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Abstract—
We present Meet-In-Style—a new approach to real-time stylization of live video
streams using text prompts. In contrast to previous text-based techniques, our
system is able to stylize input video at 30 fps on commodity graphics hardware
while preserving structural consistency of the stylized sequence and minimizing
temporal flicker. A key idea of our approach is to combine diffusion-based image
stylization with a few-shot patch-based training strategy that can produce a
custom image-to-image stylization network with real-time inference capabilities.
Such a combination not only allows for fast stylization, but also greatly improves
consistency of individual stylized frames compared to a scenario where diffusion
is applied to each video frame separately. We conducted a number of user
experiments in which we found our approach to be particularly useful in video
conference scenarios enabling participants to interactively apply different visual
styles to themselves (or to each other) to enhance the overall chatting experience.

V ideo stylization, a captivating intersection of art
and technology, has been an active topic of
research for the last decade. Representing ef-

forts to convey a stylized look similar to handcrafted an-
imations [1], [2], [3], it has been driven by researchers’
curiosity and has gained the interest of the artistic
community by offering various interactive workflows [4],
[5], [6]. Recent efforts have been fuelled by significant
attention from the general public caused by the rise of
generative approaches [7], [8], [9].

Video stylization has seen considerable technical
improvement. Beginning with traditional algorithmic
example-based solutions [1], [3], machine learning ap-
proaches hae become ascendant, transitioning from
the use of pre-trained VGG network [2] and custom
U-net type image translation techniques [5], [6] to-
wards recent applications of text-driven diffusion [7],
[9]. Text-driven techniques enable users of any skill
level to produce stylized content without depending on
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traditional artistic media or having any experience with
digital image editing. However, these techniques have
high computational expense, preventing real-time or
interactive uses. Recently, speed-up techniques such
as score distillation sampling [10] or latent consistency
models [11] have been used to reduce the number of
diffusion steps and thus deliver interactive responses.
Nevertheless, even higher frame rates are needed for
real-time video processing, and temporal consistency
of the stylized sequence remains a challenge.

In this paper we present a text-driven framework
that enables the use of diffusion models while deliver-
ing a consistently stylized video stream in real time on
commodity graphics hardware. The input to our system
is a continuous live video stream and a text prompt
specifying the desired artistic style. Similarly to Yang
et al. [7], we use InstructPix2Pix [12] to apply a style
to keyframes taken from the input video stream, then
propagate it to subsequent frames, ensuring fast and
visually consistent stylization (see Fig. 1). A key differ-
ence and advantage of our approach is that instead
of the computationally demanding style propagation
of Jamriška et al. [3], we employ a fast patch-based
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FIGURE 1. Our framework used to stylize live video stream in four different styles: ’make me as a Disney character’, ’make
him look like a cartoon character’, ’as painted by Van Gogh’, and ’oil painting, brush strokes’.

training strategy [5]. Both InstructPix2Pix and patch-
based style propagation are essential: InstructPix2Pix
allows a user to devise new styles on the fly, while
patch-based style propagation makes real-time video
processing possible.

To the best of our knowledge, our proposed system
is the first that enables users to interactively experi-
ment with the visual aesthetic of live video streams
using text-driven diffusion models while delivering con-
sistently stylized video streams at frame rates of 30
fps. Such a capability is particularly useful in live video
conferencing scenarios (see Fig. 2) that were difficult
to achieve using previous published approaches.

FIGURE 2. Participant using the real-time style transfer
application during the Uroboros: Creative AI meet-up.

RELATED WORK
Stylization techniques aim to alter an input image
so that it looks as if it had been created using a
particular artistic style, while preserving the original
content. This is usually achieved by changing colors
and texture patterns to resemble a certain artistic
medium, and also by applying various distortions or

simplifications. During the last decades numerous al-
gorithms were developed to achieve this goal, including
procedural techniques, example-based methods, and
recently also approaches based on neural networks
and diffusion models.

Procedural methods rely on algorithmically ma-
nipulating images to mimic artistic effects through var-
ious hand-crafted rules and heuristics. Stroke-based
approaches [13] produced convincing painterly, pen-
and-ink, and hatching styles, among others. Filter-
based approaches are a separate direction, also capa-
ble of producing a wide variety of styles; the versatile
XDoG [14] is an example. Procedural methods can
create beautiful images, but their expressive power of
individual methods is limited and bespoke methods are
needed for particular artistic styles.

