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Figure 1: StructuReiser transfers the style from a single stylized keyframe (a) to the entire video sequence (b) generating stylized frames (c)
that are both stylistically consistent and structurally faithful. The keyframe (a) was created using the text-guided video-to-video diffusion
model by Ceylan et al. [CHM23]. However, when applied directly to other frames in the sequence, this model often introduces significant
structural inconsistencies (e). A large video model Gen-3 Alpha [Run25] introduces both structural and style inconsistencies. The state-of-
the-art keyframe-based video stylization method of Futschik et al. [FKL∗21] faces similar issues (f). In contrast, our approach (c) maintains
the structural integrity of the target video sequence while ensuring coherent stylization throughout.

Abstract

We introduce StructuReiser, a novel video-to-video translation method that transforms input videos into stylized sequences using
a set of user-provided keyframes. Unlike most existing methods, StructuReiser strictly adheres to the structural elements of the
target video, preserving the original identity while seamlessly applying the desired stylistic transformations. This provides
a level of control and consistency that is challenging to achieve with text-driven or keyframe-based approaches, including
large video models. Furthermore, StructuReiser supports real-time inference on standard graphics hardware as well as custom
keyframe editing, enabling interactive applications and expanding possibilities for creative expression and video manipulation.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Image processing;

1. Introduction

Guided video stylization aims to modify the visual appearance of
an input sequence while preserving its high-level structure and
motion. Existing solutions fall largely into two groups: keyframe-
based methods [JST∗19, TFK∗20, FKL∗21] that allow users to
directly manipulate visual appearance through one or more styl-
ized keyframes, and text-driven approaches [YZLL23, CHM23,
GBTBD24] where the appearance is specified using text prompts.
Recently, large video models (Sora [Ope25], Veo2 [Goo25] or Gen-
3 Alpha [Run25]) have been introduced, which also demonstrate

capabilities to perform keyframe-based stylization (c.f. Gen-3 Al-
pha ReStyle).

Despite their practicality and impressive results, the mentioned
keyframe-based and text-driven methods were not originally de-
signed to preserve the content structure of the unstyled video,
which can lead to structural elements being lost or degraded in
the stylized output. For example, when the input video features
a distinct character whose identity is crucial (see Fig. 1a), there
is no guarantee that the stylized sequence will retain this iden-
tity (see Fig. 1d–e). To address this issue in keyframe-based ap-
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proaches, users must provide a set of keyframes that accurately
capture existing and newly appearing structural elements in the in-
put video – a process that can be tedious and time-consuming. The
challenge is more pronounced with text-driven methods, as it can
be difficult to craft a prompt that reliably preserves all structural
details.

To overcome this limitation, we propose a novel approach to
keyframe-based video stylization. We formulate a guided video
stylization problem that, in addition to ensuring fidelity to the trans-
ferred style, also focuses on preserving the structural elements of
the input video (cf. Fig. 1b–c) – an aspect that has not been dis-
cussed in previous approaches. Although a similar objective was
previously set in neural style transfer [GEB16] (and its video exten-
sion [RDB18]), our work targets a different scenario—semantically
meaningful style transfer in which spatial alignment between orig-
inal and stylized content is essential. In this context, preserving ar-
bitrary structural elements in stylized video remains a challenging
problem that we address in this paper.

To validate the effectiveness of our method, we conducted a se-
ries of qualitative and quantitative evaluations including an on-
line user study that demonstrate the importance of explicit mod-
eling of the appearance-to-structure relationship and demonstrate
our method’s ability to preserve both stylistic and structural as-
pects. Moreover, because our stylization method is based on a feed-
forward neural network, it can perform inference in real time
on commodity graphics hardware. This makes our approach suit-
able for interactive scenarios, such as video conferencing, where
diffusion-based techniques or large video models are difficult to
apply.

To summarize our contributions:

(i) We formulate a task of structurally faithful video stylization,
emphasizing both semantically meaningful stylistic fidelity and
structural preservation.

(ii) We provide a solution that trains a feed-forward neural network
with the assistance of a pre-trained diffusion model to effectively
transfer style from a stylized keyframe while preserving essential
structural elements in the rest of the video sequence.

(iii) We validate our approach through extensive qualitative and
quantitative evaluations, which demonstrate a significant im-
provement over current state-of-the-art in maintaining structural
fidelity while closely adhering to the desired stylization.

Codes & models at https://github.com/radimspetlik/structureiser.

2. Related work

The origin of image and video stylization techniques can be traced
back several decades. Early stylization approaches were typically
based on hand-crafted algorithmic solutions that were restricted
to a certain range of styles and specific target domains. For in-
stance, Curtis et al. [CAS∗97] present a physically-based simu-
lation to mimic the appearance of a watercolor media, Salisbury
et al. [SWHS97] produce painterly artworks automatically using
a set of predefined brush strokes, while Praun et al. [PHWF01] can
generate brush strokes procedurally. Despite the impressive results
these early stylization techniques produce, their main limitation lies

in the fact that slight modification of an existing style or creation of
a new one usually requires a significant effort and expertise.

To overcome this limitation, Hertzmann et al. [HJO∗01] intro-
duced the idea of image analogies. In their approach, the user can
provide an example pair of unstyled and stylized images that spec-
ify the intended stylization analogy. The resulting image is then
constructed by copying patches from a stylized exemplar so that the
corresponding pixels in the unstyled patches match the patches in
the target unstyled image. The framework of image analogies later
proved to be a viable solution also for example-based video styl-
ization [BCK∗13, JST∗19] that can deliver temporally consistent
sequences that faithfully preserve the user-specified visual style.
A key limitation of those techniques is that they treat the target
video as a guide for style transfer, and thus larger structural changes
that may appear in the target domain are not taken into account. To
overcome this limitation, the user needs to provide multiple consis-
tently stylized keyframes, of which manual preparation can be labor
intensive. When stylized keyframes are generated synthetically, it
is, on the other hand, difficult to ensure their consistency.

