and discontinuity of intensities (Sobel operator using window 3x3). The main
advantage of this generalized histogram is that it takes in account not only local but also global information.
Cheng count in to the homogeneity histogram only pixels with uniform neighbourhood (see Figure 3.3 ) to
eliminate non-uniform pixels from global statistic and to avoid false detection on small region peaks.

Although this innovation made the thresholding segmentation technique more robust we can never
develop such a powerful peak finding algorithm which would be able to avoid the oversegmentation raised
by noise overlapping as we can see on Figure 3.2 . Cheng used the region merging technique based on
color information, which unfortunately is not suitable for our grey-scale case. But we could use region
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merging by variational framework based on energy minimization using multi-scale pyramid [Koepfler94].
Unfortunately, that approach has O(N log N) complexity. A review of other multi-scale methods can be
found in [Schneider00]. Recent research on the multi-scale techniques lead us to the interesting wavelet
based semi-automatic segmentation [Haenselmann00].

Figure 3.3 : Review of the different homogeneity thresholds: (from left to right) 0.01, 0.05, 0.10, 0.20, 0.50,
where black pixels are not homogeneous.

Results of region merging with certain predefined homogeneity criteria are very similar to color quantiza-
tion and region growing technique presented in [Deng01]. Another good successor of homogeneity approach
is adaptive clustering by extraction of color and texture features [Chen02], which is suitable for natural
images. We should not leave out important segmentation structures which exploit the area homogeneity fea-
ture. They are known as active contours or snakes (see [Yezzi97] and [Hug99]). We define them as (usually
closed) spline curves that approximate the boundary of the homogeneous area by an energy minimization
process. They are widely used as intelligent scissors in digital image editing software and because of that
they unfortunately are not suitable for our task since they represent only a good tool for a human-driven
segmentation.

Most of methods presented above are not appropriate for our case because they use color as a really
helpful source of information or because they are human-driven. Other unsupervised grey-scale oriented
methods based on homogeneity feature promise surprisingly good results but unfortunately their implemen-
tation would not be easy and finally the expected processing speed could be far away from the accepted limit
of interactive performance. But we have not mentioned the well known watersheds segmentation method
yet, which is based on a grey-scale morphology framework and which should be suitable for our case.

3.1.3 Watersheds

Figure 2.16 : Selective gaussian blur.

If we consider grey-scale image as a discreet repre-
sentation of a 3D map of the mountain chain where each
intensity corresponds to a certain height level than we
could define watersheds as the contour lines separating
the catchment basins. Each basin belongs to different
local height minima. If a drop of water falls at any
pixel of the current basin then it will flow down to its
local minima. The watersheds algorithm simulates the
real nature phenomenon of the rain water flooding.

The watersheds algorithm has three phases. First
the gradient magnitude image is prepared. This phase
consists of an advanced low-pass gaussian filtering to
remove impulsive noise preserving image sharpness (see
[Haris98] and Figure 2.16 ) and gradient magnitude
calculation based on classical gradient operators (the same as in homogeneity approach: Sobel or Perwitt).
Second phase is a pixel intensity sorting with histogram hash table (to reach O(N) complexity) followed by
incremental immersion of sorted pixels while the catchment basins are assigned to unique index which is
propagated upwards using neighbourhood queues (see [Vincent91]).
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3.1.4 Edge detection

After this second phase the initial segmentation of the input image is ready. Unfortunately the water-
sheds algorithm is sensitive to noise and high-frequency textural information so we usually receive lots of
catchment basins which yield the typical oversegmentation problem (see Figure 3.4 on the left). To solve
this problem we perform third phase of the watersheds algorithm. There are several approaches: user-driven,
when we manually select a small number of basins (markers) containing an important regional minimum (see
[Meyer90]) or unsupervised technique based on fast nearest neighbor merging of region adjacency graph
(see [Haris98]) which is more suitable for our case. Also spatio-temporal coherency should be exploited
to perform labelling of the catchment basins via Markov random field model using maximization of the
conditional a posterior probability (MAP) of a given label field (see [Patras01]).

Figure 3.4 : Progress of the watersheds oversegmentation reduction based on nearest neighbor merging.

Even that the final segmentation result (see Figure 3.4 on the right) seems to be correct we unfortunately
could not accept it because of loss of important details during catchment basins reduction process. Especially
the drop-outs of the segments which belong to the bold contours are unacceptable. Considering the fact
that the whole segmentation process takes more than one second per frame (on a 750MHz CPU), we have
to conclude that watersheds algorithm is also unsuitable for our purpose.

3.1.4 Edge detection

Another approach to image segmentation widely used in computer vision is based on edge detection.
The main idea came out from an observation that uniform parts of a segmented image are usually separated
asunder by strong or weak edges. The edges could be understood as significant intensity differences of the
neighbor pixels in an image matrix. Spatial location of edges in the image represented by continous 2D
function is exactly defined as a maximum of the first-order derivatives or better as second-order derivatives
zero crossings of the image function (see one-dimensional analogy on Figure 3.5 ). If we discover the exact
edge locations we can simply divide the image into several regions considering the fact that edges are their
topological boundaries.
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Figure 3.5 : Edge on continous one-dimensional function: (from left to right) image intensity, first-order
derivatives, second-order derivatives. Middle vertical line in each graph represents the edge location.

The problem of the edge detection is well studied and lots of more or less robust approaches has
been developed (see [Ziou97] and [Heath96] for detailed problem description and overview of existing
techniques). This state of the research leads us to conclusion that the edge detection is not a trivial problem.
If we want to develop the best detector for our conditions we have to perform many experiments. But our
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3.1.4 Edge detection

case is really different from usual digitized images. Cartoon edges are visible as much as is possible. An
artist needs to construct a clear conception of shapes in the scene in the viewer’s mind. Our edges are bold
contours represented by two strong intensity gradients appertain to their boundaries. What we are looking
for is not an edge but a contour. So our task is to develop robust and fast contour detector.

Figure 3.6 : Contour thresholding: weak connectivity
and false detection.

The first idea how to find bold contours is
again thresholding now only single-level. Con-
tours look like to be only black parts in the im-
age and so they certainly have own peak in the
intensity histogram. This is true but not exactly.
Unfortunately the contour’s boundary edges are
in fact strong intensity steps represented by high-
frequency components in the 2D image signal.
If we reduce the resolution we usually perform
supersampling to avoid visible intensity aliasing
of the edges on the resulting image. This anti-
aliasing technique converts the high-frequency
components to the smooth change of the neigh-
bour pixel’s intensities. This smoothing cause
that really black pixels are located only in the
center of the contour. The worst case is the sit-
uation where the original contour is thin as the
one pixel and is sampled between two raster pixels. The contour peak is usually hidden in noise of neighbor
intensities or if it is detectable then we must trade off between contour continuity and authenticity to select
proper thresholding interval (see Figure 3.6 ).

Figure 3.7 : Sobel edge detection: first-order derivative
(left) and magnitude thresholding (right).

The problem lies in intensity level. Although the contours look like to be dark they significantly vary
in intensities. We have to move our attention from an absolute intensity level to its differences, which
is the well known first-order derivative approx-
imation approach early developed by Sobel and
Perwitt (see [Perwitt70] and [Mitchell88]).
We combine two simple convolutions with 3x3
windows (horizontal and vertical) to reach first-
order derivative approximation:

∆xy =

−1 0 1
−2 0 2
−1 0 1

 ◦

−1 −2 −1
0 0 0
1 2 1

 .

This two-pass convolution produces the image
where pixel’s intensity corresponds to the mag-
nitude of the local edge gradient in the original
image. To extract locations of edges according to
definition we have to found local maxima of the
intensity level. This task can be approximated
by magnitude thresholding (see Figure 3.7 ).

But we are unable to locate edges correctly using magnitude thresholding. Additionally, some weak
edges that are also important as contour borders are dropped out. We need a more robust technique to find
them. The most popular advanced edge detector based on the first-order derivative framework developed by
Canny possibly solves our problem.

Canny derives optimal convolution filter which is able to extract ideal step edge from one-dimensional
signal degraded by Gaussian noise [Canny86]. The quality of that filter was evaluated in three criteria: good
detection, good localization and unique response to a single edge. The final detector was derived by several
symbolic and numeric tools and it is proven that it could be approximated with first-order derivative of the
Gaussian (see Figure 3.5 : 1D Gaussian (G) in the middle and its first-order derivative (G′) on the right):

G =
1√
2πσ

e−
x2

2σ2 , G′ = − x√
2πσ3

e−
x2

2σ2 .
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3.1.4 Edge detection

Canny detector extension for the discreet two-dimensional signal is not a trivial task because the 2D edge
has additional properties compared with its 1D analogy, e.g. orientation. We have to convolve the image with
the directional first-order derivative of the 2D Gaussian while edge orientation is not known. Second problem
is the unique response criterion that is usually solved by thresholding with hysteresis (computationally
expensive). Lots of work has been done on the 2D extension of the basic 1D Canny’s idea, for further study
see e.g. [Shen86] or [Ding01]. You can see an example of the different σ scale responses of the simple 2D
Canny detector on Figure 3.8 .

Figure 3.8 : The response of the Canny edge detector in different scales (σ = 0.5, 1.0, 1.5, 2.0, 2.5). Grey levels
denote to the corresponding edge strength or weakness.

Unfortunately advanced edge detection techniques like Canny detector are complex and computationally
expensive. They produce additional information which is not essentially valuable for our purpose. We need
to know exact edge location only. Edge strength or direction is irrelevant information for us. We need faster
approach which will be able to satisfy only the second Canny’s criterion – good localization.

Second-order derivative approximation of the image function will help us. Before we could apply this
technique we have to remove impulsive noise because while we increasing the derivative order we enhance
high-frequency parts of the 2D image signal. They should destroy the main information that we need to
extract.

Before we start inquiry into the noise suppression techniques (e.g. selective gaussian blur in Section
3.1.3 , see also [Mrázek01] or [Nitzberg93]) we have to state that Marr’s and Hildreth’s theory of edge
detection [Marr80] take in account a model of the human eye’s perceptual system. If we consider that
cartoons are made to be perceived by human eye then it should be really interesting to learn how it works.
Marr and Hildreth proved that human shape understanding is based on the process that is very similar to
the image (I) convolution with the two-dimensional Laplacian of Gaussian filter (L ◦G).

This filter should be constructed if we know that:

G =
1

2πσ2
e−

x2+y2

2σ2 ⇒ L = ∇2 = ∇ ◦∇ =
∂2f

∂x2
+

∂2f

∂y2
,

where G is Gaussian and L is classical Laplacian operator both in two dimensions. We could take the
advantage of the convolution linearity ∇2(G ◦ I) = (∇2G) ◦ I, so ∇2G should be precalculated by symbolic
derivation. Final L ◦G convolution filter should be expressed using following formula:

L ◦G = ∇2G =
1

πσ4

(
x2 + y2

2σ2
− 1

)
e−

x2+y2

2σ2 ⇒

This filter performs two operations by one-pass convolution: Gaussian removes noise and Laplacian estimates
second-order derivative of the noise-free image function. It is now much easier to find the exact edge locations
using the zero crossing test on such convolved image. But correct zero crossing test do not consist of trivial
thresholding of pixels with value near zero. Using this technique we destroy zero crossings conductivity.
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Figure 3.9 : Zero crossing test masks.