Example-based methods try to mimic the style of
an exemplar image S provided together with the target
image T that needs to be stylized, i.e., performing style
transfer from S to T . This can be achieved by copying
and pasting small patches from the style images onto
a different location in the target image to produce
a coherent seamless mosaic that resembles content
of the target image. Hertzmann et al. pioneered this
approach in their Image Analogies framework [15],
introducing an example-based approach where a pair
of unstyled and stylized images serves as an example
of the given artistic transformation and the task is to
faithfully apply this transformation on a new unstyled
input image. Building upon this foundation, Bénard
et al. [1] and later Jamriška et al. [3] adapted this
approach to video by incorporating various guidance
channels derived from the underlying 3D animation
or directly estimated from the input video that enable
semantically meaningful and temporally coherent styl-
ization. Despite remarkable quality, this approach re-
mains computationally intensive, which can hinder real-
time application scenarios such as video conferences.
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Sýkora et al. [16] proposed a real-time example-based
stylization algorithm for applications where accurate
correspondences between the current video frame and
the stylized keyframe can be estimated. This require-
ment is, however, difficult to fulfill in the context of real-
time video stylization.

Neural style transfer pioneered by Gatys et
al. [17] also employs the example-based approach.
They employ a pre-trained convolutional network to
separate and combine the content of the target image
with the style in the exemplar image. Subsequent
research, such as that of Ruder et al. [2], focused on
making the stylization process consistent over time to
enable style transfer to video sequences. While the
neural approach of Gatys et al. produces impressive
results on some inputs, it typically has difficulties with
preservation of low-level style details and semantic
context.

Image translation techniques can mitigate the
drawbacks of neural methods. The image-to-image
translation approach of Futschik et al. [18] can perform
inference in real time, and the style transfer is consis-
tent and semantically meaningful. It requires a larger
set of paired stylized and unstyled images; appropriate
pairs can be generated, e.g., using the patch-based
approach of Fišer et al. [19]. Nevertheless, the dataset
preparation and training times are still highly excessive.
Texler et al. [5] address this drawback; their approach
requires a smaller training dataset and reduced training
time. They train on a set of randomly sampled patches
cropped from a few stylized pairs. Nevertheless, their
image pairs still require manual preparation.

Diffusion models such as Stable Diffusion [20]
introduce a generative approach to neural style trans-
fer; these models are trained to gradually perturb and
denoise a content image over tens or hundreds of
repeated steps, with the conditioning provided at each
step steering the diffusion process toward the desired
stylized look. While computationally more expensive
than feedforward methods, diffusion models offer sev-
eral advantages including the ability to capture com-
plex styles and providing more control over the styliza-
tion process by adjusting the conditioning at interme-
diate steps. Diffusion models can also be utilized for
image editing [12] and video stylization [21], [22], [23]
where each video frame is generated independently,
using a diffusion model with additional constraints
and guidance to maintain temporal consistency across
multiple frames. Hybrid approaches such as that of
Yang et al. [7] combine the strengths of diffusion-based
keyframe generation with example-based stylization
techniques. However, despite their practical potential,
these approaches are too computationally intensive for

real-time applications. Recently, Parmar et al. [24]
made significant progress towards the interactive set-
ting by achieving one-step image translation with a
text-to-image model; nevertheless, their performance
(10 frames per second on A100 GPU at 512x512
resolution) is still far from real-time and the method
lack any mechanism to enforce temporal coherence.

METHOD
Our approach combines the power of diffusion models
with a patch-based training strategy to enable real-
time stylization of live video streams, conditioned by
a user-provided text prompt. Instead of applying the
diffusion process on the entire sequence, we apply
it only on a few selected keyframes. The stylized
keyframes are then used to train a feed-forward image
translation network that can be used immediately for
real-time inference, generating a consistently stylized
video sequence. Diffusion models alone cannot ac-
complish this task: they are too slow for real-time video
processing, and the resulting stylized sequence would
suffer from inconsistencies. Our hybrid system has
the advantages of diffusion models (ability to create
novel styles, arising from InstructPix2Pix) plus interac-
tive video processing, enabling real-time applications
(arising from patch-based style propagation).