Those limitations were addressed by Frigo et al. [FSDH16] and
Gatys et al. [GEB16] who perform stylization using only the style
image and try to better respect the structural changes in the tar-
get domain. Frigo et al. search for the optimal mapping between
the adaptively sized patches in the target image and patches in the
style-exemplar while Gatys et al. iteratively optimizes the output
image so that when fed into the VGG network [SZ14] its responses
correspond to VGG responses of the style exemplar and the target
image. This approach inspired follow-up works [LFY∗17, KSS19]
of which aim is to increase the faithfulness of the generated image
to the style exemplar by employing more sophisticated loss func-
tions. Chen et al. [CLY∗17] and Ruder et al. [RDB18] later demon-
strated how to extend the framework of Gatys et al. to example-
based video stylization delivering temporally consistent sequences.
Although these approaches are fully automatic and do not require
the preparation of a larger number of stylized keyframes, their artis-
tic control over the final output is fairly limited. The transfer is
usually not semantically meaningful and lacks faithfulness to the
original artistic media.

To perform a semantically meaningful transfer while respecting
structural changes in the target domain, image-to-image translation
networks were proposed [JAFF16,IZZE17]. However, these require
a large amount of training data to work reliably. Only in some
domain-specific scenarios, such as portrait stylization [FCC∗19]
training pairs can be generated automatically [FJS∗17].

To mitigate the requirement for larger paired datasets, few-shot
learning approaches [LHM∗19, WLT∗19] and deformation-based
approaches [SLT∗19b, SLT∗19a] were proposed. However, these
methods require pretraining on large domain-specific datasets and
thus are not applicable in the general case. Texler et al. [TFK∗20]
proposed a few-shot patch-based training strategy for which only
a few stylized keyframes are necessary to deliver compelling video
stylization results without the requirement of domain-specific pre-
training. However, their method has limitations comparable to the
image analogies approach of Jamriška et al. [JST∗19], i.e., when
new structural details appear in the target sequence, it is nec-
essary to provide additional stylized keyframes. Although in the
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Figure 2: An overview of our approach’s training procedure. Given non-keyframe images yi ∈ Y (which are not stylized), we optimize the
operator f to produce images ŷi with a similar appearance as stylized keyframes x̂i. The key loss Lkey (2) encourages reconstruction of
keyframes x̂i, the style loss Lstyle (3) ensures style consistency between frames and keyframes using Gram correlation matrices g of extracted
VGG network responses v, and finally the structure loss Lstructure (4) enforces fidelity to structural elements present in the input video
frames yi. The structure loss requires a conditioned diffusion model d initialized by adding a random Gaussian noise ϵ ∼ N (0,I) into the
synthesized image ŷi, a time step t, and a function c transforming the input image yi to a condition c (in this case line art filter).

follow-up work of Futschik et al. [FKL∗21] the amount of required
keyframes decreased significantly, the newly appearing structural
changes cause difficulties as the underlying approach is still pre-
dominantly focused on style preservation.

As an alternative approach to video stylization, unwrapping tech-
niques have been proposed [RAKRF08, KOWD21]. In those ap-
proaches, input video frames are first projected onto a static atlas
where edits can be performed at one snap and later transferred back
to the original video domain. The quality of results is highly depen-
dent on the quality of the generated unwrap. For small local edits,
these techniques produce impressive results, but larger changes typ-
ically cause difficulties.

Recent approaches to video stylization utilize large pre-trained
text-to-image diffusion models [RBL∗22] and can edit videos
globally using text prompts [Kha23, ZLN∗23, YZLL23, YZLL24,
CHLC24, GBTBD24, KLC∗24, SKL∗24]. However, the outputs of
these techniques heavily depend on a particular version of the pre-
trained text-to-image diffusion model, which may tend to produce
unpredictable results that do not consistently reproduce structural
changes in the target video sequence. This can sometimes lead
to a typical structural flicker that can be disturbing to the ob-
server. Moreover, in addition to the text prompt, a specific con-
trol over the stylization process is difficult to achieve, in contrast
to keyframe-based methods where the user has full creative free-
dom [JST∗19, TFK∗20, FKL∗21].

Liu et al. [LXZ∗24] introduced a text-to-video diffusion frame-
work that injects pre-trained models with “diffusion adapters” for
stylized generation, and further explored depth-based conditioning
in their supplementary materials. While their approach can produce
compelling results, it relies on training these adapters on a special-
ized dataset, which limits the variety of possible styles. Moreover,

it does not explicitly address the notion of semantically meaningful
style transfer – aligning the style domain with the underlying con-
tent so that key structures are preserved and enhanced. In contrast,
our work aims to maintain strong content-style alignment by learn-
ing a dedicated style adapter that flexibly operates on diverse data,
allowing it to capture intricate details and faithfully reproduce even
niche styles. Additionally, our approach supports real-time perfor-
mance once trained, making it well-suited for interactive styliza-
tion scenarios. Consequently, we emphasize both the preservation
of essential structural attributes and the faithful rendering of user-
specified styles, ensuring that stylized videos remain coherent and
semantically aligned from beginning to end.

An online video generation tool based on large video model
Gen-3 Alpha [Run25], was recently introduced, allowing users to
provide a stylized first frame to guide semantically meaningful
style transfer. Because it is a commercial tool with proprietary in-
ternals, the technical details remain inaccessible. Nevertheless, we
provide extensive comparisons in the supplementary video, allow-
ing readers to observe differences between its results and other pub-
lished methods discussed in this paper.

3. Our Approach

The input to our method is a set of N video frames T , which we
decompose into two complementary subsets:

T = X ∪Y.

1. Keyframes X = {xi ∈ T | i ∈ K}, where K ⊂ {1,2, . . . ,N} is the
set of K selected frame indices. For each keyframe xi, a corre-
sponding stylized ground truth x̂i ∈ X̂ is provided.

2. Non-keyframes Y = {yi ∈ T | i ̸∈ K}, i.e. the remaining N −K
frames that do not have direct stylized references.

© 2025 The Author(s).
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We define the set of keyframe pairs by

K = {(xi, x̂i) ∈ X ×X̂ | i ∈ K},

which captures the K tuples of the original keyframes and their
corresponding stylized counterparts.