If we use floating point arithmetic the rotating 2x1
mask have to be used. It covers the basic four local di-
rections of the zero crossing curves (see Figure 3.9 the
first row). We localize zero crossing on the current pixel
if and only if one or more of the four rules from the first
row on Figure 3.9 are satisfied. This happens only if a
proper pixel has positive value and one or more of its four
neighbours have negative value. Moreover 4-continous rule
should be extended by 8-continous masks, especially if we
use integer arithmetic (see Figure 3.9 the second and third
row). To be even more precise, Clark developed authen-
ticating method for detecting “phantom” edges generated
by zero crossing test [Clark89], where “phantom” edge is
defined as local minimum extreme in first order derivative
of image function.

There is one important parameter of the L ◦G filter, its standard deviation σ. It enables us to select
proper filter scale to fit into our range of interest. If we vary σ we are going through image scale-space (see
[Witkin86]). Edges that are important for us reside only in a small interval of this space. We have to find
it. See Figure 3.10 for several samples from L ◦G scale-space visualised by zero crossings. There we could
observe that the scale of our edges seems to be between σ > 1.0 and σ < 2.0. This scale-space interval will
be also discussed in Section 3.2 .

Figure 3.10 : Scale-space of the L ◦G filter: (from left to right) σ = 1.0, 1.5, 2.0, 3.0, 4.0.

Another important feature of the L ◦ G filter is that its zero crossings form closed curves, sometimes
so called “spaghetti effect”. What does it mean for our case? Each contour consists of two boundary edges.
The contours of one isolated foreground object form a continous closed area which could be represented by
one region in final segmentation. The boundary edges are topological boundaries of this area. If we simply
fill this area with constant color using e.g. classical flood-fill algorithm we receive searched contour (see
Figure 3.11 )!

Figure 3.11 : Contour detector based on Laplacian of Gaussian filtering in progress: (from left to right) original
image, Gaussian smoohting, Laplacian approximation of the second-order derivatives, zero crossing, flood-fill.
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3.2 Contour detector

Although the L ◦ G filter seems to be the best segmentation tool for cartoons with bold contours of
all techniques mentioned above, we must first discuss its computational complexity. Brute force convolution
with L ◦ G filter using e.g. σ = 1.60 (same as on Figure 3.11 ) on recommended basis 19x19 amounts to
approximately 150 millions floating point multiplications per one PAL frame (over 4 seconds on 750MHz
CPU). This CPU load is far over our interactive performance limit. Luckily, as we will see in next section,
due to several decomposition techniques we can significantly speed up L ◦ G convolution process with the
same filtering results.

3.2 Contour detector
In this section we will describe in detail the fast contour detection algorithm that will be used as basic

pre-processing tool for final image segmentation. We will explain how to efficiently compute full frame L◦G
convolution with correct zero crossing and how to find main closed contours in the source image using the
fast selective span-recursive flood-fill algorithm and the morphological erosion operator.

3.2.1 Filter design
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Figure 3.12 : The h1(ρ) filter.

As we saw in the previous section, the brute force full frame L◦
G filtering is a computationally expensive task. Even if we consider
that the recommended window size for discreet approximation of the
L ◦G filter is b8

√
2σc. First idea how to speed up convolution with

L◦G operator exploits the fact that L◦G can be approximated with
difference of two Gaussians (D◦G) with several standard deviations
[Nishihara81]. Each Gaussian window should be separated into
the two one-dimensional row and column convolution masks. This
will reduce total number of multiplications more than fourfold but
resulting image is not exactly L ◦G. Later King proved that L ◦G
could be exactly decomposed into the sum of two separable filters
[King82]:

∇2G(x, y) = h1(x) · h2(y) + h2(x) · h1(y)

where

h1(ρ) =
1√

2πσ2

(
1− ρ2

σ2

)
e−

ρ2

2σ2 and h2(ρ) =
1√

2πσ2
e−

ρ2

2σ2 .

See Figure 3.12 for h1(ρ) function plot. Filter h2(ρ) is classic Gaussian (see Figure 3.5 in the middle).
Additionaly, Chen et al. proved that L ◦G filtration should be done in two passes using classical Gaussian
with the same standard deviation and smaller L ◦G with a lower standard deviation. To show that we have
to use Fourier transformation [Chen87]:

G(u, v) = exp
[
−σ2

2
(
u2 + v2

)]
⇒

and

L ◦ G(u, v) =
(
u2 + v2

)
exp

[
−σ2

2
(
u2 + v2

)]
⇒

where G(u, v) and L ◦ G(u, v) are continuous spatial Fourier transformations of G(x, y) and L ◦ G(x, y)
respectively. We know that two-pass filtering in spatial domain should be done by one-pass filtration in
Fourier domain by the window that was computed as a multiplication of two convolution windows from each
spatial pass. This process could be reformulated as follows:

L ◦ G(u, v) = exp
[
σ2

2

(
1− 1

k2
σ

) (
u2 + v2

)]
× (u2 + v2) exp

[
σ2

2

(
− 1

k2
σ

) (
u2 + v2

)]
,
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3.2.1 Filter design

where kσ is a reconstruction constant. This constant controls the trade off between the standard deviations
of the decomposed filters in the spatial domain: σG = σ

√
1− 1/k2

σ and σL = σ/kσ.
Before we will able to select proper kσ we have to know that Sotak suggest in [Sotak89] step-by-step

operator design procedure to estimate the best standard deviation for Gaussian and smaller L ◦G from the
given brute force σ. They take in account also allowable aliasing energy pa in the spectrum of the truncated
digital approximation of the L◦G filter. If we truncate function in spatial domain then we receive periodical
repetition in frequency spectrum and vice versa. This aliasing energy can be expressed for the Gaussian and
L ◦G spectrum as follows:

100− pa

100
=

σ2
G

π

αG∫
−αG

αG∫
−αG

e−σ2
G(u2+v2)dudv and

100− pa

100
=

σ6
L

2π

αL∫
−αL

αL∫
−αL

(
u2 + v2

)2
e−σ2

L(u2+v2)dudv

where αG and αL are aliasing frequencies. Sotak computed them by numerical integration for the given
percentage of aliasing energy pa and standard deviations σG and σL. It is possible to prepare precomputed
σ-independent functions AG(pa) = αGσG and AL(pa) = αLσL. According to [Sotak89] the best kσ should
be tuned by kσ = σπ/(ALkd), where kd = σπ/

√
A2

L + A2
G is decimation constant.

It is now interesting to show which pa is suitable for our case. If we increase the pa then we propagate
smoothing (σG will grow up and σL will decrease, see Figure 3.13 ). We selected experimentally pa = 10%
as a compromise between aliasing and smoothing to reach best filtering quality.

Figure 3.13 : Influence of the allowable aliasing energy: (from left to right) pa = 1%, 5%, 10%, 15%, 25%, 50%.

Now we could refine the scale-space interval (see Figure 3.10 ) by assumption that integer part of our
decimation constant should be bkdc = 1. Otherwise if bkdc < 1 then our smaller L ◦G decomposition will
be undefined and we should use the brute force L ◦G filter with the lowest reasonable support 7x7 or better
enter the sub-pixel resolution by an image upsampling (see Figure 3.14 on the left side). With sub-pixel
resolution we are able to disintegrate one-pixel distant zero crossings that represent boundaries of a very
tight region. On the other side if bkdc > 1 then L ◦G will be sensitive on edges in decimated image with
half resolution. This is useful if we detect edges on zoomed image where contours are nearly twice as thicker
as in standard zoom and so the L ◦G detector using bkdc > 1 filter estimates unwanted zero crossings inside
bold contours (see Figure 3.14 on the right side).

Figure 3.14 : L ◦G filtering with different kd: [kd = 1, σ = 1.23] vs. [kd < 1, σ = 1.23] sub-pixel
accuracy (left), [kd = 1, σ = 1.23] vs. [kd > 1, σ = 2.00] decimated resolution (right).
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3.2.2 Contour filling

σ L ◦G bkdc (L ◦G) ◦G speed
(0.80, 0.95〉 9x9 1 (7+7) ◦ (3+3) 4x
(0.95, 1.20〉 11x11 1 (7+7) ◦ (5+5) 5x
(1.20, 1.50〉 13x13 1 (7+7) ◦ (7+7) 7x
(1.50, 1.60〉 17x17 1 (7+7) ◦ (9+9) 10x
(1.60, 1.70〉 19x19 2 (7+7) ◦ (5+5) 9x
(1.70, 1.90〉 23x23 2 (7+7) ◦ (7+7) 8x
(1.90, 2.15〉 25x25 2 (7+7) ◦ (9+9) 13x
(2.15, 2.40〉 27x27 2 (7+7) ◦ (11+11) 19x

Table 3.1 : Useful decompositions of brute force L ◦G.

If we follow the Sotak’s instructions we
found that this constraints yield us to eight
different L◦G decompositions as we can se on
Table 3.1 . For a given σ interval (first column)
we should decompose brute force L◦G convo-
lution with support b8

√
2σc (second column)

into the two-pass G and L ◦G filtering using
smaller separated ( horizontal + vertical ) one-
dimensional supports on full resolution or the
decimated image (bkdc = 2). To preserve the
same output resolution, Sotak performs up-
sampling using bilinear interpolation. He also
recommends to apply the DC-padding instead of the zero-padding to avoid an erosion of the zero crossings
near the image boundaries. Last column in Table 3.1 presents experimentally measured relative performance
gains of decomposed and separated convolutions compared with the brute force filtering including time spent
on bilinear interpolation.

Figure 3.15 : Zero crossings in original resolution (left)
and broken topology in sub-pixel extrapolation (right).

While Sotak’s analysis does not cover filtering on sub-pixel resolution the Table 3.1 presents only de-
compositions for bkdc = 1 and bkdc = 2. If we want to work with a sub-pixel accuracy we should analyze
degradations caused by a bilinear extrapolation. See [Steger98] for precise development of sub-pixel accu-
racy framework for edge detection. For an example of possible distortion caused by the sub-pixel extrapo-

lation see Figure 3.15 where complicated hair
shape caused separation of two zero crossings
with the same spatial location. If we focussed
only on topological properties of zero crossings
we find out that the best behaviour of L◦G filter-
ing on a sub-pixel resolution was reached when
σ ∈ (1.20, 1.60) using same filter decomposition
as for bkdc = 1.

Although the sub-pixel accuracy should be
helpful (see Figure 3.16 ) we cannot accept its
computational and memory complexity in front
of interactive performance limit and memory re-
quirements on recent low-end PC workstations.

We have to emphasize that the purposed contour detection technique should be easily extended to the
sub-pixel accuracy without any additional adjustments but with expectation of the fourfold slowdown and
additional storage space with the same proportions.

3.2.2 Contour filling

Figure 3.17 : Pixels pi: with L ◦ G(I(pi)) < 0
(left) and I(pi) = Imin (right).

Using already designed optimal L ◦ G filter and
correct zero crossing test (see Figure 3.9 ) we should
create intensity invariant bitmap where black pixels in-
dicate less or more significant edges. Now we are going
to perform an automatic extraction of bold contours
and wipe out the less important edges. As was men-
tioned in Section 3.1.4 we should use fast 4-continuous
span-recursive flood-fill algorithm to fill contour area
bounded by zero crossings.