The input to our framework is a live video
stream I (Fig. 3a) and a text prompt P (Fig. 3c). I is
typically obtained from a web camera that captures
the user’s face. While the capture is running, the
user poses to take snapshots of a few keyframes Ik :
usually one front-facing portrait, optionally accompa-
nied by left and right side view to increase robust-
ness (Fig. 3b). These keyframes are then stylized using
InstructPix2Pix [12] (Fig. 3d)—a diffusion model that
selectively applies edits to Ik based on P to produce
stylized frames Sk . The stylized frames Sk are then
used as training exemplars whereby the image trans-
lation network of Futschik et al. [18] (Fig. 3f) can learn
the mapping between keyframes Ik and their stylized
counterparts Sk . To speed up the learning process, a
patch-based training strategy [5] is used to obtain a
useful model within a couple of seconds, which can
then be immediately applied to stylize newly incoming
frames of the live video stream I in real time. The
stylized video output O is displayed to the user at a rate
of 30 frames per second while the quality of stylization
improves over time.

Keyframe Stylization
For sequences where the movements happen mostly
in the camera plane, a single keyframe is typically
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FIGURE 3. Stylizing a live video stream using using our framework that combines an image-to-image diffusion based approach
InstructPix2Pix (d) with a video stylization technique of Texler et al. [5] (f).

sufficient. For more complex motions such as out-
of-plane rotations, three keyframes (front-facing, left-
facing, and right-facing) yield better stylization results.
Since the keyframes are used to train an image trans-
lation network, it is vital for stylization to be consistent
across them; e.g., if in Sk1 the hair region is painted
with a specific color, keyframes Sk2 and Sk3 should also
be painted using the same color. To ensure stylization
consistency, we concatenate the keyframes into a sin-
gle image before passing them to InstructPix2Pix. By
applying diffusion process jointly to all keyframes, we
obtain a notably more consistent stylization as com-
pared to three independent InstructPix2Pix passes.

Video Stream Stylization
Given the stylized keyframes, we train the image trans-
lation network to learn the content-to-style mapping
from Ik to Sk using Texler et al.’s patch-based strat-
egy [5]. During training, we update the model every
few seconds and in parallel we run an inference thread
to convert newly incoming video frames I into stylized
output O. The inference model is periodically updated
using the weights from the training thread to reflect the
new model improvements over time. Our parallel setup
minimizes the stylization delay, allowing users to see
the text-driven stylization of the incoming video stream
interactively after entering a new prompt.

To further accelerate the training process, we ap-
ply foreground segmentation [25] and focus only on
portions of the input keyframes that lie within the
foreground region. Although conventional convolutional
networks cannot be trained selectively, a patch-based
training strategy [5] enables such an adaptive ap-
proach. In practice, the foreground typically accounts

for about half of the pixels and thus the training con-
vergence can be roughly two times faster.

Implementation
In order to meet real-time performance requirements
and enable interactivity, we employ a client-server
architecture and split the workload between a client
machine and a server machine that communicate over
a local network. This separation enables paralleliza-
tion: the client handles the graphical user interface,
camera capture, video display, and runs the style
inference, while the server is responsible for more
demanding tasks such as keyframe stylization using
InstructPix2Pix and continuous training of the image
translation model. During a live session, the user inter-
acts with the application on the client side, providing
text prompts and settings. These are then sent to the
server, which is responsible for the synthesis of stylized
keyframes and model training. The perpetually trained
models are transferred back to the client to perform the
stylization of the incoming video stream.

RESULTS

Results and Comparison
The results of our method on several subjects and
on a variety of different photo-realistic and painterly
styles are shown in Fig. 4 (see also our supplemen-
tary video). The initial style from the diffusion model
is successfully propagated across the ongoing video
sequence.

We compared our method with two alternative
frameworks that are capable of video style transfer.
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FIGURE 4. Our framework used to stylize a live video stream in several different styles. While it is possible to use only one or
two keyframes, for maximal visual quality all results shown (right) were generated using three keyframes (left).
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FIGURE 5. Comparison between Rerender A Video [7], fast
per-frame generative approach based on distilled LCM [11],
and our approach: (a, e) input frames; (b, f) distilled LCM; (c,
g) Rerender A Video; (d, h) our approach (style references
taken from the foreground of keyframes created by Rerender
A Video).