Our goal is to learn a stylization operator

f : T → T̂ ,

mapping each frame yi ∈ T to a stylized version ŷi = f (yi)∈ T̂ . In
practice, one may view f as an element of a suitable function space,
such as a subset of L2(Ω) if Ω ⊂ R2 denotes the spatial domain of
frames, or a more sophisticated reproducing kernel Hilbert space
for higher-level feature embeddings. We train f by minimizing the
following objective:

L(K,Y) = λk Lkey(K) + λvLstyle(K,Y) + λsLstructure(Y), (1)

where each term imposes distinct yet complementary constraints.

Keyframe Reconstruction Loss We begin with a reconstruction
loss Lkey, which enforces fidelity on the keyframes:

Lkey(K) =
1
K ∑

i∈K

∥∥ f (xi)− x̂i
∥∥2

2. (2)

Here, ∥ ·∥2 denotes the ℓ2-norm in the image (or feature) space. By
pairing xi with x̂i, this term encourages f to replicate the specific
user-defined style on each keyframe.

Style Loss To ensure consistent stylization across the non-
keyframes, we incorporate a style loss Lstyle inspired by Gatys
et al. [GEB16]. For each non-keyframe y j, we compare Gram ma-
trices of VGG [SZ14] features between f (y j) and the ground-truth
stylized references {x̂i}. Specifically, defining

g(u, l) = Gram
(
φl(u)

)
,

where φl is the activation map of the l-th layer in VGG and Gram(·)
computes a normalized correlation matrix, we write:

Lstyle(K,Y) =
1

|K| |L| |Y| ∑
i∈K

∑
j ̸∈K

∑
l∈L

∥∥g(x̂i, l)−g( f (y j), l)
∥∥2

2,

(3)
where L is the set of VGG layers used. This term enforces that tex-
tural and color statistics from the keyframe stylization are inherited
by all non-keyframe outputs.

Structure Preservation via Diffusion Models A key element of
our pipeline is the structure loss Lstructure, which preserves im-
portant geometric and semantic features from the input frames yi.
Specifically, we employ a pre-trained diffusion model d condi-
tioned by a function c designed to extract visually salient details
such as edges, outlines, or semantic cues. This choice of condi-
tioning helps maintain the integrity of shapes and objects that are
crucial for semantically meaningful style transfer, where the target
style and content naturally align.

Let ŷi,t be a noisy version of f (yi) by adding Gaussian noise ϵ
at a predefined time step t. Formally:

ŷi,t =
√

ᾱt f (yi) +
√

1− ᾱt ϵ, ϵ∼N (0,I),

where ᾱt ∈ (0,1) quantifies how much noise is injected at step t.
The diffusion model d

(
ŷi,t , c(yi), t

)
predicts the portion of noise

that is incompatible with the underlying structure in yi. Conse-
quently, the structure loss is defined as:

Lstructure(Y) =
1
|Y| ∑

i ̸∈K

∥∥d
(
ŷi,t , c(yi), t

)
− ϵ

∥∥2
2. (4)

Minimizing ∥d(ŷi,t ,c(yi), t)− ϵ∥2 essentially projects f (yi) onto
a manifold of images consistent with the conditioning c(yi). As
a result, our stylized frames respect the layout and contours implied
by the original video, preserving the semantic integrity needed for
high-quality style transfer.

Theoretical Underpinnings of the Structure Term Although the
above can be seen as a gradient-based alignment, it is more pre-
cisely viewed as a manifold projection that keeps f (yi) close to
images that match the structural content of yi. The operator d is
a learned approximation of the reverse diffusion process, which re-
covers a clean sample from a noisy version under the constraint of
conditioning c. By embedding this denoising operator into our loss,
we force the stylized frames { f (yi)} to remain structurally faithful
to {yi} in ways simpler pixel- or gradient-based losses cannot (see
Sec. 5.5 and Fig. 18).

Mathematically, one can regard the denoising step
d(ŷi,t , c(yi), t) as seeking a fixed point of an operator

Dc, t : T ×Ω →T ,

where Ω encodes external conditioning information (in our case,
line art, edges, or semantic cues). The convergence to the correct
structural manifold emerges from iterating Dc, t at different noise
levels t. By integrating this denoising operator into a loss term, we
ensure that the stylized results { f (yi)} are pulled to preserve the
geometry of {yi}.

Choice of Conditioning and Flexibility In Fig. 2, we instantiate
d as a diffusion model [ZRA23] conditioned on a line art filter
c. Other conditioning strategies – such as Canny edges, semantic
segmentation, or domain-specific keypoint detectors – can also be
used. Changing c redefines which aspects of yi qualify as “struc-
ture,” making the method adaptable to diverse tasks and stylistic
preferences (see Sec. 5.4 and Fig. 17).

Why a Diffusion-Based Structural Constraint? By leveraging
the learned prior from a generative diffusion model, we gain two
important benefits over more direct edge or gradient constraints:

• High-Level Consistency. Diffusion models are trained on large
datasets of natural images (or sketches), so they capture not just
local gradients but also global structures like object boundaries
and semantic relationships.

• Adaptive Gradient Signal. The denoiser d provides gradients
that actively push stylized images toward realistic and coherent
shapes, rather than enforcing a single-scale edge or pixel match.
This approach better handles strong stylizations while keeping
structural details intact.

© 2025 The Author(s).
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Definition of “Structure” Throughout this work, we use “struc-
ture” to refer to prominent spatial or semantic features such as
boundaries, object shapes, or scene layouts. In practice, the def-
inition of structure is governed by the choice of c and the train-
ing corpus of d. Adjusting c can emphasize fine contours, coarse
silhouettes, or specialized annotations, allowing the preservation
of precisely those elements deemed most critical for semantically
meaningful stylization.

This formulation highlights that our structure-preservation prin-
ciple emerges from a rigorous viewpoint: we interpret the stylized
image f (yi) as a point constrained to lie on a manifold of struc-
turally coherent solutions, with the diffusion model d serving as
a learned projection operator guided by c. By positioning the prob-
lem in function spaces and ensuring well-defined gradient flows
from generative priors, our approach transcends the limitations of
simpler, purely local constraints.