To identify pixels where we could start with flood-
filling we will introduce a novel adaptive thresholding
mechanism. First let us make the observation that this
start point can be located only at a pixel which receives
negative value after convolution with L ◦G filter. See
Figure 3.17 on the left side, where white and black
pixels have positive, respectively negative value. We
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3.2.2 Contour filling

compute a global intensity minimum of these L ◦ G-negative pixels pi using values from corresponding
original grey-scale image I: Imin = mini:L◦G(I(pi))<0{I(pi)}. Pixels with this minimal intensity are the
good start points for our iterative algorithm. We start flood-fill algorithm on these pixels and compute
intensity median Ĩ of pixels from the area being filled. Now unfilled pixels with properties I(pi) < kĨ and
L ◦ G(I(pi)) < 0 are the next start points for another flood-filling step, where k is convergence constant
which was experimentally adjusted to 1

2 . We repeat this operation while median of new filled area is lower
or same as current value.

Figure 3.18 : Two steps of contour filling algorithm
(left) and T-junction problem (right).

This novel contour finding algorithm con-
verges very fast. On the average it stops af-
ter the second pass while new median Ĩk+1 is
not bigger than Ĩk. This phenomenon illustrates
Figure 3.18 on the left, where brown contours
were filled in initial Imin step and only the cob-
bler’s eye was filled in second Ĩ step when the
algorithm also terminated. By using this auto-
matically predicted filling threshold Ĩ, we can
usually find all the important bold contours in
an image without any user interaction. Median
Ĩ stays usually constant during whole sequence
but sometimes it differ due to luminance fluctu-
ation (see Section 2.4.3 ).

Sometimes it is reasonable to let the user
feel free in changing the predicted filling thresh-
old. The user can also run flood-fill algorithm
manually on the selected position in image but this usually is not necessary since problems connected with
false detection are rare. The main problem of the presented contour filling algorithm are T-junctions of
L ◦ G zero crossings (see Figure 3.18 on the right). They connect foreground and background contours
topologically to a single solid contour. If we fill foreground contour we also fill the background one. We
will see later that if this wrongly detected contour does not bound closed area than it is almost harmless
for original background technology (see Section 2.2.1 ) because for this inking technology are important only
inner areas, not their boundary contours. But using reconstructed background technology (Section 2.2.2 ) the
contour’s boundaries are locations where composition with new background is performed. We sometimes
observe a strange dark smoothing especially if the luminance of pixels from a reconstructed background is
higher than pixel intensities in original grey-scale background (see Section 4.2.1 ).

Figure 3.19 : Contour extraction via image subtraction
(left) and morphological erosion (right).

The first possible solution is a user inter-
vention. The user can use coarse brushes to re-
move these unwanted contours manually. This
user driven wiping out is also needed when bold
dark contours reside in background area. Unfor-
tunately, we are not able to develop successful
removal technique that would solve this problem.
But if we consider that this painting work should
be recorded to independent retouching layer and
applied on the following sequence frames then it
is not such a time consuming task as it looks.

T-junctions can be removed sometimes by
increasing the L ◦G’s σ. We are also able to au-
tomatically find out their locations using a fast
corner or junction detector (see [Smith97] and
[Shen00]) and create some sort of filling stop-
pers. Unfortunately, without further analysis we

do not know which junctions are important. Instead of that we can apply an easy contour authentication
test. We compute the minimal intensity value Imin from a small neighborhood of the contour pixel (e.g. win-
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3.2.3 Region marking

dow 5x5) and compare it with the median value Ĩn from the last iteration of our algorithm. If Ĩn < Imin,
we can conclude that the proper pixel does not come from a foreground contour. We also allow user to set
this Ĩn threshold and size of neighborhood manually to reach better detection performance.

Finally, residual zero crossings have to be removed. This looks as a trivial task. We should perform
simple image subtraction only. However, by using this straightforward operation we unfortunately destroy
important topological characteristics. Compare carefully two different pictures on Figure 3.19 where you
can find out on the left one lots of broken contours, especially in the cobbler’s beard. This is due to the fact
that some zero crossings appeared on the two neighbour pixels and if we remove them we clearly break the
contour connectivity.

Figure 3.20 : Image erosion using 4-continuity structure element.

To solve this problem we use morphological erosion operator. This operator was derived using the theory
of mathematical morphology. For further study on this domain see [Haralick93] or [Serra93]. We will
describe just the main idea of erosion operator. Erosion of a binary image is very similar to the convolution
process on the grey-scale domain. We use also moving window known as structure element (see Figure 3.20
in the middle). The origin of this window is placed on each pixel in binary image and the following relation
is performed: if all pixels covered by the structure element are classified as edges (this means contour or zero
crossing in our case) then we place edge pixel on origin position into the output image otherwise we place
background pixel (see Figure 3.20 for example). This process will reduce thickness of contours and wipe off
the residual one pixel wide zero crossings. Additionally, it preserves 4-continuity of resulting image due to
the used structure element’s shape. The right picture on Figure 3.19 illustrates practical results.

3.2.3 Region marking

Now we are ready for the final image segmentation. We have the binary image where black pixels and
an image border represent contours and white pixels enclosed regions. We want to assign every closed region
its unique index. We can achieve this by the selective flood-filling algorithm which starts new fill on every
empty background pixel in our binary image using a unique filling index. This is a straightforward method,
but we could do this even faster if we use the scan-line based 4-continuity two-pass region marking algorithm
(see [Rosenfeld82]).

new

2

111 2

2

1 1

1

1=2

Figure 3.21 : Two-pass region marking algorithm: marking rules (top)
and algorithm in progress (bottom).

The first pass performs the initial marking driven by pixel rules from Figure 3.21 on the top. If the top
and left neighbor pixels belong to a contour then we create new marker index. If the top is contour and left
is not or vice versa we simply propagate an existing marker. This is done also in case when both top and
left pixels are not contours and have the same marker. But when they have different markers assigned we
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3.2.3 Region marking

conclude that markers from the top and from the left pixels are equivalent. This equivalent pairs have to be
reindexed in the second pass of algorithm. The bottom image sequence on Figure 3.21 illustrates these two
phases. To reach better performance compared with the selective flood-filling, appropriate dynamic data
structure representing equivalent markers has to be implemented. We create pointer matrix M with the same
dimensions as the processed image I and the marker array for new markers. Each array item has its own
(initially empty) list of equivalent markers and an initial marker index value:

marker[i].id=-(i+1);
marker[i].equ_list=NULL;

We fill matrix M with pointers to marker items for each
background pixel (I[x][y]==BACK) as follows:

IL=I[x-1][y]; IT=I[x][y-1];
ML=M[x-1][y]; MT=M[x][y-1];

if (IL==EDGE && IT==EDGE)
M[x][y]=&marker[num++];

if (IL==BACK && IT==EDGE) M[x][y]=ML;
if (IL==EDGE && IT==BACK) M[x][y]=MT;

if (IL==BACK && IT==BACK) { M[x][y]=MT;

if (ML!=MT) {
ML->equ_list+=MT;
MT->equ_list+=ML;
}

}

The equivalence case is important. We create reciprocal
equivalent links. The final reindexation is performed
for each item from marker array by a recursive call of
function that sets proper item index for all markers in
the equivalence list:

for (i=0;i<num;i++)
reindex(&marker[i],i+1);

void reindex(MARKER *m, int id) {
if (m->id<0) { m->id=id;

for (e=m->equ_list;e;e++)
reindex(e,id);

}
}

The positive value of m->id signalizes that the m marker
has been reindexed already and that we should termi-
nate recursion.

Figure 3.22 : Overview of segmentation process.

You can see the contour based segmentation index map on Figure 3.22 , the bottom right picture. Whole
Figure 3.22 visualizes basic steps of our novel contour based segmentation algorithm, which is suitable for
cartoon images processing. Algorithm has two very important features: performance (on the average it
does not exceed the full frame segmentation processing speed limit: 0.5 second on the 750MHz CPU) and
accuracy (try to compare the resulting image with Figure 3.1 ).
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3.2.4 Region statistics

3.2.4 Region statistics

Now we should compute several region statistics useful for further operations. To do that we exploit
original grey-scale image and already computed region map where each element points to the proper data
structure with all needed statistic parameters for the corresponding region: intensity mean, standard de-
viation, intensity histogram, intensity median, maximum and minimum intensity, region size (in pixels),
bounding rectangle (maximum and minimum coordinates) and centre of the gravity (image coordinates).

The region intensity median can be effectively computed with complexity O(N) via histogram analysis
assuming that the region size N is known. We simply start with zero intensity and during each step we
increase this index and decrease the initial size N/2 using frequency values corresponding to the actual
intensity index until we reach value below zero. Histogram index from last step corresponds to the region
intensity median:

size=region->size/2; region->median=0;
while (size>0) size-=region->histogram[region->median++];

3.2.5 Foreground and background

To divide foreground regions from background ones, we simply use the region size thresholding. For
most scenes it is suitable to set the limit of the total image size to 15%. Regions with size below this
threshold are classified as foreground, the others as background. The user can change this value but it was
experimentally proved that this generic threshold is well posed and does not need fine tuning.

Figure 3.23 : Character’s topology differences.

Using size threshold we could exclude only large
background areas. Unfortunately there are usually
lots of small regions that look like foreground parts but
they are actually background. Sometimes it is really
hard even for a human to distinguish foreground or
and background regions because they have no specific
properties if we use only comparison based on pixel in-
tensities. To analyze that we have to perform deeper
image analysis process which analyses e.g. character
topology features. If we suppose that cartoon charac-
ters are only two-dimensional artificial abstractions of
real objects we could not exploit lots of well studied

2 1
2D reconstruction based methods (see [Nitzberg93]). This problem becomes even more complicated be-

cause of the fact that artists sometimes do not complete basic topology features and use completely different
shapes. Examine carefully Figure 3.23 where there are three frames with the same character from the same
image sequence. The character’s topology vary in each frame. Specifically, see the shoulder and the top of
the sack. Due to these circumstances user has to find out all wrongly detected foreground regions and mark
them with background area index. If the character’s shape does not change a lot in the following frames the
position prediction technique will perform an automatic correction (see Section 5.3.2 ).

3.3 Region growing

Although the contour based segmentation from Section 3.2 (see Figure 3.22 ) looks like a final product of
our image analysis process, we have to perform one more important step. We already use this segmentation
for region statistics calculations and in cases when we need to exactly know where contours, foreground and
background parts are located so it is not only intermediate product but we also need to find out real region
boundaries. These boundaries should be defined as medial axes of contour shapes also known as binary
image skeleton. It will help us to estimate how deeply into the contour anti-aliasing we have to apply color
flooding using the intensity modulation. On Figure 3.24 we can exactly see what does it mean. The left
middle picture is colorized using original contour boundaries and the right middle picture using the contour
skeleton.

While zero crossings locations are placed near the middle of the edge downhill and contour boundaries
are not ideal step edges because of an anti-aliasing we sometimes omit visually important pixels during
color modulation using contour base segmentation. If we correctly compute contour skeleton and then
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3.3.1 Skeletonization

enlarge shape of actual regions into the contour gaps we receive visually much better results using the same
modulation method as in the previous case. But we do not use this extended image segmentation for statistics
calculation to avoid incorrect estimation caused by a large number of black pixels inside contours.

Figure 3.24 : Color flooding driven by real contour (left) and by contour skeleton (right).

3.3.1 Skeletonization

Skeleton is another binary image entity taken from the terminology of the mathematical morphology
(see [Serra93]). It could be defined informally as the union of circle centers which are located inside contour
and herewith tangent the contour boundaries. They could be theoretically obtained by sequential thinning
process using so called hit-or-miss transformation. This transformation is very similar to the erosion operator
but it additionally preserves skeleton topology features. Iterative peeling is usually a very slow process and
so several performance enhancing techniques has been developed. Suzuki purposed the sequential thinning
algorithm based on the distance field transformation [Suzuki86] (see also [Zhou99]). Kégl developed
a robust piecewise linear skeletonization algorithm based on principal curves (smooth curves which pass
through the middle of a d-dimensional probability distribution) polished using several curvature penalty and
vertex degradation rules [Kégl02].