Rerender A Video [7] (Fig. 5c,g), while providing satis-
factory temporal consistency, sometimes suffers from
error accumulation in longer sequences; moreover, it
does not respect the fine geometry and structure (eyes,
mouth, and other emotion-conveying facial nuances
are sometimes not well preserved). Further, it is com-
putationally intensive; with an average processing time
of roughly 6 seconds per frame, it is impossible to use
in real-time applications. We also consider a naive
per-frame approach (Fig. 5b,f): a distilled LCM [11]
model, capable of real-time inference and convincing
stylization quality on a per-frame basis. However, even
though the input sequence is perfectly consistent and
the used prompt, seed, and other parameters do not

change, the output sequence exhibits severe temporal
inconsistencies. This result is unsurprising, as frames
are generated independently and the method has no
mechanism for enforcing temporal consistency. Our
method (Fig. 5d,h) achieves high textural quality on
individual frames, owing to the use of a diffusion
model (InstructPix2Pix). Further, it has high temporal
consistency and is capable of running in real time on
a commonly available GPU, due to the patch-based
online training. Note that our results, Fig. 5d and
Fig. 5h, were generated using the foreground of 3 and
5 keyframes taken from style references Fig. 5c and
Fig. 5g respectively. See also our supplementary video
for comparison in motion.

Performance Analysis
To evaluate the interactive capabilities of our system,
we analyzed the three metrics with greatest impact
on overall user experience: frame rate, latency, and
startup time.

Frame rate. In our implementation, the camera
captures frames at 30 frames per second at the cam-
era’s native resolution of 800x600px. For simplicity and
due to the GPU memory constraints, we resize the
frames so that the shorter side is 448px, and then
we crop the longer sides to obtain a square image of
448x448px. On this resolution, the inference requires
approximately 25 milliseconds per frame on a com-
monly available GPU with performance comparable to
Nvidia RTX 2080. Our processing speed is sufficient to
achieve 40 frames per second but we limit the speed
to the webcam frame rate.

Latency, the delay between the frame being cap-
tured and its stylized form being displayed to the
user. Typical webcam lag is about 100–150 ms; image
cropping, copying into GPU memory, and doing the
inference add roughly an additional 30 ms. In our
30 fps setting the stylized video output is about one
frame behind the input. The total lag then stays under
200 ms, which we observed to be an imperceptible
delay during live streaming.

Startup time is defined as the waiting time be-
tween entering a new text prompt and seeing an initial
version of the stylized output. Several steps in our
pipeline contribute to this delay: (1) InstructPix2Pix re-
quires approximately 9.2 seconds at 30 diffusion steps
to generate the keyframes; (2) the stylized keyframes
are subsequently passed to the training loop, which
runs on a different GPU, resulting in an additional delay
of roughly 130 ms; (3) the training loop releases a
new model every 100 batches, roughly 2.8 seconds;
(4) the model is then loaded on the GPU used by the
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client, taking approximately 270 ms. Following these
four steps, the inference can begin and the user will
start seeing stylized frames. In total, the delay between
typing a new prompt and observing initial stylization re-
sults is roughly 12.4 seconds (for three keyframes). For
a single keyframe, the total delay drops to 5.2 seconds.
Note that the style transfer quality continues to improve
as the training loop keeps learning and improving, in
parallel with ongoing stylization of incoming video.

Stylization Fidelity Analysis
To assess the fidelity of the transferred style, we exam-
ine two key aspects. First, the stylization coverage, i.e.,
the ability to stylize all video frames in a similar quality,
which depends mainly on the number of keyframes,
the complexity of the desired style, and the complexity
of the input sequence. Second, the stylization con-
vergence rate, i.e., the rate at which the stylization
improves over time. Convergence rate is influenced by
style complexity and the number of pixels processed
during training; we optionally apply a foreground mask
to restrict the processed region and accelerate training.

Stylization coverage is largely determined by two
factors: (1) the complexity of a given style; (2) how well
the selected keyframes represent structural changes in
the entire video sequence. Style complexity is mainly
influenced by the quantity of high-frequency detail
and the extent of geometric changes imposed on the
original structure (see Fig. 4); e.g., caricatures may
incorporate shape changes. Styles where only colors
are changed or low-level structure is slightly altered
(e.g., smoothing the skin, or changing hair or skin
color) are usually easier to train. Styles that change
the high-level structure (e.g., making a face more
fat, skinny, or adding low-level structural details that
were not present in the original keyframe) are usually
more difficult to train. For simple styles, typically a
single front-facing keyframe is sufficient to capture
the desired style transformation. For more complex
styles, additional keyframes can help to improve the
stylization coverage, as demonstrated in Fig. 6; stylized
frames coming from a model trained using only a
single keyframe may exhibit artifacts, and a notable
improvement can be obtained using a model trained
on three different keyframes. However, note that the
stylized keyframes should themselves be consistent;
for example, minor differences in the injuries in the
“zombie” example lead to inconsistent textures in the
output. Matching elements in the keyframes reinforce
these elements in the rendered frames.