Our proposed optimization scheme leverages a pretrained dif-
fusion model for training regularization, drawing on the prin-
ciple introduced in score distillation sampling (SDS) by Poole
et al. [PJBM23]. A key novelty of our approach lies in the way
we inject structural details while preserving the unique traits of
the given artistic style. Such functionality is difficult to achieve us-
ing the original SDS formulation or using the conditioned diffusion
model [ZRA23] directly, as these rely solely on the learned prior,
and therefore struggle with custom visual styles that are typically
out of the domain on which the diffusion model was trained.

3.1. Implementation details

We implemented our approach in PyTorch [PGM∗19] using the
AdamW [LH19] optimizer with fixed learning rate 3 · 10−5. To
model the stylization operator f , we adopt the network architec-
ture originally proposed by Futschik et al. [FCC∗19] that proved
to be suitable for style transfer tasks [TFF∗20, FKL∗21] allow-
ing for reproduction of important high-frequency details, critical
for generating complex and believable artistic styles. The batch
size was set to 1 and instance normalization [UVL16] used in-
stead of batch normalization. We set λk = 1.0 and λv = 100.0.
The parameters for Lstructure (4) were selected experimentally and
differ between the presented sequences: λs ∈ {10−5,10−6} and
t ∈ {20,28}. As d, we adopt the default noise scheduler of Con-
trolNet v1.1 [ZRA23] and the UniPC scheduler [ZBR∗24] with the
number of steps set to 30. The parameters of the VGG network and
diffusion model were fixed and line art conditioning was used for c
(if not stated otherwise). The training was performed on a single
NVIDIA A100 GPU with 40 GB of RAM for 4 hours and the model
with the lowest total loss has been selected to produce the stylized
sequences. In practice, however, even notably shorter training times
can lead to compelling results (see Sec. 5.1).

4. Results and Comparison

The results are presented in Figures 1, 3, 4, 6, 7, 8, and 9.
See also our supplementary material for additional results. We
compare them with the output of recent text-driven meth-
ods [CHM23, YZLL23, CHLC24, GBTBD24] and keyframe-based
approaches [JST∗19, TFK∗20, FKL∗21, Run25].

4.1. Perceptual study

To qualitatively evaluate our approach, we conducted a perceptual
study comparing the outputs of our method with those of five state-
of-the-art text-driven techniques [CHM23, YZLL23, CHLC24,
GBTBD24, YZLL24], three state-of-the-art keyframe-based meth-
ods [JST∗19,TFK∗20,FKL∗21], and a large video model [Run25].
The study assessed how well each method reproduced the artistic
style, preserved structural content, and maintained temporal con-
sistency of the input video. We collected data from 55 partici-
pants through an online survey, where participants were presented
with randomized two-alternative forced-choice (2AFC) compar-
isons. Each participant completed 36 questions, selecting which
anonymized stylization better reproduce style (12 questions), pre-
serve content (12 questions), and maintain temporal consistency
(12 questions). In each comparison, an output from our method was
paired with one from another method using the same input data.

The preference scores for our method versus others are presented
in Fig. 10 as a colored heatmap, where dark green denotes 100%
of the participants who prefer our method and dark red denotes
0%. Each row corresponds to a different method, and each column
corresponds to one of the evaluation criteria: Structure, Style, and
Temporal Consistency. Our method offers improved performance
over previous works in reproducing input structures, even though it
may reproduce the exemplar’s style slightly less accurately, which
is expected due to our focus on structural preservation. Moreover,
our method demonstrates improved temporal consistency in styl-
ized output compared to previous approaches. This is another ben-
efit of our approach: Its ability to preserve structural details helps
to ensure temporal consistency. When structures in the target video
are consistent, their output stylization will be consistent as well im-
plicitly.

4.2. Quantitative evaluation

To quantitatively evaluate our method’s ability to preserve struc-
tural elements from input videos, we conducted a comprehen-
sive comparison across published video stylization techniques. We
calculated the averages and standard deviations between corre-
sponding input and stylized frames across all available video se-
quences, using three metrics: SSIM, LPIPS [ZIE∗18], and FLIP
[ANAM∗20]. The style exemplars were sourced from Ceylan et
al. [CHM23], Geyer et al. [GBTBD24], Yang et al. [YZLL23,
YZLL24], Chu et al. [CHLC24], and a combination including
artist-created stylizations.

Since the published text-driven methods cannot perform
keyframe-based stylization, we trained our method using a single
style exemplar selected from the output of each diffusion method.
We then compared the results of our method with those of the text-
driven methods, as shown in the first four groups of results in Tab. 1.
In the last group, we compare our method with the keyframe-based
stylization approaches of Jamriška et al. [JST∗19], Futschik et
al. [FKL∗21], Texler et al. [TFK∗20], and Gen-3 Alpha∗ [Run25]
using a set of text-driven and artist-created exemplars. Our method
demonstrates superior performance across all sequence groups and
metrics, effectively maintaining structural fidelity across diverse
style sources.

© 2025 The Author(s).
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Figure 3: Comparison with the state-of-the-art in text-driven video stylization: The target video sequence (see a representative target frame y)
has been stylized using text-driven approaches (top row): (a) Ceylan et al. [CHM23], (b) Yang et al. [YZLL23], (c) Chu et al. [CHLC24], and
(d) Geyer et al. [GBTBD24]. One frame from those stylized sequences was used as a keyframe (see small insets). The style of this keyframe
has been propagated to the rest of the target sequence y ∈ Y using our approach (bottom row). Note how our approach better preserves the
structural details seen in the target frame. See also our supplementary video to compare consistency across the entire sequence.
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Figure 4: Comparison with the state-of-the-art in text-driven video stylization (cont.): See Fig. 3 for a detailed explanation.
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(a) (b) (c) (d) (e)

Keyframe from Yang et al. (xr, x̂r) Custom Edit (x̂e) Target Frame (y) Our Approach (ŷ)

Figure 5: Custom edit of results generated by the text-driven method of Yang et al. [YZLL23]. Left to right: (a, b) keyframe (xr, x̂r) is the
result of Yang et al. [YZLL23] conditioned with the text prompt “Galadriel, the royal Elf, silver-golden hair,” (c) custom edit x̂e of the stylized
keyframe x̂r, (d) target frame y, (e) stylization ŷ produced by our method with a single keyframe (xr, x̂e). A key advantage of our method
is that it allows custom edits of videos stylized by text-driven methods, which typically offer only limited control over the generated results
through textual prompts.