Figure 3.25 : Region enlargement into the contour: (from left to right) original grey-scale image with tight
region inlet, coarse contour based segmentation, skeleton enlargement and gradient enlargement

We solve this problem using a slightly different approach. We do not need to know an exact skeleton
geometry approximated by one-pixel tight curve but only enlargement of already segmented regions into
the contour area that hides visible gaps between real region boundary and contour anti-aliasing (see Figure
3.24 ). This should be done for every contour pixel by simply finding the nearest region using growing circle
mask (very similar to the distance filed transformation, see Section 4.2.3 ) which produce very similar results
to that using segmentation based on skeleton boundaries. But as we can see on Figure 3.25 the middle right
picture, this approach is not as robust as we want to be. It will fail in cases when the image contains tight
V-shaped inlets which should be classified as contour even if we select large σ for L ◦G filtering.

3.3.2 Gradient seek

To make enlargement more robust we purpose a novel region growing technique that is not based on
looking for a minimal distance (which is definitely equivalent to skeletonization) but on the region highest
intensity using image intensity gradient. This is inspired by the fact that intensity near the contour boundary
usually upraises from dark contour pixels to brighter value similar to the region intensity median. If we follow
this gradient slope we will indeed found the nearest region. On the other side it is clear that if we simply find
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3.3.2 Gradient seek

out only the nearest highest intensity we do not complete purposed task. We have to follow image gradient
using 4-continous or 8-continous curve to make sure that we do not cross over deep intensity valley. This
constraint is very similar to that we used in watersheds segmentation (see Section 3.1.3 ).
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Figure 3.26 : Gradient seeking in progress: visited pixels (grey), never visited pixels
(white), pixels in priority queue (blue), pixel on the top of the priority queue (red).

For every contour pixel from the marker matrix M we call a simple function that finds out the marker
of the first pixel from the nearest non-contour region that has to be connected with initial pixel via a 4-
continous gradient curve. To solve this task we exploit priority queue of the already visited pixels in the
original grey-scale image I. See following function source code:

MARKER *gradient_seek(int x, int y)
{
PQueue *pixel=new PQueue(I);

while (M[x][y]->id==CONTOUR) {

pixel->Push(x+1,y);
pixel->Push(x,y+1);
pixel->Push(x-1,y);
pixel->Push(x,y-1);

pixel->Pop(&x,&y); }

delete pixel; return &M[x][y];
} Figure 3.27 : Final segmentation: based on contour

skeleton (left) and on gradient seek (right).

Method Push() of PQueue class inserts the new pixel into the priority queue while preserving an ascend-
ing order of pixel intensities and at the same time it checks if the included pixel is not already in the queue.
The second method Pop() takes out a pixel from the top of the priority queue and returns its coordinates.
See Figure 3.26 for gradient seeking algorithm in progress. Especially steps 5 and 6 are interesting. There,
seeking process stried to the deep intensity valley which should be here a simulation of the noise artifact or
any other type of local distortion.

While presented algorithm is based on a robust backtracking search technique which is able to make the
round of local intensity peaks or valleys, it may introduce significant slowdowns for a large dataset. But
if we consider that contours usually take place in approximately 5% of image pixels and the longest path
toward a non-contour region is on average shorter than 10 pixels we conclude that this algorithm demands
negligible computational overhead in front of sophisticated skeletonization methods presented above. While
it also uses original grey-scale intensity image it is also much more precise in sense of the real contour shape
in contrast to simple skeletonization algorithms based on binary image (see Figure 3.24 the picture on the
right side and Figure 3.25 or Figure 3.27 to compare results).
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4
Inking

While previous chapter was mainly about image analysis, this chapter will be focussed especially on
synthesis techniques. We show how to apply user defined color to previously segmented grey-scale regions
without losing original intensity texture and how to smoothly compose already inked foreground with new
reconstructed background including synthesis of smooth foreground alpha masks. Also unsupervised dust
spots and scratches removal or contour contrast enhancement techniques will be presented.

4.1 Color flooding
In this section we will discuss techniques that are responsible for the main procedure of whole inking

process: transferring color to the grey-scale image. Final visual quality of resulting image depends mainly
on two basic properties: selection of suitable color luminance modulation model and proper modulation
technique.

One of the important data entity for whole inking process is already inked image with color examples
produced by experienced artist using standard image editing software (see Section 2.5 ). User is able from
this RGB image acquire necessary colors and place them into the own palette which consists of 32 name
assigned colors (indices).

4.1.1 Modulation using RGBI model

Each palette index has its own look-up table with precomputed brightness shift values of original RGB
color. Brightness modulation is based on RGBI color luminance model which should be obtained by linear
interpolation of original RGB color components using different brightness shift I, where I = 0 is original RGBI
color, I = −1 clean black and I = 1 clean white as follows:

Figure 4.1 : RGBI vs. HSB model.

RI =
{

(I + 1) · R I ∈ 〈−1, 0)
I · (1− R) + R I ∈ 〈0, 1〉

GI =
{

(I + 1) · G I ∈ 〈−1, 0)
I · (1− G) + G I ∈ 〈0, 1〉

BI =
{

(I + 1) · B I ∈ 〈−1, 0)
I · (1− B) + B I ∈ 〈0, 1〉

If we use 8-bit representation for each color component the look-up table is indexed by integer value I ∈
〈0, 512), where index I = 255 corresponds to original RGB color.

The main reason why we introduce RGBI model is that we have to preserve original luminance of wanted
RGB color and herewith modulate this luminance by grey-scale intensities inside the selected region to preserve
original intensity noise texture, contour anti-aliasing and other typical surface features.

Luminance of user defined color usually does not corresponds to grey intensity median on the source
image. Using e.g. HSB, lαβ or another color space that exclude luminance and color components (see
[Wyszecki82] and [Pitas93] for survey) we will obtain image that has not the same color tinge as is
presented on example image. See Figure 4.1 where luminance of four different RGB colors is modulated from
clean black to clean white using RGBI (above) and HSB (below) model. Original RGB color is in the middle of
RGBI band. It is important that when luminance of user defined color is nearly white or black, the precise
estimation of real color components (i.e. hue and saturation) is impossible due to loss of information.
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4.1.2 Luminance correction

Compare also two grey-scale images on Figure 4.2 where the left one is luminance bitmap derived
using (2.1) from example image (on the left side) and the right one is original scanned image. They vary
in intensities especially on boots, apron and stool. You should compare results obtained using luminance
modulation via HSB model and RGBI model. It is not hard to see that as big is difference between grey-scale
intensity and RGB luminance as different is resulting color when we use modulation based on HSB model.

Figure 4.2 : HSB vs. RGBI model: (from left to right) image with example colors, only luminance of example
colors, original grey-scale image, color luminance modulation using HSB model and RGBI model.

The main advantage of RGBI model is that we could easily set centre of the brightness shift (I = 0)
to be in correspondence with the region intensity median and final color luminance will be modulated by
deviations in original grey-scale image using simple equation I = Ig − Ĩ, where I is brightness shift, Ig

original grey-scale intensity and Ĩ intensity median of corresponding grey-scale image region. We should also
analogically define the same intensity median adjustment using HSB values estimated from user defined RGB
color to obtain HSBI model as follows:

Figure 4.3 : RGBI vs. HSBI model.

HI = H

SI = S

BI =
{

(I + 1) · B I ∈ 〈−1, 0)
I · (1− B) + B I ∈ 〈0, 1〉

But as we can see on Figure 4.3 using HSBI model we compute brightness shift table which significantly
differs in expected color tinge due to inexact estimation of hue and saturation components during color
conversion between RGB and HSB models. There is no reason to convert original RGB values to different color
space if we could use red, green and blue components directly.

4.1.2 Luminance correction

If the intensity median of proper region is similar to the user defined color luminance the results are
acceptable. But when we want to apply really bright color on originally dark region, we introduce visible
step change of color luminance (see Figure 4.4 in the middle). It is possible to perform linear correction of
pixel intensities using simple equation I = (Ig − Ĩ)/(L− Ĩ), where additionally L is requested luminance of
resulting color, in other words the new intensity median.

Figure 4.4 : Grey-scale intensity vs. user defined color luminance: (from left to right) original grey-scale image,
user defined luminance, color luminance step, linear correction, non-linear correction (white noise suppression).
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4.1.2 Luminance correction
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Figure 4.5 : Intensity corrections: original intensities (left), linear correction (middle), non-
linear correction (right). Green line represents intensity median and blue or red regions forbid-

den intensity values estimated using intensity dispersion bounds (blue dashed lines).

This correction help us to reach user defined intensity median and make the spatial crossing from contour
to region area to be visually consistent, but unfortunately as we can see on Figure 4.4 (second picture from
the right side) it introduces white and black noise overlapping. The main reason is visualised on Figure 4.5 .
Original intensity dispersion is scaled towards wide intensity interval which is more visually significant than
original one (see blue dashed lines on Figure 4.5 ). Red circles show us noise values inside forbidden areas that
tend to be emphasized after intensity correction. If we want to preserve original intensity dispersion above
the new intensity median and remove the white noise, we have to perform non-linear intensity correction
(Figure 4.5 and Figure 4.4 on the right side).

Figure 4.6 : Gaussian expansion (left) and
final luminance modulation (right).

Global white noise suppression by non-linear intensity correction has still no feasibility to remove black
noise which is also disturbing especially within the sequence of similar images. To produce same image as
we can see on Figure 4.6 (right picture) we have to apply smooth combination of local non-linear correction
and simple luminance modulation. Only pixels near the contours have to be rescaled to new values. Pixel
intensities inside the region will modulate final color luminance using original equation I = Ig − Ĩ. To make
smooth transition between both modulation methods we estimate Gaussian expansion of region contours.
Each contour pixel raise local incremental image addition using values from fixed size matrix containing
discreet approximation of Gaussian hat with user defined standard deviation. Pertinent saturation will
be truncated to maximal value. Resulting layer on Figure
4.6 (left picture) where dark blue pixels represents original
contours and grey-scale ones local weights for two types of
luminance correction methods. So the final formulae that
estimates proper brightness shift will be

I = α · (Ig − Ĩ) + (1− α)
Ig − Ĩ

L− Ĩ
, (4.1)

where α is weight of pixel taken from Gaussian expansion of
contour bitmap.

Figure 4.7 : Inaccurate region intensity me-
dian estimation due to its small size.

Crucial value in (4.1) is region intensity median Ĩ. Al-
though the median statistic is much more robust than simple
arithmetic average of region intensities in sense of noise sup-
pression, it is usually hard to estimate true median statistic
when the size of region is very small. Region undersam-
pling causes that lots of region pixels lay inside contour
anti-aliasing and their actual intensities are degraded due
to averaging with neighbour dark contour pixels. Median
statistics usually produce significantly lower value of Ĩ com-
paring it with the same median value estimated using pixel
intensities from spatially large region. Smaller Ĩ value cause
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4.1.3 Unsupervised dust spots removal

higher brightness shift hence region will be inked by brighter color which should be sometimes visually really
disturbing (see Figure 4.7 on the left side).