Convergence rate is fast for simple styles; the
stylization result is easily recognizable and convincing

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 6. Comparison of training on single and multiple
keyframes. The top row shows the stylized keyframes along
with the original frames and foreground mask (inset). Results
in the middle row were obtained using only single keyframe (a)
and demonstrate how the resulting stylization may contain
artifacts when the subject undergoes substantial head move-
ment. The results in the bottom row were obtained using
all three keyframes (a–c); in this case even significant head
rotations are stylized convincingly.

even with the first loaded model, roughly one or two
seconds of training. Complex styles can take several
seconds to become recognizable and full convergence
takes even longer. Fig. 7 shows convergence pro-
files for various styles. The first row (“golden statue”)
shows a simple style that mainly changes the colors
of the face. The second row (“James Bond”) presents
a harder style, changing skin tone and adding high-
frequency details like wrinkles; while the skin tone
converges quickly (under 10 s), the wrinkles and facial
reflections need more time to fully converge (30 s).
The third row presents a difficult painterly style (“van
Gogh”) that needs more than 40 seconds to properly
converge.

Foreground masking. Convergence rate can be
greatly improved by applying a foreground mask during
the training phase, enabling the network to focus more
on the important facial and torso details while paying
less attention to pixels in the background. The impact
of foreground masking on convergence speed is illus-
trated in Fig. 7: the third row presents the result where
the foreground mask was applied, while the result on
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FIGURE 7. Convergence rate for various styles using fore-
ground mask. Top row: a simple style that requires 10 s
to give convincing results, and fully converges after 30 s.
Second row: a harder style that takes 30 s to converge. Third
row: a difficult painterly style that requires 40 seconds to
properly converge. Fourth row: the same style as the third row;
however, here the image translation model is trained on both
foreground and background pixels and thus takes longer to
converge. (Note: the images were cropped for demonstration
purposes.)

the fourth row was trained on the entire frame, resulting
in slower convergence. The Van Gogh style used in the
third and fourth row represents a particularly challeng-
ing setting for patch-based training, since in the stylized
keyframe there are numerous distinct brush strokes
in the background, whereas the corresponding area
is almost homogeneous in the target video sequence,
i.e., highly ambiguous.

User Experience
To further evaluate our interactive prompt-based styl-
ization framework we showcased it at various public
events where we observed reactions of users, and
gathered informal feedback (see Fig. 2). Approximately
40 participants actively tried our system and more than
100 observers saw and commented on the stylized
videos. Those were a mixture of experts on generative
AI as well as novice users without prior experience with
video stylization techniques. Reactions were uniformly

positive, with participants appreciating the intuitiveness
of our user interface and its ability to deliver consis-
tently stylized output in real time. The majority of
experienced users confirmed that interactive video-
to-video stylization systems they had tried previously
were unable to preserve temporal consistency, and
they felt this aspect was the most prominent novelty
of our approach. Some users enjoyed pushing the
limits of the system’s capabilities by trying exaggerated
poses and head movements.

The most common objection reported by the par-
ticipants was the relatively slow startup phase mainly
caused by the processing speed of the InstructPix2Pix
diffusion model. We also noted that some users were
sometimes not fully satisfied with the ability of Instruct-
Pix2Pix to create adequate stylization according to
detailed instructions given in the text prompt. They
would have appreciated a selection of existing preset
styles as well as additional suggestions for preparing
text prompts that produce visually interesting results.

Insights gained from the user study helped us
validate the proposed interactive framework and iden-
tify areas for further development. One interesting
improvement suggested by the users during the dis-
cussions was the idea to use voice input instead of
text prompts. They also mentioned the possibility of
using a large language model to analyze transcripts
of ongoing conversations and then distill text prompts
so that the stylization can be adjusted automatically to
align with the topic being discussed.