Target Frame

(a) Ceylan et al. (b) Jamriška et al. (c) Texler et al. (d) Futschik et al. (e) Our Approach

Keyframe No. 1 Keyframe No. 2 Keyframe No. 3 Keyframe No. 4

(1–4) (1–4) (1) (1)

Figure 6: Comparison with the state-of-the-art in keyframe-based video stylization: The text-driven method of Ceylan et al. [CHM23]
has been used to generate a stylized sequence (a) from which four keyframes (No. 1–4) were selected to perform video stylization using
methods of Jamriška et al. [JST∗19] (b) and Texler et al. [TFK∗20] (c), and one keyframe (No. 1) was selected for the method of Futschik
et al. [FKL∗21] (d) and for our approach (e). Note how our approach better preserves the structural details seen in the target frame. In our
supplementary video, it is also visible that our approach keeps the structure consistent.

4.3. Comparison with text-driven methods

Since text-driven methods only support textual guidance and can-
not perform keyframe-based stylization directly, we adopt a two-
step approach for each video sequence. First, we generate a stylized
version using a combined text prompt p = peditpdesc, where pedit
(e.g., “hyperrealistic detailed oil painting of”) defines the desired
style, and pdesc (e.g., ”an old man with a white beard“) describes
the content. For instance, p = “hyperrealistic detailed oil painting
of an old man with a white beard”. From the resulting stylized se-
quence, we then select one frame as a keyframe and propagate this
keyframe’s style throughout the entire target sequence y ∈ Y using
our proposed keyframe-based stylization method.

As a result, each text-driven method is presented with a
unique stylization. Note that in the methods proposed by Ceylan

et al. [CHM23] and Geyer et al. [GBTBD24], the context descrip-
tion pdesc serves as an inversion prompt.

From the results presented in Figures 3, 4, 8 and in our supple-
mentary material it is apparent that our approach maintains struc-
tural details better than text-driven approaches. See also our sup-
plementary video that demonstrates structural consistency across
the entire sequence contrasting the flicker common in text-driven
methods.

A key advantage of our approach in contrast to text-driven tech-
niques is that it enables the user to incorporate custom edits by
manually modifying the output of the text-driven method and use
it as a newly stylized keyframe for training. This option is ben-
eficial especially in cases when it is difficult to find an accurate
text prompt that precisely expresses the desired artistic vision. In

© 2025 The Author(s).
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Target Frame

(a) Geyer et al. (b) Jamriška et al. (c) Texler et al. (d) Futschik et al. (e) Our Approach

Keyframe No. 1 Keyframe No. 2 Keyframe No. 3 Keyframe No. 4

(1–4) (1–4) (1) (1)

Figure 7: Comparison with the state-of-the-art in keyframe-based video stylization (cont.): Text-driven method of Geyer et al. [GBTBD24]
has been used to generate the initial stylized sequence (a). See Fig. 6 for a detailed explanation.

Target Frame (y) Yang et al. Our Approach

Figure 8: Comparison with the state-of-the-art in text-driven video
stylization (cont.): The target video sequence (see a representative
target frame y) has been stylized using text-driven approach of Yang
et al. [YZLL24] (middle). One frame from those stylized sequences
was used as a keyframe (see small insets). The style of this keyframe
has been propagated to the rest of the target sequence y ∈ Y using
our approach (right). Note how our approach better preserves the
structural details seen in the target frame. Also, see our supplemen-
tary video to compare consistency across the entire sequence.

Fig. 5, we show the results of a custom edit of an image x̂r stylized
by the method of Yang et al. [YZLL23] with the text prompt “Gal-
adriel, the royal Elf, silver-golden hair.” This image was edited by
an artist producing the image x̂e. Our method was then trained with
the keyframe (xr, x̂e), rendering the stylization ŷ.

Target Frame Gen-3 Alpha Our Approach

Figure 9: Comparison with the state-of-the-art in keyframe-
based video stylization (cont.): The text-driven method of Ceylan
et al. [CHM23] (top row) and Chu et al. [CHLC24] (bottom row)
and have been used to generate a stylized sequences from which
one keyframe was selected (see small insets) to perform video styl-
ization using large video model Gen-3 Alpha [Run25] (middle).
Note how our approach (right) better preserves the structural de-
tails seen in the target frame (left) as well as the style in the given
keyframe.

4.4. Comparison with keyframe-based methods

To compare our method with other keyframe-based approaches
(see Figures 6, 7, 9, and our supplementary material), we used
sequences generated by text-driven methods. From each stylized
sequence, we selected a keyframe to train different methods: four
keyframes were chosen for the methods of Jamriška et al. [JST∗19]
and Texler et al. [TFK∗20], while one keyframe was used for the
method of Futschik et al. [FKL∗21], the large video model Gen-3
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Structure
fidelity

Style
fidelity

Temporal
consistency

Jamriška et al. [JST∗19]
Texler et al. [TFK∗20]

Futschik et al. [FKL∗21]
Yang et al. [YZLL23]

Ceylan et al. [CHM23]
Chu et al. [CHLC24]

Geyer et al. [GBTBD24]
Yang et al. [YZLL24]
Gen-3 Alpha [Run25]

91% 71% 91%
95% 52% 88%
86% 47% 85%
87% 41% 86%
95% 36% 96%
93% 16% 91%
89% 21% 96%
100% 12% 91%
81% 94% 64%

when participants consider:

Our method is preferred in

0

50

100

Figure 10: Perceptual study. Each cell represents the percent-
age of votes preferring the results of our method over those of
other methods, based on responses from a total of 55 participants.
Comparisons were made against three keyframe-based methods –
Jamriška et al. [JST∗19], Texler et al. [TFK∗20], and Futschik
et al. [FKL∗21], five text-driven methods – Yang et al. [YZLL23,
YZLL24], Ceylan et al. [CHM23], Chu et al. [CHLC24], Geyer
et al. [GBTBD24], and a large video model Gen-3 Alpha [Run25].
The heatmap illustrates that our approach offers improved perfor-
mance over previous methods in reproducing input structures and
maintaining temporal consistency. It is noteworthy that our ap-
proach fell below the 25% preference mark for style preservation
in only three of the nine comparisons, which appears somewhat
counterintuitive given our primary emphasis on structural fidelity.