To correct this artifact we should compute weighted average (using region size as weight) of medians
from all large enough regions marked with the same color index and use this value instead of real median
statistic. To decide if the region is small or large we have to use fuzzy transition to avoid step changes
in median estimation modes. We let user to tune this fuzzy transition for best performance but it was
experimentally proved that regions with size smaller than 16 pixels are completely small and above 64 pixels
are large enough to produce reliable intensity median value. Between these two values we apply simple linear
combination of both methods. See Figure 4.7 on the right side where this technique was used.

The another problem rises when the small region is only the one with specific color index in the whole
image or all regions with some color index are small (e.g. occluded cobbler’s hammer or open eyes). We
should compute median statistic using pixel intensities from all small regions and if number of pixels is still
not enough to reach upper bound of fuzzy transition we simply treat the maximum intensity as median. It
is also helpful to compute median statistics only from pixels that has intensity above intensity median of
contours.

4.1.3 Unsupervised dust spots removal

Exploiting the region homogeneity feature actually represented by intensity median and by small dis-
persion due to black and white noise, we could introduce simple but effective dust spots removal technique
which saves lots of retouching work during post-production phase.

The main idea is based on fact that if some region pixel has intensity out of the standard deviation
interval we should identify it as white or black impulsive distortion and reconstruct this value by selecting
random intensity using median centered gaussian distribution with standard deviation same as in current
region. Notwithstanding that this algorithm is really simple, results are surprisingly successful (see Figure
4.8 on the right side).

Figure 4.8 : Unsupervised dust spots removal algorithm: (from left to right) grey-scale image, inking without
dust spots removal, white dust spots removal, black and white dust spots removal.

We could use this technique only when pixels are not located inside Gaussian expansion of contours.
Otherwise several advanced detection and non-linear filtering methods have to be used e.g. local median
filtering or high frequency preserving reconstruction using two-dimensional FFT (as we saw in Section 2.4.4 )
to preserve original edge shape.

Sometimes it is reasonable to use only white dust spots removal. While black spots are really rare due
to circumstances posted in Section 2.4.4 . This restriction preserves several darker details in region intensity
texture e.g. cheek on Figure 4.8 and allow us to apply removal technique also inside Gaussian expansion
but without big expectation on quality of reconstruction.

4.2 Background and foreground composition

If we decide to use reconstructed background inking technology we have to solve problem of composition
of two background and foreground layers to produce final image and foreground alpha channel to exclude
both layers in post-production phase (see Figure 4.9 ). While new background should differ especially in
local texture and luminance properties we should not perform simple image difference to exclude foreground
layer. We exploit boundaries of already segmented regions and apply algorithm which is very similar to
natural image matting technique.
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4.2.1 Digital matting

4.2.1 Digital matting

Main task of digital matting is to estimate an opacity for each foreground pixel and produce layer which is
also known as alpha channel. Digital matting is usually heavy underconstrained problem especially in natural
image version when background has no special properties. Nevertheless problem of smooth extraction of the
foreground parts from already composed RGB image is well studied and several techniques has been developed.
The most popular method used especially in TV broadcasting systems also known as blue screen matting is
based on well tuned digital or analog chroma keys.

+ * ⇒

Figure 4.9 : Image composition (right) of already inked foregrond (left) with new reconstructed back-
ground (second from left) using smooth foreground alpha channel (second from right).

Ground truth alpha masks should be obtained by technique of several images with the same foreground
and different backgrounds using SVD computational framework (see [Blinn96]). Methods that solve natural
matting with only one image are based on segmentation which divide image to three regions: definitely
background, definitely foreground and unknown. Then unknown are is divide to several sub-segments (box
or circle shaped) and local samples of color distributions (represented as mixture of Gaussians) from nearest
background and foreground pixels are paired together using specific constraints. From this network of
pairs the alpha is estimated by intermediate distribution for which observed color has maximum probability
[Tomasi00] or better using Bayesian framework [Chuang02].

Natural grey-scale image matting is more complicated task because of missing invaluable color informa-
tion. But our case with bold contours is trivial comparing it with complicated images containing e.g. hairs
or fur. Originally complex problem is reduced to easy decision which of background pixels are interferencing
with contour boundary anti-aliasing. Grey-scale intensities of these pixels directly determine requested alpha
values. We exploit color luminance from reconstructed background and compare it with intensity of current
processed pixel. If grey-scale intensity is lower, it probably represents anti-alised boundary pixel and we
have to modulate background color luminance using magnitude of this difference multiplied by weight taken
from the Gaussian contour expansion (see Figure 4.6 ) to avoid influence of distant pixels. Side effect of this
process is on-line generation of alpha channel for post-production purposes (see Figure 4.10 on the right).

Figure 4.10 : Details of foreground and background compositions: (from left to right) original grey-scale
image, only dark pixels composite, all neighbor pixels composite, final foreground alpha channel.

See detail image on Figure 4.10 (second picture from the left side) to consult accuracy of this simple
method. Although several anti-aliasing pixels are lost, we could conclude, that this technique is suitable for
our requirements because it produces visually acceptable results as we could see on Figure 4.9 or other on
already composed images in this thesis. It is also possible to extend purposed approach using modulation
even if grey-scale intensity is higher than background color luminance to produce more accurate matting.
Unfortunately when luminance of color in reconstructed background is much higher than intensity in original
grey-scale image, this extension introduces white “halo” effect which visually enhance sharpness of the
boundary edge (see Figure 4.10 second picture from the right side), so it does not achieves as good results
as in previous method.
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4.2.2 Contour contrast correction

4.2.2 Contour contrast correction

Figure 4.11 : Contour contrast correction:
before (left) and after (right) correction.

Until now we assume that contours has significantly
darker intensities comparing it with other image regions.
If not so, we have to satisfy this assumption by correction
of contour contrast, because dark contour intensities visu-
ally suppress the step transition between two different re-
gion colors (see Figure 4.12 , left picture). It was already
posted in Section 2.4.7 that low contrasted contours are slid
off to clean black intensity using local gamma correction.
Local means that we apply standard histogram equaliza-
tion weighted by Gaussian expansion of contours (see Figure
4.6 ). We will precompute one look-up table for intensities
i ∈ 〈0, 255〉 and user defined γ ∈ (0, 1〉 using simple equation lut(i) = 255 · (i/255)γ . Final pixel intensity If

is estimated by convex combination: If = α · lut(I) + (1 − α) · I, where I is original intensity and α pixel
weight from Gaussian expansion. See Figure 4.11 where local gamma correction with γ = 2 was performed.

4.2.3 Smooth color transition

Unfortunately there are some special objects with bright colored regions and contours e.g. sun, where
darker contour intensities could corrupt original visual brightness of whole object. If we do not perform
contour contrast correction, we introduce visible step changes between background and foreground colors
as we already mentioned in previous section. To solve this quandary we develop simple algorithm based on
distant filed technique which produces visually good-looking smooth color transition.

Figure 4.12 : Color transition inside low contrasted
contours: step (left), smooth (right).

Distant field is matrix with same dimensions as
corresponding binary image (also in 3D) where each
element contains number that represents minimal
distant (in certain length metrics) to nearest object
in binary image. Unfortunately exact computation
of distant filed using Euclidean metrics should be
obtained only by brute force algorithm which is very
expensive even for two-dimensional images. Several
speed-up approximation techniques has been devel-
oped. Most of them are based on the special distant
filed transformations (for survey see [Borgefors86]). However if we consider that no full frame distant filed
is needed, we should not take care about processing speed. We compute only small portion of this filed
which corresponds to the contour pixels (usually less than 1% of whole image) using brute force algorithm.

r1

2r

3r

2m

1m

Figure 4.13 : Distant field estimation by
growing circle algorithm.

Our algorithm is based on growing circle method (see
Figure 4.13 ). For each contour pixel we start drawing virtual
circle using classical integer Bresenham’s algorithm. Instead
of putting pixel we perform test if on the same coordinates
resides contour or region pixel. To obtain smallest distance
r1 to nearest region we grow circle until first region pixel with
marker m1 is found. Next we continue with circle growing
until we found radius r2 where certain circle pixel tangents
another region with marker m2 6= m1. Using r1 and r2 values
we compute pixel color as follows: C = (r2C1+r1C2)/(r1+r2),
where C is red, green or blue component of final RGB color
and C1, C2 the same components taken from colors in regions
marked by m1 and m2 respectively. You can see on Figure
4.13 that this method does not produce correct Euclidean
interpolation which have to be done using linear extrapolation
of tangent vector r1 towards opposite boundary of contour

with length r3. This inaccuracy is not perceptible, moreover it help us to suppress interpolation artifacts
inside bold contour T-junctions (see Figure 4.12 ) where linear extrapolation of several tangents going to be
very long.
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5
Application

This chapter will be mainly focussed on implementation details and several user interface features
available in semi-automatic inking application called COL. This application realizes practical usage of yet
described analysis and synthesis techniques, especially their incorporation in to the inking pipeline. Detailed
description of important automatic prediction and speed up tools will be included. They help user to
effectively solve tasks full of featureless and repetitive correction work. Moreover this chapter should be also
used as helpful addendum for user reference manual because of augmented description of specific operations.

5.1 Technical specifications

The COL is written in ANSI C/C++ language as full portable application. Using free ports of GNU C
compiler it is possible to produce support for both Linux (X11) and Microsoft Windows 9x/2k/XP (DirectX)
platforms. Optimal processing speed is accomplished by exploiting advanced low-level code optimization
features of GCC compiler and using own intelligent memory management mechanism supplied by memory
and permanent disk caching techniques.

5.1.1 System requirements

Figure 5.1 : Working desktop of COL application.

To reach interactive performance limit it is rec-
ommended to use 750MHz and faster CPU with more
than 64MB of free memory and with disk/memory
data transfer speed above 15MB/s. Afterwards the
application response time after user intervention is
not longer than one second in worst case. The mini-
mal supported and same the best output resolution
is 1024x768x32bit. Lower bitrates or higher reso-
lutions are not recommended due to visual inconve-
nience. For ergonomic purposes the high frequency
CRT display with diagonal length above 17 inches
have to be used.

If we want to work on several episode cuts using
the same standalone workstation, huge HDD drive
have to be installed. Merely source data (new re-
constructed background and original grey-scale image) will take place approximate of 1MB/frame, permanent
application disk cache space is 3MB/frame and final output color frame and foreground mask consume en-
semble 2MB, all in all this takes 6MB per one frame. If we consider that cuts with background movement
are rare hence only one static reconstructed background frame is needed for whole sequence. We should
conclude that in average storage space per one frame is 5MB. This amount 60GB of free disk space for whole
episode.

5.1.2 User interface

Application working desktop is divided into the four important parts (see Figure 5.1 ). Left information
panel were active color marker and marker of region located under mouse pointer are displayed, information
switch lights of activated layers (see Section 5.2 ) and other switch flags take place also inside this panel. Next
important part is the top status line where several active parameters are displayed. Right panel contains
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5.2 Layers

user defined palette of 32 active color makers with user defined names. Each marker has its own RGB color
taken from color example image. Active layers are displayed in the central part of whole desktop. It is
possible to magnify layer details by smooth zoom (up to the 8x magnification) or by small 4x zoom window
that follows mouse movement (see Figure 5.2 ).

Figure 5.2 : Desktop zoom (top)
and windowed zoom (bottom).

Interaction between user and COL application is strictly based on
operations handled by mouse or keyboard short cuts (hot-keys). More-
over mouse strokes and keyboard actions could be recorded into ten
independent macro clipboards. There is also special mode available
where all operations are stored to action buffer without any slowdown
caused by refreshing computation and they could be performed all at
once later. This function allow experienced user to reach minimal in-
teraction delay, however it put novice user to the inconvenience during
learning phase. Although list of basic hot-keys is not short, it was
proved that adroit novice operator will learn them usually after no
more than two hours of active application usage.