LIMITATIONS AND FUTURE WORK
Our framework can deliver high-quality stylizations in
an interactive prompt-based setting, something difficult
to achieve using previous approaches. However, some
limitations motivate potential future work. We discuss
some of them in this section.

Keyframe quality and consistency. The under-
lying diffusion model has limited ability to produce
consistent stylization across multiple keyframes. Incon-
sistencies across keyframes may have visible impact
on the final stylization quality.

Since the original InstructPix2Pix [12] approach
does not take consistency into account, we explic-
itly concatenate all keyframes into a single image to
process them all in a single inference run. However,
this strategy may not always guarantee precise consis-
tency. Consider, e.g., the output shown in Fig. 8 (top
left quadrant), where the carnival mask is placed
slightly differently relative to the face in every stylized
keyframe. Due to this ambiguity, the image translation
network [5] may fail to capture the fine structure and
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geometry of the mask (see Fig. 8 top right quadrant for
an example). The bottom part of Fig. 8 demonstrates
a similar issue: in each stylized keyframe the number
of horns differs, the horns are located in different
positions, and they have inconsistent shapes, making it
difficult for the image translation network to reproduce
them fatefully.

The diffusion model may also occasionally pro-
duce a mismatch between the locations of facial fea-
tures. This is shown in Fig. 8 (top right quadrant)
where the shape of the mouth significantly differs
between the input and the stylized keyframe. The
resulting misalignment is clearly visible in the output
sequence Fig. 8 (top right quadrant, rightmost result).

Keyframe coverage. The patch-based training
strategy [5] generalizes well to unseen poses and ex-
pressions despite the limited training set (one to three
keyframes). However, it may fail to provide convincing
stylizations for more extreme head motions or facial
expressions not captured by the keyframes. This is
visible, e.g., in the last row of Fig. 4 where the “pig
nose” is almost entirely missing from the frames with
exaggerated facial expressions.

If we anticipate a range of movements or expres-
sions that would be difficult to capture using only
three keyframes, the solution could be to provide more
of them. Nevertheless, by increasing the number of
keyframes, the GPU memory and time required to
process them increases as well and the the risk of
introducing inconsistencies escalates.

Style boundary. Our framework also inherits a par-
ticular limitation from the style transfer technique [5],
where stylistic elements extending beyond the sub-
ject’s silhouette are associated with the background
during training and are often omitted. See an example
in Fig. 8 (bottom part), where the horns are depicted
on the background and since there is no structure
in the original input frame that would identify their
new location in the subsequent frames, the portion of
the horns that extends beyond the receptive field of
the used image translation network is missing in the
results.

Sensitivity to global color changes. Another
limitation inherited from the patch-based training strat-
egy [5] is a sensitivity to global color and illumination
changes. Significant global changes may visibly and
dramatically decrease the stylization quality. In future
work, we plan to employ dense visual descriptors
that are invariant to illumination changes. However,
doing so would necessitate changes to the network
architecture as it was originally designed to accept an
image as input, not high-dimensional feature vectors.

Manual keyframe selection. Finally, our imple-

FIGURE 8. Limitations of our framework. Left: input frames
with corresponding masks as insets and stylized keyframes;
right: selected input frames and corresponding stylized
frames. See the main text for discussion.

mentation relies on manual selection of keyframes,
anticipating the range of motions and expressions for
the full input video. This task can be challenging for
novice users who might struggle to choose adequate
keyframes. In future work we plan to obtain a dense
feature representation and then select frames with the
most distant features as keyframe candidates.

CONCLUSION
We presented a novel hybrid approach that enables
real-time stylization of live video streams via text
prompts, while maintaining high visual quality and
performance. Our approach combines the strengths
of text-driven diffusion-based stylization with a patch-
based training strategy. Besides fast performance, we
offer an intuitive user interaction with interactive style
propagation, tailored to video conferencing use cases.
Our method can deliver visually pleasing and diverse
stylizations across different subjects, motions, and ex-
pressions. Compared to existing video stylization tech-
niques, our framework enables previously unreachable
real-time creative self-expression through text prompts.
User feedback from public demonstrations confirmed
intuitive interaction and a sufficiently expressive range
for real-world applications. Limitations were identified
regarding keyframe consistency and coverage of ex-
aggerated motions beyond typical video call scenarios.
In future work we plan to focus on improving keyframe
consistency, automating keyframe selection, and im-
proving robustness to global illumination changes.
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