Alpha [Run25], and our approach. In all the results presented, our
approach demonstrates stronger preservation of structural details of
the target frame y while faithfully replicating important style fea-
tures of the stylized keyframe. Please refer to our supplementary
video to compare the structural consistency across the entire se-
quence.

5. Experiments

In this section, we present a set of experiments that provide bet-
ter insight into how our approach performs in various settings. We
first examine its convergence rate (Sec. 5.1), then we present an
ablation study on our loss components (Sec. 5.2). We investigate
the influence of parameters λs and t (Sec. 5.3) and conditioning
prior c (Sec. 5.4). Finally, we compare the results of training with
Lstructure and without it using only the line art guidance function
c(y) (Sec. 5.5).

5.1. Convergence rate

In the first experiment, we explore the optimization convergence
speed of our method. The results presented in Fig. 11 indicate that
a reasonably stylized output could be obtained after 6 minutes of
training, and training for more than 90 minutes does not bring a sig-
nificant improvement in stylization quality. Once the network has
been trained, it is capable of performing a real-time stylization of
a live video stream (see Fig. 12 and our supplementary videos).

SSIM ↑ LPIPS ↓ FLIP ↓

text-driven methods

Geyer et al. [GBTBD24] 0.72 ± 0.10 0.30 ± 0.08 0.31 ± 0.05
ours 0.75 ± 0.12 0.28 ± 0.09 0.30 ± 0.06
Yang et al. [YZLL23] 0.65 ± 0.09 0.42 ± 0.09 0.47 ± 0.08
ours 0.71 ± 0.10 0.37 ± 0.09 0.43 ± 0.08
Yang et al. [YZLL24] 0.64 ± 0.09 0.34 ± 0.07 0.37 ± 0.05
ours 0.67 ± 0.12 0.32 ± 0.08 0.34 ± 0.07
Ceylan et al. [CHM23] 0.67 ± 0.08 0.41 ± 0.10 0.42 ± 0.10
ours 0.71 ± 0.09 0.38 ± 0.10 0.40 ± 0.10
Chu et al. [CHLC24] 0.56 ± 0.07 0.55 ± 0.07 0.61 ± 0.10
ours 0.62 ± 0.07 0.48 ± 0.10 0.59 ± 0.11

keyframe-based methods

Jamriška et al. [JST∗19] 0.67 ± 0.08 0.42 ± 0.11 0.48 ± 0.08
Texler et al. [TFK∗20] 0.68 ± 0.08 0.42 ± 0.11 0.48 ± 0.08
Futschik et al. [FKL∗21] 0.66 ± 0.10 0.43 ± 0.11 0.49 ± 0.08
Gen-3 Alpha [Run25] 0.54 ± 0.06 0.50 ± 0.09 0.56 ± 0.09
ours 0.69 ± 0.10 0.40 ± 0.11 0.48 ± 0.08

Table 1: Quantitative comparison of structural fidelity. Averages
and standard deviations between input and stylized frames shown
in two groups. Since text-driven methods cannot perform keyframe-
based stylization, we trained our method using style exemplars gen-
erated by these methods for the top group (see Sec. 4.2). The bottom
group includes keyframe-based approaches trained on a union of
the diffusion-generated and artist-created exemplars. Our method
achieves consistently strong performance across all evaluated met-
rics.

1m 2m 3m 6m

10m 20m 45m 90m

Figure 11: Convergence speed of our method. Results captured
at 1, 2, 3, 6, 10, 20, 45, and 90 minutes of training reveal the pro-
gressive improvement of the stylization. Reasonable results are re-
trieved after 6 minutes of training, with no notable improvement
beyond 90 minutes on NVIDIA A100 GPU.

This gives our method a key advantage over the text-driven meth-
ods [CHM23, YZLL23, CHLC24, GBTBD24, YZLL24], which re-
quire seconds of computation per frame on a single NVIDIA A100
GPU (see Tab. 2).

In Fig. 13, we compare the stylization results of our method (Fig-
ures 13a–c, blue color plot) with Futschik et al. [FKL∗21] (Fig-
ures 13d–f, orange color plot) after 30, 60, and 90 minutes of

© 2025 The Author(s).
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Method
Avg. Time
(s/frame)

Frames
Per Second

te
xt

-d
riv

en

Ceylan et al. [CHM23] 6.439 0.16
Yang et al. [YZLL23] 4.933 0.20
Yang et al. [YZLL24] 2.956 0.34
Geyer et al. [GBTBD24] 7.301 0.14
Chu et al. [CHLC24] 1.402 0.71

ke
yf

ra
m

e-
ba

se
d

Gen-3 Alpha∗ [Run25] 0.238 4.20
Jamriška et al. [JST∗19] 0.062 16.12
Texler et al. [TFK∗20] 0.031 32.26
Futschik et al. [FKL∗21] 0.030 33.33
ours 0.032 31.25

Table 2: Average generation times (in seconds per frame) and cor-
responding frames per second for stylized frame rendering on an
NVIDIA A100 GPU. All methods were executed in their native en-
vironment. The commercial tool Gen-3 Alpha∗ [Run25] in Turbo
mode was running on the server side (unknown conditions). Our
results were obtained using a simple non-optimized Python script.