Project management is driven by configuration .ini files using
standard readable text format. Each configuration file contains ab-
solute path to proper episode cut directory and file name masks for
enumerated source and output files. Frame number bounds are de-
termined automatically during initialization phase. Also important
parameters are included: starting frame, actual frame, default values
of basic thresholds, layer activation flags and RGB palette of 32 name
assigned colors.

Another important application feature is journalling mechanism. All error messages and user interac-
tions are recorded including time of activation. During whole session they are continuously written in to the
special .log file with readable text format. Using this journalling mechanism it is possible to analyze overall
efficiency of user work as we will see in the next chapter.

FIL EDG

LOG

IDX
FRM

OUT MSKBKG

SRC

ORG

PRE

DEL

user

output

cache

source

Figure 5.3 : Data flow diagram of COL application.

5.2 Layers
Data flow in the COL application is divided

in to the several independent layers. Each layer
is represented by memory bitmap with same di-
mensions as original grey-scale image (720x576 for
PAL images) varies in type of information stored in-
side pixels and in features of associated user driven
modification parameters. In this section we will
describe properties of application layers in detail.

5.2.1 Layer caching techniques

Application layers form hierarchy of depen-
dencies which should be represented by acyclic ori-
ented graph (see Figure 5.3 ). Each layer has its
own sources and consumers. We exploited this
structure to speed up application interaction re-
sponse time by memory caching technique where
local modification inside specific layer causes corre-
sponding refreshing calculation only inside its con-
sumers. The memory caching is supplied by disk
mirroring mechanism where yet computed layers
are stored on HDD in specific directories. Disk cache
provides us to refresh content of the memory cache
whenever user changed the actual frame number.

For backup purposes the source layers (blue frame on Figure 5.3 ) and layers with information about user
intervention (green frame) are the most important. Output (red frame) and cache (black frame) layers could
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5.2.2 Source layers (ORG, BKG and SRC)

be regenerated from source and user layers using automatic refreshing application mode where all frames
are over again rendered. Disk cache is also used as fast source of information for prediction techniques (see
Section 5.3 ).

5.2.2 Source layers (ORG, BKG and SRC)

The lowest source layer is original grey-scale image. In COL application known as ORG layer. See Figure
5.3 where ORG layer has blue frame as same as another read only source layers: BKG and SRC. It is stored (as
we mentioned in Section 2.1 ) in 8-bit grey-scale read only PiNG file. If we change actual frame number, ORG
layer have to be read again to memory cache from proper image file. New reconstructed background layer
BKG is stored in 24-bit true-color PiNG file. If image sequence contains dynamic background we have to load
always corresponding BKG layer together with ORG frame. But usually it is possible to load only one BKG layer
during initialization phase while most of episode cuts has usually static background. SRC layer contains yet
inked image with color examples and is loaded only once during initialization phase. User is able to switch
on SRC layer and transfer wanted RGB color to actual palette marker using mouse.

5.2.3 Laplacian of Gaussian layer (LOG)

For efficient memory and disk caching is LOG the most important layer in the inking pipeline. It
contains zero crossings and L ◦G-negative pixels (see Section 3.2.1 ). If we consider that standard deviation
parameter σ is user driven, then it is not hard to see, that change of this value rises the longest refreshing
procedure which could be activated in the COL application. This is because of LOG is the second lowest layer
in dependance hierarchy after ORG layer (see Figure 5.3 ). Moreover performance of L ◦G filtering spend in
average half of CPU time needed to produce final color image, if we do not consider any layer caching using
only original sources. While it is much more faster to load LOG from disk than to compute it again, the layer
is stored in permanent disk cache as indexed PCX file to reach best storage size vs. save/load time ratio.

5.2.4 Contour detector layers (FIL, DEL and EDG)

The FIL layer contains binary bitmap of image contours derived from LOG using adaptive unsupervised
contour filling algorithm followed by morphological erosion and contour authentication mechanism (see Sec-
tion 3.2.2 ). User has available special retouching layer DEL where he is able to make following corrections
(see Figure 5.4 for reference): add contour (green), erase contour (black), retrieve original contour or locally
apply intensity threshold to create new region inside bold contour (pink). These corrections are done using
circular brush with user defined radius. It is also possible to draw retouching lines or raise flood-fill algorithm
to fill any L ◦G-negative area with contour or background color. Considering the fact that retouching work
is usually very similar in adjoining frames we could exploit the disk cache to copy yet created DEL layers into
the clean retouching layer of unvisited frames.

Figure 5.4 : Application desktop with two activated layers: LOG and FIL. Detail of unmodified FIL
layer (left), available retouching brushes inside DEL layer (middle), FIL layer after correction (right).

After correction the FIL layer is ready for the Gaussian expansion (see Section 4.1.2 and Figure 4.6 )
which is produced and stored inside the EDG layer. Although the standard deviation parameter σ of the
Gaussian expansion is user driven, the EDG layer is not directly visible inside application desktop. FIL, DEL
and EDG layers are stored in disk cache using indexed PCX. While DEL layer contains information about user
intervention, it has to be stored in user directory for further backup purposes.

5.2.5 Region marking layers (IDX and FRM)

Layer IDX is produced from corrected FIL layer by fast region marking technique followed by gradient
growing algorithm (see Section 3.2.3 and Section 3.3 ). Each pixel of IDX layer contains color index from user
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5.2.6 Output layers (OUT and MSK)

defined palette. From standalone IDX layer is not possible to distinct real regions because they are actually
represented by virtual table of active regions which is also accessible via internal region pointer matrix (with
same dimensions as IDX layer). Only memory cache is used to store this region table and pointer matrix
because it is much more faster to compute these structures again instead of load them from disk cache. We
have to store only indexed IDX layer for prediction purposes (see Section 5.3 ).

Proper assignment of color indices to image regions is task that badly wants human intervention even in
cases when all prediction techniques failed or no prediction layer is available. The application user is able to
select wanted color index using mouse or keyboard and when the mouse pointer is near or inside the region
which has to be inked by this selected color, he presses the mouse button. This action places out color index
marker which apply selected color to the proper region. There is also special type of marker that moves
region from foreground to background. It is necessary when the region size threshold mechanism is not able
to distinct foreground and background regions correctly.

Figure 3.1 : Color markers and region connec-
tivity graphs of three different region groups.

All markers are stored inside layer FRM which is in fact represented by linked list of structures that
contain image coordinates and type of marker. This list of markers together with another frame specific pa-
rameters e.g. user defined thresholds, type of prediction,
prediction frame, etc. are stored in compressed file (us-
ing LZ77 compression) inside user directory where also
DEL layers are located.

Another helpful tool is region connectivity graph
(see Figure 3.1 ). This graph allow user to select e.g.
single character to be in specific region group using one
region group marker. There are seven region groups
available and initially all regions are stored inside group
zero. This division is important for increasing success of
prediction techniques as we will is in Section 5.3 .

Graph building algorithm is very similar to the tech-
nique of region marking presented in Section 3.2.3 . We
perform simple test on each element of region matrix: if
left and/or bottom neighbor element points to different region then we examine into neighborhood list of this
region and if new region address is not present here we include it. It is also important to include reciprocal
link to the neighborhood list which belongs to the left and/or bottom region. Thereby created structure
of neighborhood lists form final graph structure which could be easily traversed using simple Dijkstra’s
algorithm.

5.2.6 Output layers (OUT and MSK)

Final output layer OUT and foreground mask layer MSK are synthesised by algorithms described in previous
chapter. Visual quality of output image could be modified by following parameters: local gamma correction
of contour intensities, local switching of unsupervised dust spots removal algorithm, optional smooth color
transition inside contour regions and varying with standard deviation of the Gaussian expansion.

If we consult Figure 5.3 we could observe that final color flooding exploits almost all available application
layers. But the memory caching mechanism allow user to make the most common correction work (placing
proper color indices into the IDX layer while OUT layer is also activated) even with realtime refreshing speed,
because OUT layer refresh overhead is significantly smaller comparing it with time required to make refresh
of the all active layers inside inking pipeline.

5.3 Prediction
Crucial part in the whole inking process is correct color assignment to reach the same color placement

which was designated by experienced artist. This task falls into the field of pattern recognition. Unfortu-
nately recent research in this domain is mainly focussed on scenes from real world with important geometrical
features like topology consistence, object solidity, etc. But cartoons objects are usually composed as ab-
stractions of real world entities where the most of the useful geometry properties are not preserved. Cartoon
characters are elastic and their topology features vary even between neighbour animation frames due to
artists mistakes (see e.g. Figure 3.23 ). Sometimes it is really hard or totally impossible even for human to
decide for example if proper region appertain to the background or foreground part of image.
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5.3.1 Prediction frames

As luck would have it, we are able to exploit two important features of cartoons with bold contours
and solid foreground regions: spatial coherency and the frequent phenomenon that different colors usually
corresponds to the different grey intensity levels. We call these two simple heuristics as position and intensity
prediction respectively. In this section we describe both methods in detail.

5.3.1 Prediction frames

For both prediction methods is important the selection of prediction frames. It is useful to select one
special frame to be a starting point for whole inking process. This frame need not to be the first frame of
the sequence, better the frame where all foreground parts are visible (if it is possible) ought to be selected.

For the starting frame is no prediction information available, so we have to perform complete user driven
marking and retouching work. Afterwards we could continue forwards or backwards in frame order and set
previously stored IDX layers to be the prediction PRE layers (see Figure 5.3 ) for actual frame.

Figure 5.5 : Examples of affine transformations available for user driven fitting of prediction layer (PRE):
translation (left), scale (middle), rotation (right).

The main advantage of this technique is that user is able to set prediction frame to fit the animation
loops while COL automatically increase the prediction frame number, the further loop passes will be correctly
predicted without any user intervention. And more if we allow user to set different prediction method or
even frame number for each region group then we give him the chance to increase the success of prediction.

It is also clear that correct inking depends on right frame order due to data dependence of prediction
layers. This circumstances cause that random frame access is not recommended or better completely forbid-
den otherwise we introduce cache inconsistency in particular if we want to perform far jump to the not yet
visited frame.

5.3.2 Position prediction

Position prediction assumes that if we simply superpose actual IDX and prediction layer PRE from the
current image sequence (loaded from disk cache using formerly saved IDX layer with same number as the user
defined prediction frame), then the large regions or regions that do not change its relative position usually
overlap each other (see Figure 5.6 on the left side). Moreover we allow user to adjust layer’s geometry using
simple affine transformations like translation, scale and rotation (see Figure 5.5 ) and if we compute the
largest spatial intersection of actual regions and regions from transformed prediction layer, then we are able
to estimate proper region color using color indices from prediction layer.
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Figure 5.6 : Principle of position prediction (left) and foreground translation shift retrieval (right).
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5.3.3 Intensity prediction

While the most common affine transformation is translation, the COL application provides (on demand)
simple and fast tracking algorithm that is able to estimate relative position shift between PRE and IDX
layer with pixel precision by brute force retrieval of the global minimal difference of two shifted grey-scale
bitmaps accelerated by spatial decimation pyramid on contour domain. While images on contour domain
(FIL layer) are insensitive to background movement, purposed algorithm is more robust comparing it with
classical grey-scale block matching techniques. Spatial decimation is computed by simple averaging using
8-bit precision and allow us to compute brute force shift retrieval using only 8x shrunk image where original
number of pixels is reduced 64x and the final horizontal and vertical shift is estimated with accuracy of ±4
pixels. This initial inaccuracy is refined up to the pixel precision by ±1 shift retrieval using decimated layers
with 4x, 2x and 1x reduced image resolution (see Figure 5.7 on the right side).