Figure 12: Our approach enables real-time identity-preserving
stylization of live video streams (see our supplementary video).

training (plots are averages over 15 different sequences; the bor-
der of the opaque area is the standard deviation). The approach
of Futschik et al. [FKL∗21] emphasizes the preservation of the
original style. However, this emphasis results in a gradual loss of
fine details within the structure of the target sequence, as illustrated
by the zoom-in insets in Fig. 13. Note how the eye in Fig. 13f is
directly copied from the stylized keyframe yk. A key advantage of
our approach is that we explicitly retain these fine structural details,
thus maintaining fidelity to the target frames y.

5.2. Ablation study on our loss components

In this experiment, we performed an ablation study to analyze
the impact of individual loss terms within the optimization of our
model. We systematically set the multiplication constant of each
of the three loss terms λk, λv, and λs in Eq. (1) to zero. The re-
sults are presented in Fig. 14 for the model with the lowest to-
tal loss after training on a GPU for 4 hours. We specifically se-
lected an input frame x with a significant appearance change with
respect to the style exemplar y to highlight the ability of our method

0

10-3

10-2

10-1

30 60
Minutes

To
ta

ll
os

s

(a) (b) (c) x̂

(d) (e) (f) x

y

90 120

Figure 13: Comparative analysis of stylization results over training
duration. In each of the first three columns, a stylized target frame y
is shown after 30, 60, and 90 minutes of training. Top row (a), (b),
(c) and blue color: our method, bottom row (d), (e), (f) and orange
color: Futschik et al. [FKL∗21]. The method of Futschik et al. pri-
oritizes the preservation of the original style. However, over time,
this leads to a gradual loss of fine details in the structure of the tar-
get sequence (cf. zoom-in insets). A key advantage of our method is
that we explicitly strive to retain these details, thereby maintaining
their fidelity. The plots of the total loss are averaged over 15 differ-
ent sequences, the border of the opaque area depicts the measured
standard deviation.

to produce results in the style of the exemplar even when new,
previously unseen structures appear in the input frame (t = 28,
λstructure = 5×10−6).

Excluding Lkey from the loss in Fig. 14a results in an output that
preserves the structure of the target frame x; however, the transfer is
not semantically meaningful – colors from the stylized keyframe y
are placed in improper locations (cf. white spots on the nose and
forehead).

When the term Lstyle is omitted (Fig. 14b), we obtain a result
with the overall structure of x but with corrupted style details be-
cause Lstructure enforces structure without maintaining the fine de-
tails that are otherwise preserved by Lstyle.

Conversely, omitting Lstructure (Fig. 14c) retains the style details
of y through Lstyle and the semantic consistency enforced by Lkey,
but newly appearing structures (e.g., novel eye shapes) are poorly
reconstructed.

Only by combining the three loss terms (Fig. 14d) do we obtain
results that simultaneously preserve structural integrity and faith-
fully transfer style features.

Quantitative comparison. Table 3 presents the quantitative as-
sessment of structural fidelity across 18 test sequences. For all met-
rics considered, adding the structural term Lstructure consistently
improves similarity between input and stylized frames, confirming
the visual trends observed above.

© 2025 The Author(s).
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Keyframe Target Frame (y)Lstyle +Lstructure Lkey +Lstructure Lkey +Lstyle Lkey +Lstyle +Lstructure

(a) (b) (c) (d)

Figure 14: An ablation study demonstrating the importance of individual terms in our objective function (1). A neural network is trained to
transfer the style from the stylized keyframe y to the target frame y. Each of the three terms Lkey (2), Lstyle (3), and Lstructure (4) is left out
in the training. Leaving out Lkey (a) causes the style transfer to be less semantically meaningful (see, e.g., white nose), excluding Lstyle (b)
leads to complete style washout, and leaving out Lstructure (c) results in poor replication of target frame structures. Only the combination of
all three terms yield satisfactory results (d).

SSIM ↑ LPIPS ↓ FLIP ↓

Lstyle +Lstructure 0.72 ± 0.01 0.37 ± 0.01 0.44 ± 0.01
Lkey +Lstructure 0.71 ± 0.02 0.42 ± 0.01 0.43 ± 0.01
Lkey +Lstyle +Lstructure 0.72 ± 0.02 0.36 ± 0.01 0.45 ± 0.01

average with Lstructure 0.71 ± 0.01 0.38 ± 0.01 0.44 ± 0.01
Lkey +Lstyle 0.64 ± 0.01 0.43 ± 0.01 0.48 ± 0.01

Table 3: Loss ablation – quantitative comparison of structural fi-
delity. We report the mean ± standard deviation of structural sim-
ilarity between input and stylized frames across 18 sequences for
each ablated loss variant. All evaluated metrics consistently show
that including the term Lstructure enhances preservation of the orig-
inal video structures.

Perceptual user study. To assess perceived quality, we conducted
a two-alternative forced-choice (2AFC) user study with 28 partici-
pants (see Fig. 15). In each trial, subjects were shown a pair of styl-
ized frames – one produced with the full loss Lstructure +Lstyle +
Lkey and the other with an ablated variant – and asked which they
preferred. The full loss was favored in 84 % of comparisons against
Lstructure +Lstyle, 88 % against Lkey +Lstyle, and 100 % against
Lstructure +Lkey. These results, averaged over all participants and
scenes, corroborate the quantitative findings: users prefer outputs
generated with the complete loss formulation.

5.3. The influence of parameters λs and t

In this experiment, we manipulate the parameter t in Lstructure (4)
and the loss weight λs (1). We trained the network for 4 hours on
a GPU and selected the network with the lowest total loss.

The results in Fig. 16 show that the stronger λs, the more pro-
nounced the structure of x is in the result. Since the value of λs
modifies the strength of Lstructure in the total loss term L (1), set-
ting it to a higher value results in a stronger pronunciation of the
input video structures in the output of our method. Another inter-
esting dimension of structure reinforcement control strength is the
parameter t. The diffusion model we utilize for the structure en-

(Lstructure +Lstyle) (Lkey +Lstyle) (Lstructure +Lkey)

0%

20%

40%

60%

80%

100%

84% 88% 100%

when participants compare against:

(Lstructure +Lstyle +Lkey) is preferred in

0

50

100

Figure 15: Loss ablation – perceptual study. Each column shows
the average preference of 28 participants for the full loss combina-
tion Lstructure+Lstyle+Lkey (1) when compared in a 2AFC against
ablated variants: Lstructure +Lstyle (84 %), Lkey +Lstyle (88 %),
and Lstructure +Lkey (100 %).

forcement uses a 30 step denoising schedule. Every time the loss
term Lstructure is evaluated, a convex combination ŷi,t (4) of the
output of our method and a Gaussian noise ϵ ∼ N (0,I) is per-
formed. Then, the pre-trained diffusion model estimates the orig-
inal noise ϵ, and the residual between the estimated noise and ϵ is
propagated through our method. This means that when t = 0, the
diffusion model gets a pure Gaussian noise and when t = 29, it gets
the output of our network with only a little Gaussian noise present.
According to this, we see that the lower the value of t, the stronger
the focus is on the high-level structures compared to the higher val-
ues of t.

5.4. The influence of image conditioning prior c

In our method, we use a pre-trained diffusion model [ZRA23]
as regularizer to ensure that the structural elements of the target
frame y are accurately reflected in the stylized output. We hypoth-
esize that by sampling from the diffusion model, we leverage both
the structural conditioning provided by the guidance image c and
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Figure 16: Reinforcement of input video structure as function
of parameters λs (1) and t (4). The stronger λs, the more pro-
nounced the structure of x is in the result. Note that the structural
loss Lstructure (4) uses a 30 step denoising schedule. At t = 0, the
guidance input is pure Gaussian noise ϵ ∼N (0,I), and at t = 29,
it contains minimal noise.

the model’s inherent ability to guide denoised samples toward the
learned manifold of real images.

In this experiment, we evaluate the effectiveness of four differ-
ent diffusion models. Each model uses a specific conditioning func-
tion c: (i) “line art detection” model, (ii) “depth estimation” model,
(iii) Canny edge detector [Can86], and (iv) “soft edge estimation“
model.

The results for t = 16 and t = 28 are presented in Fig. 17. Both
depth and soft edge conditioning result in stylization that lacks the
finer details of the target frame y, likely due to the coarse struc-
ture of their respective guidance images c. The Canny edge detec-
tor provides a more detailed signal, while line art guidance offers
the most precise structural information. For applications requiring
rapid training, the quality of line art can be sacrificed for the ap-
proximately 10-fold faster Canny edge guidance. In contrast, depth
guidance is less practical, taking about 10 times longer than line
art, with soft edge guidance between the two.

In this experiment, we kept λs = 5 ·10−6 and trained on a single
NVIDIA A100 GPU for 4 hours. We selected the model with the
lowest total loss. One-time optimization for a given style keyframe
often converges well within minutes (see Fig. 11). Once converged,
each new frame is then stylized in real time at 30+ fps (see Table 2).
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Target Frame Stylized Keyframe

Figure 17: Structure reinforcement as function of image guidance c
and diffusion time steps t. The best results are achieved with the line
art-conditioned diffusion model Lstructure (4) at t = 28.

5.5. Direct optimization with the image conditioning prior

In our experiments, we show that our proposed Lstructure (4) loss
enforces structures from the target frame y to the stylized output ŷ
of our method. The purpose of this experiment is two fold: first, to
demonstrate that the Lstructure loss cannot be replaced by a simpler
loss that uses the line art image conditioning directly; and second,
to present this simpler loss as an alternative structure-preserving
mechanism, serving as a baseline for comparison. In Fig. 18, we
show that replacing Lstructure with the line art conditioning term

Llineart(Y) =
1
|Y| ∑

i ̸∈K
∥c(ŷi)− c(yi)∥2

2 (5)

fails to enforce the transfer of structural details from the target
frames yi to the stylized outputs f (yi) = ŷi. In this experiment, we
trained on a single NVIDIA A100 GPU for 4 hours and selected
the model with the lowest total loss.
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Figure 18: Comparison of stylization results using the line art
loss term Llineart (5) versus our line art-guided structure loss
term Lstructure (4). Increasing the strength of Llineart fails to effec-
tively transfer structural elements from the target frame to the styl-
ized output, whereas Lstructure successfully preserves the target’s
structural details.

6. Limitations

Although our approach represents an improvement over the current
state-of-the-art in both text-driven and keyframe-based video styl-
ization methods, we have identified the following limitations in its
application.

In style transfer methods, there exists a delicate balance between
maintaining fidelity to the features of the style exemplar images and
preserving the structural characteristics present in the content that is
being stylized. The current state-of-the-art in keyframe-based video
stylization mainly emphasizes the fidelity to the original features in
the style image. Our approach aims to produce stylized content that
aligns both with the style exemplar and the structural characteristics
of the target video sequence. Although we enable users to find the
right balance between style and structure using parameters λs and t,
we acknowledge that in some situations, decreasing the fidelity to
the style features may be perceived as a potential limitation.

Our method achieves training times comparable to those of Fut-
shik et al. [FKL∗21], which can be relatively long and can restrict
interactive updates, a feature offered by Texler et al. [TFK∗20]. To
address this drawback, in future work we plan to combine Texler et
al.’s rapid patch-based training strategy with the calculation of the
style loss in a full-frame setting.

In our proposed workflow, the user is expected to select
a keyframe that will be used for training. Although certain guide-
lines can be followed, a mechanism that enables the automatic se-
lection of suitable keyframes could simplify the preparation phase.

7. Conclusion

In this work, we introduced a novel keyframe-based video styliza-
tion method that balances the preservation of essential structural
elements with adherence to a prescribed visual style. By integrat-
ing the line art-guided structure loss term Lstructure, our approach
overcomes limitations of existing text-driven and keyframe-based
stylization techniques by preserving structural detail from the input

video, enhancing the quality and coherence of stylized sequences,
and reducing the need for additional correction keyframes. Real-
time inference of our method enables interactive applications such
as consistently stylized video calls, which are challenging with ex-
isting approaches. By blending style fidelity with structural preser-
vation, our method aims to improve video stylization in both quality
and usability.
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