5.3.3 Intensity prediction

Sometimes is spatial coherency insufficient to reach successful prediction results. See Figure 5.8 where
change between actual (far right) and prediction frame (far left) is not small enough to be suitable for position
prediction. But there it is well visible that the most of different colors correspond to different intensities in
original grey-scale images and it is possible to use only information about region intensity to select proper
color index.

Figure 5.9 : Comparison of prediction hit rate: (from left to right) grey-scale prediction frame, correctly inked
prediction frame, position, intensity and combined prediction, correctly inked and actual grey-scale frame.

We could simply compare intensity medians of regions from prediction frame with medians from actual
frame and estimate proper color indices by minimal difference retrieval but we are able to increase robust-
ness of intensity based prediction via accumulated discreet distribution functions of region intensities. We
simply accumulate intensity histograms of regions that were marked with same color index and then perform
numerical integration to obtain final discreet distribution function on grey-scale domain. The same process
we apply on histograms of regions from actual frame and then perform global minimal difference retrieval
to find out the best fitting distribution from prediction frame.

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256

Figure 5.10 : Principle of intensity prediction: retrieval of the best match between intensity distribution
functions of regions from actual frame (left) and from prediction frame (right).

For our example on Figure 5.9 the distribution functions are shown on Figure 5.10 (right graph). It
is important to see that e.g. two different color indices has similar color distribution (boots and hairs) and
distribution of eye’s pixel intensities is degraded by noise due to insufficient region size. In fact this degraded
distribution have to be actually similar to the distribution of skin regions because eyes has the same intensity
median. On the left side of Figure 5.10 we could see intensity distributions of several regions from actual
image. Some of them are also degraded by noise due to small number of pixel samples.

Result of retrieval is visible on Figure 5.9 in the middle. Intensity prediction in contrast to position
prediction is unable to distinct foreground and background parts. All background region with size under
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5.3.3 Intensity prediction

background region size threshold are detected incorrectly. This problem should partially eliminated by
combined prediction (also presented on Figure 5.10 ) where background regions are predicted using position
and other using intensity.

If we compare the results of intensity prediction with position prediction we should conclude that they
look like much better. The main problem is hidden inside small regions with degraded distribution and in
colors of boots and hairs, because these colors has similar hue, saturation and intensity we are not able to
visually distinct the differences but due to similar intensity distributions the false detection is impending.
This problem is general and decrease success of intensity prediction method in cases when regions with same
intensity have assigned different colors.

Generally it is up on user to select the best prediction method. He has to give due weight to the intensity
of further manual corrections. It was proved that best behavior in common cases reports position prediction
because it is able to correctly distinct background regions and also estimate proper color for small regions.
But sometimes intensity prediction is invaluable even when we exploit region grouping tools (see Section
5.2.5 ). We eliminate the problem of different colors for the same intensity distributions by performing
intensity prediction only inside small region groups which belong to the one object inside the scene where
the intensity collision between objects is present.

Figure 5.9 : Example of inking in progress using COL application (from the left top to the right bottom): ORG
layer overview, fitting scale using σ of L ◦G filter (LOG), unsupervised contour detecotor (FIL), initial color
index assigment (IDX), background regions removal, color acquisition using example layer (SRC), correct color
assigment (IDX), final inked background composite (COL), position prediction on the next frame, prediction

failed on another frame, animation loop fitting unsing prediction frame setup (PRE), correct prediction.
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6
Experiment

We try to determine application efficiency using performance statistics of user interaction by analysis of
journal files taken from scenes vary in overall difficulty which were inked by experienced application users.
Further analysis of these statistics allow us to make better conception of real difficulty of inking process.

6.1 Methodology
Measured shots are sorted by human assigned difficulty which was evaluated by five levels using following

adjectives: trivial, easy, intermediate, laborious and hard. Also short scene overview will be presented
including five illustrative frames selected from whole sequence where the main shot difficulties are depicted.

It is usually uneasy to estimate real scene difficulty ahead. Only experienced user of COL application is
able to predict this important characteristic. Rough approximation would be obtained by relative ratio of
total number of frames and compressed file size using any of widely used entropy sensitive video encoders
based on variable bitrate encoding.

6.1.1 Measured statistics

In this section we will present detail description of measured statistics that allow us to better compare
scene difficulty and to estimate overall application efficiency:

Total number of measured frames (total frames), actually the original cut can be longer, but operator
applied color only on presented number of frames. It is important to recall that almost all frames are doubled,
so the real number of frames where any interaction is performed is half.

Total time spent by active work (total time). We treated longer delays between two user driven opera-
tions (maximal interaction delay) as idle time. These breaks are omitted from performance statistics and are
count in the time which was spent by relaxation (total break time). If we want to compare user’s performance
or difficulty of different movie cuts, then the important value is time needed for inking single frame (average
seconds per frame), but the best overview of scene difficulty provide temporal graph where for each frame
the time of active work was posted.

Also important is maximal active time spent by inking of single animation frame (maximal frame delay).
Maximal frame delay take usually place at the starting frame of whole sequence, where no prediction frame
is available so complete marking and retouching corrections have to be done.

Total time spent by retouching (total stroking time). This time was measured while the operator holds
pressed button of mouse inside retouching application mode. For better comparison the percentage value
relative to total active time and average retouching time (average stroking per frame) are also presented.

Whenever any mouse button was pressed inside index marking application mode the counter of total
marker clicks was increased. From this value was derived well comparable associated statistics: average
number of seconds between two mouse clicks (average seconds per click) and average number of mouse clicks
per one frame (average clicks per frame).

6.1.2 Frequently used functions

For reference we also present operator names (operator name) and their working speed relative to fixed
norm 60 frames per hour. Also histogram of ten mostly used application functions is presented and percentage
of overall usage of these functions relative to total number of available. This value usually summarize user’s
ability to use our application effectively. Follows short overview of these frequently used functions:
• add-index-marker: When active prediction technique fails on several regions or when no prediction is

possible, user is able due to this function set up correct color assignment by proper color marker placed
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6.2 Measurement

using mouse pointer inside IDX layer (see Section 5.2.5 ). Similar function is change-index-marker it
unlike changes old color index of already placed marker to the actual one.

• delete-nearest-marker: Using this operation user deletes nearest active color index marker and
thereby force application to estimate proper region color automatically.

• pick-index: This sets actual color index using color from region that is actually under mouse pointer.
Similar to select-index where color index is selected from user defined palette using mouse or keyboard.

• add-select-graph-marker: This operation allows user to select regions that are connected by conti-
nuity graph to be in one region group. This is useful when two or more region groups are in the scene
and when we want to apply for each one different prediction method, prediction frame or change of
prediction layer geometry (see Section 5.2.5 ).

• switch-FIL: This switch hides or shows the FIL layer inside application desktop. Following operations
are usually performed afterwards:

• mode-erase: or
• mode-delete: which set up proper retouching mode (see Section 5.2.4 ).
• back-stroke: Inside FIL it layer is possible to perform several retouching operations (see Section 5.2.4 )

this one erase edges, edge-stroke add edges and clean-stroke returns original edge shape. Very often
before mentioned retouching operations the

• change-radius: function is called due to fine tuning of circular stroke shape.
• copy-previous-strokes: Default is copying of strokes from prediction frame automatic, however it is

usable to switch off this operation and control copy function manually. This is usually used when it is
possible to change prediction layer geometry and afterwards copy transformed retouching strokes from
prediction frame to actual one.

• chagne-sweep-threshold: Sweep threshold is important value that affect unsupervised contour au-
thentication mechanism (see Section 3.2.2 ).

• change-prediction-frame: This operation allows user to change prediction frame for actual region
group and it is usually called whenever image sequence contains animation loops (see Section 5.3.1 ).

• change-prediction-type: User performs switching between intensity, position or combined prediction
inside IDX layer responsible for unsupervised color to region assignment (see Section 5.3 ).

• mode-realtime: Function that switch between realtime and buffered mode is usable when user perform
some sort of changes and he or she does not want to perform refreshing of modified layer immediately.

• mode-select: Inside this application mode is user able to change region groups and to set up geometry
of prediction layers.

• mode-zoom: This operation is recorded whenever user switch on the windowed zoom function. Similar
switching operation is mode-scale when desktop zoom is activated (see Section 5.1.2 ).

• move-prediction-plane: Whenever translation of prediction layer is changed using both unsupervised
shift estimation or manual tuning, this operation is activated (see Section 5.3.2 ).

• next-frame: Simple operation that increase actual frame number is similar to function previous-frame
made for frame decreasing.

• refresh-layers: Whenever user is not sure that all layers are consistent due to memory caching or
when disk cache is broken or totally missing he or she is able to refresh all layers of actual frame using
this function.

6.2 Measurement

Next seven pages contain overviews, tables and graphs with statistics described in previous section.
These statistics were obtained by measurement of 13 different image sequences from cartoon “O loupežńıku
Rumcajsovi”. It is important to know that each application user has different experiences and abilities.
Another important feature is that following results come from real inking work performed without any
special environmental conditions. Moreover users were in advance not well posted in fact that they are being
measured. So there is possibility that such scene can be inked much more faster preserving same output
quality, however we want to present realistic results not the best ones.

44



6.2 Measurement

Only one big character, small number of active color indices. Contour free background. Almost static
shot, rare fast changes between frames. Lots of frames should be perfectly predicted by position prediction.
Practically no retouching work is needed. Example of really trivial scene.

movie shot 7th episode, cut 24
shot difficulty trivial
total frames 236
total time 2340s (00:39:00)
total break time 154s (00:02:34)
total stroking time 1s (0%)
total marker clicks 316
maximal frame delay 314s
maximal interaction delay 14s
average seconds per frame 9s
average seconds per click 7s
average clicks per frame 1
average stroking per frame 0s
operator name D. Sýkora
operator speed 6.1x (60 fph)
overall application usage 38%
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Almost static scene without contours in background. The most of work have to be done on the first frame.
Although character movement is not large there are lots of small regions that have to be corrected. Scene is
suitable for position prediction.

movie shot 5th episode, cut 31
shot difficulty easy
total frames 258
total time 5806s (01:36:46)
total break time 654s (00:10:54)
total stroking time 390s (6%)
total marker clicks 994
maximal frame delay 720s
maximal interaction delay 20s
average seconds per frame 22s
average seconds per click 5s
average clicks per frame 3
average stroking per frame 1s
operator name P. Bláhová
operator speed 2.7x (60 fph)
overall application usage 28%
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6.2 Measurement

Camera zoom-out, left character gets out of sight, right sits down and camera zoom-in on his legs. Small
number of shape changes or character motions. Zooming is handled by properly scaled masks for position
prediction. Start frame is 40, where both characters are visible.

movie shot 1st episode, cut 22
shot difficulty easy
total frames 233
total time 5444s (01:30:44)
total break time 777s (00:12:57)
total stroking time 617s (11%)
total marker clicks 531
maximal frame delay 279s
maximal interaction delay 29s
average seconds per frame 23s
average seconds per click 10s
average clicks per frame 2
average stroking per frame 2s
operator name T. Brabec
operator speed 2.6x (60 fph)
overall application usage 30%
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Solid contour free background, small number of active color indices, one static character. Rapid movement
of second character. Each phase has really different spatial location. Narrow regions due to scissors. Shot is
suitable for intensity prediction.

movie shot 2nd episode, cut 14
shot difficulty easy
total frames 325
total time 6975s (01:56:15)
total break time 610s (00:10:10)
total stroking time 331s (4%)
total marker clicks 880
maximal frame delay 190s
maximal interaction delay 28s
average seconds per frame 21s
average seconds per click 7s
average clicks per frame 2
average stroking per frame 1s
operator name T. Brabec
operator speed 2.8x (60 fph)
overall application usage 32%

0 min

1 min

2 min

3 min

0 50 100 150 200 250 300

move-prediction-plane
change-index-marker

mode-scale
mode-delete
switch-FIL
pick-index
mode-select
next-frame

add-index-marker
change-prediction-frame
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6.2 Measurement

Start frame is 80. Camera zoom-in and out. Three independent region groups. Contour free background.
Not so complicated character movement. Contour free ring reflex effect was done during post-production
phase.

movie shot 4th episode, cut 11
shot difficulty easy
total frames 247
total time 5571s (01:32:51)
total break time 1952s (00:32:32)
total stroking time 496s (8%)
total marker clicks 914
maximal frame delay 331s
maximal interaction delay 26s
average seconds per frame 22s
average seconds per click 6s
average clicks per frame 3
average stroking per frame 2s
operator name S. Drbohlav
operator speed 2.7x (60 fph)
overall application usage 42%
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Camera panning from left to right and back. There is no frame where both characters are completely visible.
General is laughing during first 50 frames. This effect caused relative large shape shift between each frame
and lots of human driven corrections.

movie shot 7th episode, cut 25
shot difficulty intermediate
total frames 241
total time 5444s (01:30:44)
total break time 3869s (01:04:29)
total stroking time 134s (2%)
total marker clicks 1577
maximal frame delay 373s
maximal interaction delay 20s
average seconds per frame 22s
average seconds per click 3s
average clicks per frame 6
average stroking per frame 0s
operator name O. Sýkora
operator speed 2.7x (60 fph)
overall application usage 42%
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6.2 Measurement

Fast changes of two basic shapes (look on the left and right side) suitable for mirrored position masks.
Intensity fluctuation due to small regions with standalone color index (eggs). During last 50 frames little
problematic translation movement of both characters.

movie shot 3th episode, cut 9a
shot difficulty intermediate
total frames 275
total time 8425s (02:20:25)
total break time 562s (00:09:22)
total stroking time 1178s (13%)
total marker clicks 1600
maximal frame delay 413s
maximal interaction delay 29s
average seconds per frame 30s
average seconds per click 5s
average clicks per frame 5
average stroking per frame 4s
operator name T. Brabec
operator speed 2.0x (60 fph)
overall application usage 43%
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Fast camera panning from left to right. Lots of different color indices and several tight regions. Perfume
splash and princess lips were done during post-production phase. Almost static scene without any compli-
cated character movement well posed for position prediction.

movie shot 5th episode, cut 25
shot difficulty intermediate
total frames 326
total time 7303s (02:01:43)
total break time 4098s (01:08:18)
total stroking time 675s (9%)
total marker clicks 1167
maximal frame delay 396s
maximal interaction delay 29s
average seconds per frame 22s
average seconds per click 6s
average clicks per frame 3
average stroking per frame 2s
operator name P. Bláhová
operator speed 2.7x (60 fph)
overall application usage 30%
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6.2 Measurement

Dancing round of characters. Many connected and partially occluded region groups. Contour free back-
ground. Repetitive sequence of 50 frames. Next 175 frames with the same loop. Shot is suitable for user
defined sequence of prediction frames.

movie shot 3th episode, cut 23
shot difficulty laborious
total frames 225
total time 7954s (02:12:34)
total break time 409s (00:06:49)
total stroking time 691s (8%)
total marker clicks 2870
maximal frame delay 547s
maximal interaction delay 30s
average seconds per frame 35s
average seconds per click 2s
average clicks per frame 12
average stroking per frame 3s
operator name T. Brabec
operator speed 1.7x (60 fph)
overall application usage 31%
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Two separated region groups. Only local movement in the beginning of the shot. Suitable for both position
and intensity prediction. Contour free background. Advanced retouching is not necessary. In last 50 frames
little complicated directional movement of both characters.

movie shot 6th episode, cut 36
shot difficulty laborious
total frames 265
total time 10620s (02:57:00)
total break time 1370s (00:22:50)
total stroking time 1399s (13%)
total marker clicks 2306
maximal frame delay 276s
maximal interaction delay 27s
average seconds per frame 40s
average seconds per click 4s
average clicks per frame 8
average stroking per frame 5s
operator name I. Gobelová
operator speed 1.5x (60 fph)
overall application usage 37%
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6.2 Measurement

Continous camera panning from left to right and zoom-in on the end of shot. Contour free background. Fore-
ground parts are sometimes occluded by background shapes. Complicated retouching of missing contours.
Lots of different color indices and fast unpredictable character movement.

movie shot 3th episode, cut 1b
shot difficulty laborious
total frames 203
total time 6637s (01:50:37)
total break time 498s (00:08:18)
total stroking time 777s (11%)
total marker clicks 1505
maximal frame delay 299s
maximal interaction delay 30s
average seconds per frame 32s
average seconds per click 4s
average clicks per frame 7
average stroking per frame 3s
operator name T. Brabec
operator speed 1.8x (60 fph)
overall application usage 36%
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Small foreground regions, unwanted contours in background, partially occluded, complex retouching. Two
spatially connected region groups. Complex movement, especially rotation (position prediction with mask
rotation). Camera zoom-in during last 50 frames.

movie shot 8th episode, cut 15
shot difficulty hard
total frames 322
total time 15551s (04:19:11)
total break time 4480s (01:14:40)
total stroking time 4377s (28%)
total marker clicks 1823
maximal frame delay 460s
maximal interaction delay 30s
average seconds per frame 48s
average seconds per click 8s
average clicks per frame 5
average stroking per frame 13s
operator name I. Gobelová
operator speed 1.2x (60 fph)
overall application usage 46%
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6.3 Results

Contour free region boundaries which have to be virtually painted using retouching brush. Fast motion
effect visualised by white smudges sometimes completely broken character contours. Lots of retouching
work. Complex movement of three different characters with camera panning.

movie shot 2nd episode, cut 23b
shot difficulty hard
total frames 227
total time 9323s (02:35:23)
total break time 1431s (00:23:51)
total stroking time 2006s (21%)
total marker clicks 1281
maximal frame delay 445s
maximal interaction delay 26s
average seconds per frame 41s
average seconds per click 7s
average clicks per frame 5
average stroking per frame 8s
operator name O. Sýkora
operator speed 1.5x (60 fph)
overall application usage 42%
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6.3 Results

Presented experiments show us that inking process based on COL application is still far from the ideal
of example driven unsupervised inking. The average processing speed vary from 20 to 40 seconds per frame
while the main slowdown is usually caused by simply unpredictable extensive character movement, correction
of large number of small foreground regions and retouching of tight regions, broken contours and contours
inside background area. If we do not take in account pre-processing and post-processing phases, one user is
able to apply ink on whole episode in two weeks of full time inking. If we include background restoration
and other post-production tasks we should conclude that one episode could be completed in one month.

It is now possible to make raw comparison of above presented processing speed with time complexity of
original technology based only on hi-end film editing post-production hardware driven by experienced user.
During testing phase on this technology was proved that one user is able to apply ink with the same or longer
duration, but with lower image quality and much higher costs due to expensive machine time. Thanks to
parallelism on cost effective workstations, COL application allow us to speed-up this time consuming process,
increase the final image quality and above all, dramatically decrease the outgoings of whole project.

However we have to consider that we are focussed on high quality of final image sequence when the
main slowdown is usually caused by correction of small regions and by complex retouching of contours in
background. It is hard even for human to produce correct inking. Small regions are usually badly inked
because of user inattention due to perceptual capabilities of human eye in front of still images. Bugs usually
come up later if we review whole image sequence using original frame rate. If we leave these minor mistakes
alone the final image quality will be still acceptable and the processing speed is going to be even more than
two times faster.
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7
Conclusion

The main motivation of this thesis was to speed up and make cheaper original slow and expensive inking
technology. Unfortunately objective decision of fulfilment of the basic motivation is not possible due to really
different properties of purposed inking technologies. The main difference lie in the final visual quality which
is much more better relative to that obtained by luminance keys driven technology used in hi-end film editing
systems. Accomplished speed up is also discussable while we enable feasibility of parallelism which was not
initially accessible. The main reason why we develop purposed inking technology was due to cost untenability
of original technology. Only fulfilment of this main task denote to success of our application.

It was proved that role of hi-end film editing system is invaluable, however we are able using COL
application to increase processing speed, final visual quality and take in account possible usage of cost
effective PC workstations. This cooperation stay beyond final product, so we could not simply say if our
application is faster or better than hi-end film editing system. What we have to say is fact that our application
was successfully used as important part of inking pipeline and practically enables the feasibility of whole
project.

7.1 Future work

We still did not exploit additional information stored inside background layer. This layer can be used
for separation of foreground regions from background. Unfortunately due to incorrect global camera motion
tracking it is not possible to simply fit new layer to proper position and compute alpha mask of foreground
using straightforward image difference. More advanced comparison method insensitive to local pixel shifts
have to be introduced.

Another problem is connected with low resolution: contours of tight regions are usually merged together
and form one bold contour which has to be manually retouched by special type of semi-automatic stroke.
We already saw that sub-pixel resolution is able to solve this problem. However faster method that works
with original resolution have to be invented.

The weak point of COL application is also prediction. Although current implementation based on simple
intensity and position prediction is able to significantly speed up whole inking process, it is possible to spent
large effort by development of advanced prediction technique based on robust statistic models in connection
with Bayesian framework (widely used on the filed of pattern recognition).

Small regions introduce fundamental and troublesome problem. The number of samples inside these
regions is usually below the limit with that we are able to produce usable prediction statistics. This causes
e.g. still unsolved temporal luminance fluctuation of small regions with unique color index. If we consider
the fact that more than half of user driven correction work is still connected with small regions, we are not
able to significantly speed up inking process by better prediction technique. The more robust estimation of
region intensity and shape statistics have to be introduced.

This work was supported by Universal Production Partners (UPP) and Digital Media Production (DMP).
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Appendix

Contents of supplied CD-ROM

Following papers cited in this thesis are located on CD-ROM in PDF or PS format (in section References):
[Clark89], [Deng01], [Ding01], [Haenselmann00], [Haris98], [Heath96], [Hertzmann01], [Hug99],
[Chen02], [Cheng00], [Chuang02], [Koepfler94], [Kokaram93], [Mrázek01], [Patras01], [Reinhard01],
[Shen00], [Steger98], [Welsh02], [Yezzi97], [Ziou97]. Additionally several related but not cited papers
and full text of this diploma thesis in PDF format (print and preview version) are also available on the sup-
plied CD-ROM. Besides the full DirectX version of COL application with one example image sequence from
cartoon “O loupežńıku Rumcajsovi” is also included together with user reference manual in czech language.
It is possible to try apply color and inspect final color images in full quality. Moreover in section Experiments
there is over 10 minutes of grey-scale and color sequences selected from 5th, 6th and 7th episode of the same
cartoon encoded using DivX video codec (also available on supplied CD-ROM). Unfortunately source code
of COL application is not available due to exclusive rights of Digital Media Production.
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